Postprandial Hypotension in Adults: Exploring Insulin Dynamics During a Mixed Meal Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Participants
2.3. Mixed Meal Test (MMT)
2.4. Laboratory Parameters
2.5. Blood Pressure and Heart Rate
2.6. PPH Diagnostic Criteria
2.7. Postprandial Hypoglycemia Diagnostic Criteria
2.8. Statistical Analyses
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Laboratory Findings During the MMT
3.3. Comparison of Patients with and Without PPH During MMT
3.4. Correlations Between Blood Pressure and Other Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PPH | Postprandial hypotension |
MMT | Mixed meal test |
sBP | Systolic blood pressure |
dBP | Diastolic blood pressure |
DM | Diabetes mellitus |
GLP | Glucagon-like peptide |
OGTT | Oral glucose tolerance test |
HbA1c | Hemoglobin A1c |
ACTH | Adrenocorticotropic hormone |
GIP | Glucose-dependent insulinotropic polypeptide |
CGRP | Calcitonin gene-related peptide |
VIP | Vasoactive intestinal peptide |
ECG | Electrocardiogram |
References
- Jansen, R.W.; Lipsitz, L.A. Postprandial hypotension: Epidemiology, pathophysiology, and clinical management. Ann. Intern. Med. 1995, 122, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Schoevaerdts, D.; Iacovelli, M.; Toussaint, E.; Sibille, F.X.; de Saint-Hubert, M.; Cremer, G. Prevalence and risk factors of postprandial hypotension among elderly people admitted in a geriatric evaluation and management unit: An observational study. J. Nutr. Health Aging 2019, 23, 1026–1033. [Google Scholar] [CrossRef]
- Van Orshoven, N.P.; Jansen, P.A.F.; Oudejans, I.; Schoon, Y.; Oey, P.L. Postprandial hypotension in clinical geriatric patients and healthy elderly: Prevalence related to patient selection and diagnostic criteria. J. Aging Res. 2010, 243752. [Google Scholar] [CrossRef]
- Hansen, R.M.; Krogh, K.; Sundby, J.; Krassioukov, A.; Hagen, E.M. Postprandial hypotension and spinal cord injury. J. Clin. Med. 2021, 10, 1417. [Google Scholar] [CrossRef]
- Kitae, A.; Ushigome, E.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Osaka, T.; Okada, H.; Hamaguchi, M.; Asano, M.; Yamazaki, M.; et al. Asymptomatic postprandial hypotension in patients with diabetes: The KAMOGAWA-HBP study. J. Diabetes Investig. 2021, 12, 837–844. [Google Scholar] [CrossRef]
- Luciano, G.L.; Brennan, M.J.; Rothberg, M.B. Postprandial hypotension. Am. J. Med. 2010, 123, 281.e1-6. [Google Scholar] [CrossRef]
- Tabara, Y.; Okada, Y.; Uetani, E.; Nagai, T.; Igase, M.; Kido, T.; Ochi, N.; Ohara, M.; Takita, R.; Kohara, K.; et al. Postprandial hypotension as a risk marker for asymptomatic lacunar infarction. J. Hypertens. 2014, 32, 1084–1090. [Google Scholar] [CrossRef]
- Aronow, W.S.; Ahn, C. Association of postprandial hypotension with incidence of falls, syncope, coronary events, stroke, and total mortality at 29-month follow-up in 499 older nursing home residents. J. Am. Geriatr. Soc. 1997, 45, 1051–1053. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Sahye-Pudaruth, S.; Khodabandehlou, K.; Liang, F.; Kasmani, M.; Wanyan, J.; Wang, M.; Selvaganesh, K.; Paquette, M.; Patel, D.; et al. Systematic review and meta-analysis examining the relationship between postprandial hypotension, cardiovascular events, and all-cause mortality. Am. J. Clin. Nutr. 2022, 116, 663–671. [Google Scholar] [CrossRef]
- Brun, J.F.; Fedou, C.; Mercier, J. Postprandial reactive hypoglycemia. Diabetes Metab. 2000, 26, 337–351. [Google Scholar]
- Hu, H.; Qiao, W.; Wang, X.; Wang, Y.; Li, Y.; Wang, K.; Liu, S. Effect of blood insulin level on postprandial hypotension in elderly people. Blood Press. Monit. 2020, 25, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Borg, M.J.; Xie, C.; Rayner, C.K.; Horowitz, M.; Jones, K.L.; Wu, T. Potential for Gut Peptide-Based Therapy in Postprandial Hypotension. Nutrients 2021, 13, 2826. [Google Scholar] [CrossRef] [PubMed]
- Palardy, J.; Havrankova, J.; Lepage, R.; Matte, R.; Bélanger, R.; D’Amour, P.; Ste-Marie, L.-G. Blood glucose measurements during symptomatic episodes in patients with suspected postprandial hypoglycemia. N. Engl. J. Med. 1989, 321, 1421–1425. [Google Scholar] [CrossRef]
- Buss, R.W.; Kansal, P.C.; Roddam, R.F.; Pino, J.; Boshell, B.R. Mixed meal tolerance test and reactive hypoglycemia. Horm. Metab. Res. 1982, 14, 281–283. [Google Scholar] [CrossRef]
- Hogan, M.J.; Service, F.J.; Sharbrough, F.W.; Gerich, J.E. Oral glucose tolerance test compared with a mixed meal in the diagnosis of reactive hypoglycemia: A caveat on stimulation. Mayo Clin. Proc. 1983, 58, 491–496. [Google Scholar] [PubMed]
- Hall, M.; Walicka, M.; Panczyk, M.; Traczyk, I. Metabolic parameters in patients with suspected reactive hypoglycemia. J. Pers. Med. 2021, 11, 276. [Google Scholar] [CrossRef]
- Trahair, L.G.; Horowitz, M.; Jones, K.L. Postprandial hypotension is associated with more rapid gastric emptying in healthy older individuals. J. Am. Med. Dir. Assoc. 2015, 16, 521–523. [Google Scholar] [CrossRef]
- Jansen, R.W.; Hoefnagels, W.H. Hormonal mechanisms of postprandial hypotension. J. Am. Geriatr. Soc. 1991, 39, 1201–1207. [Google Scholar] [CrossRef]
- Jansen, R.W.M.M.; Hoefnagels, W.H.L. Influence of oral and intravenous glucose loading on blood pressure in normotensive and hypertensive elderly subjects. J. Hypertens. 1987, 5 (Suppl. S5), 5501–5503. [Google Scholar]
- Maule, S.; Tredici, M.; Dematteis, A.; Matteoda, C.; Chiandussi, L. Postprandial hypotension treated with acarbose in a patient with type 1 diabetes mellitus. Clin. Auton. Res. 2004, 14, 405–407. [Google Scholar] [CrossRef]
- Trahair, L.G.; Horowitz, M.; Jones, K.L. Postprandial hypotension: A systematic review. J. Am. Med. Dir. Assoc. 2014, 15, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, S.; Xie, X.; Huang, X.; Xiao, L.D.; Zou, Y.; Jiang, W.; Zhang, F. Prevalence of postprandial hypotension in older adults: A systematic review and meta-analysis. Age Ageing 2024, 53, afae022. [Google Scholar] [CrossRef] [PubMed]
- Masuo, K.; Mikami, H.; Ogihara, T.; Tuck, M.L. Mechanisms mediating postprandial blood pressure reduction in young and elderly subjects. Am. J. Hypertens. 1996, 9, 536–544. [Google Scholar] [CrossRef]
- Sequeira, A.; Rosario, D. A Comparative Study of Pre- and Post-prandial Blood Pressure Recordings in Obese and Non-Obese Young Adults. J. Clin. Diagn. Res. 2016, 10, OC01–OC03. [Google Scholar]
- Zhou, X.; Wu, T.; Sang, M.; Qiu, S.; Wang, B.; Guo, H.; Li, K.; Wang, Q.; Wang, X.; Chen, Q. Variations in Blood Pressure Before and After 75 g Oral Glucose in Chinese Community-Dwelling Adults: Implications for the Detection of Both Hypertension and Postprandial Hypotension. Pre-Print, Non-Peer-Reviewed Article. Available online: https://ssrn.com/abstract=4448601 (accessed on 16 June 2024).
- Asensio, E.; Alvarez, J.B.; Lara, S.; Alvarez de la Cadena, J.E.; Juárez, D. Postprandial Hypotension in the Elderly: Findings in a Mexican Population. Arch. Cardiol. Mex. 2015, 85, 284–291. [Google Scholar] [CrossRef]
- Zou, X.; Cao, J.; Li, J.H.; Hu, Y.X.; Guo, Y.S.; Si, Q.J.; Fan, L. Prevalence of and Risk Factors for Postprandial Hypotension in Older Chinese Men. J. Geriatr. Cardiol. 2015, 12, 600–604. [Google Scholar]
- Zanasi, A.; Tincani, E.; Evandri, V.; Giovanardi, P.; Bertolotti, M.; Rioli, G. Meal-Induced Blood Pressure Variation and Cardiovascular Mortality in Ambulatory Hypertensive Elderly Patients: Preliminary Results. J. Hypertens. 2012, 30, 2125–2132. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Chen, T.L.; Geng, X.; Gu, G.Q.; Zheng, H.M.; Yang, X.H.; Zhang, J.D.; Xie, R.Q.; Cui, W. Clinical Observation of Postprandial Hypotension in Patients with Hypertensive and Coronary Heart Disease. Zhonghua Yi Xue Za Zhi 2018, 98, 2641–2644. [Google Scholar]
- Lagro, J.; Laurenssen, N.C.; Schalk, B.W.; Schoon, Y.; Claassen, J.A.; Olde Rikkert, M.G. Diastolic Blood Pressure Drop after Standing as a Clinical Sign for Increased Mortality in Older Falls Clinic Patients. J. Hypertens. 2012, 30, 1195–1202. [Google Scholar] [CrossRef]
- Trahair, L.G.; Horowitz, M.; Hausken, T.; Feinle-Bisset, C.; Rayner, C.K.; Jones, K.L. Effects of Exogenous Glucagon-Like Peptide-1 on the Blood Pressure, Heart Rate, Mesenteric Blood Flow, and Glycemic Responses to Intraduodenal Glucose in Healthy Older Subjects. J. Clin. Endocrinol. Metab. 2014, 99, E2628–E2634. [Google Scholar] [CrossRef]
- Fukushima, T.; Asahina, M.; Fujinuma, Y.; Yamanaka, Y.; Katagiri, A.; Mori, M.; Kuwabara, S. Role of Intestinal Peptides and the Autonomic Nervous System in Postprandial Hypotension in Patients with Multiple System Atrophy. J. Neurol. 2013, 260, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Vanis, L.; Gentilcore, D.; Rayner, C.K.; Wishart, J.M.; Horowitz, M.; Feinle-Bisset, C.; Jones, K.L. Effects of Small Intestinal Glucose Load on Blood Pressure, Splanchnic Blood Flow, Glycemia, and GLP-1 Release in Healthy Older Subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1524–R1531. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.T.; Polinsky, R.J.; Lee, G.K.; Deeter, J.A. Insulin-Induced Hypotension and Neurogenic Orthostatic Hypotension. Neurology 1986, 36, 1402–1406. [Google Scholar] [CrossRef] [PubMed]
- Takata, S.; Yamamoto, M.; Yagi, S.; Noto, Y.; Ikeda, T.; Hattori, N. Peripheral Circulatory Effects of Insulin in Diabetes. Angiology 1985, 36, 110–115. [Google Scholar] [CrossRef]
- Jansen, R.W.; Penterman, B.J.; van Lier, H.J.; Hoefnagels, W.H. Blood Pressure Reduction after Oral Glucose Loading and Its Relation to Age, Blood Pressure, and Insulin. Am. J. Cardiol. 1987, 60, 1087–1091. [Google Scholar] [CrossRef]
- Vanis, L.; Hausken, T.; Gentilcore, D.; Rigda, R.S.; Rayner, C.K.; Feinle-Bisset, C.; Horowitz, M.; Jones, K.L. Comparative Effects of Glucose and Xylose on Blood Pressure, Gastric Emptying, and Incretin Hormones in Healthy Older Subjects. Br. J. Nutr. 2011, 105, 1644–1651. [Google Scholar] [CrossRef]
- Limberg, J.K.; Soares, R.N.; Padilla, J. Role of the Autonomic Nervous System in the Hemodynamic Response to Hyperinsulinemia—Implications for Obesity and Insulin Resistance. Curr. Diab. Rep. 2022, 22, 169–175. [Google Scholar] [CrossRef]
- Yu, Q.; Gao, F.; Ma, X.L. Insulin Says NO to Cardiovascular Disease. Cardiovasc. Res. 2011, 89, 516–524. [Google Scholar] [CrossRef]
- Gentilcore, D.; Visvanathan, R.; Russo, A.; Chaikomin, R.; Stevens, J.E.; Wishart, J.M.; Tonkin, A.; Horowitz, M.; Jones, K.L. Role of nitric oxide mechanisms in gastric emptying of, and the blood pressure and glycemic responses to, oral glucose in healthy older subjects. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G1227–G1232. [Google Scholar] [CrossRef]
- McMillan, N.J.; Soares, R.N.; Harper, J.L.; Shariffi, B.; Moreno-Cabañas, A.; Curry, T.B.; Manrique-Acevedo, C.M.; Padilla, J.; Limberg, J.K. Role of the Arterial Baroreflex in the Sympathetic Response to Hyperinsulinemia in Adult Humans. Am. J. Physiol. Endocrinol. Metab. 2022, 322, E355–E365. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, L. Effectiveness of Acarbose in Treating Elderly Patients with Diabetes with Postprandial Hypotension. J. Investig. Med. 2017, 65, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Trahair, L.G.; Rajendran, S.; Visvanathan, R.; Chapman, M.; Stadler, D.; Horowitz, M.; Jones, K.L. Comparative Effects of Glucose and Water Drinks on Blood Pressure and Cardiac Function in Older Subjects with and without Postprandial Hypotension. Physiol. Rep. 2017, 5, e13341. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, D.; Feinle, C.; Tonkin, A.; Horowitz, M.; Jones, K.L. Postprandial Hypotension in Response to Duodenal Glucose Delivery in Healthy Older Subjects. J. Physiol. 2002, 540, 673–679. [Google Scholar] [CrossRef] [PubMed]
Median [IQR]/n (%) n = 111 | |
---|---|
Age (years) | 42 [17] |
Sex (female/male) | 86 (77.5)/25 (22.5) |
Body weight (kg) | 67.0 [14.0] |
Body mass index (kg/m2) | 24.8 [4.6] |
Adrenergic symptoms | 90 (81.1) |
Neuroglycopenic symptoms | 38 (34.2) |
Fasting blood glucose (mg/dL) (n = 108) | 82.0 [12.8] |
Fasting insulin (mU/L) (n = 84) | 7.6 [5.1] |
Fasting C-peptide (µg/L) (n = 53) | 1.4 [1.1] |
Postprandial blood glucose (mg/dL) (n = 76) | 80.0 [25.5] |
Postprandial insulin (mU/L) (n = 18) | 21.7 [30.5] |
HbA1c (%) (n = 99) | 5.4 [0.4] |
ACTH (pg/mL) (n = 62) | 20.7 [14.7] |
Cortisol (µg/dL) (n = 63) | 14.6 [6.1] |
Patients with PPH during MMT | 26 (23.4) |
Patients with postprandial hypoglycemia during MMT | 12 (10.8) |
PPH (n = 23) | Without PPH (n = 76) | p | |
---|---|---|---|
Age (years) | 40 [13] | 41 [19] | 0.546 |
Female/Male | 16 (69.6)/14 (18.4) | 62 (81.6)/7 (30.4) | 0.249 |
Adrenergic symptoms | 17 (73.9) | 63 (82.9) | 0.338 |
Neuroglycopenic symptoms | 8 (34.8) | 28 (36.8) | 0.857 |
HbA1c (%) (n = 21/66) | 5.4 [0.5] | 5.4 [0.4] | 0.586 |
ACTH (pg/mL) (n = 12/43) | 20.6 [11.8] | 22.0 [19.9] | 0.984 |
Cortisol (µg/dL) (n = 12/43) | 13.4 [3.2] | 15.6 [6.3] | 0.014 |
Adrenergic symptoms during MMT | 7 (30.4) | 13 (17.1) | 0.234 |
Neuroglycopenic symptoms during MMT | 11 (47.8) | 22 (28.9) | 0.129 |
Glucose at the start of MMT (mg/dL) | 79.0 [9.0] | 80.5 [11.5] | 0.518 |
Insulin at the start of MMT (mU/L) | 6.7 [3.5] | 6.6 [5.6] | 0.737 |
C-peptide at the start of MMT (µg/L) | 1.5 [0.8] | 1.4 [0.7] | 0.964 |
sBP at the start of MMT (mmHg) | 123 [30] | 111 [17] | 0.002 |
dBP at the start of MMT (mmHg) | 80 [16] | 74 [11] | 0.010 |
Heart rate at the start of MMT (bpm) | 80 [15] | 80 [14] | 0.388 |
Lowest glucose during MMT (mg/dL) | 70.0 [11.0] | 71.0 [12.0] | 0.605 |
Highest insulin during MMT (mU/L) | 68.9 [52.4] | 66.0 [48.6] | 0.957 |
Highest C-peptide during MMT (µg/L) | 5.0 [3.29] | 5.1 [3.24] | 0.911 |
Maximum fall in sBP (mmHg) | 24 [8] | 10 [9] | <0.001 |
Maximum rise in heart rate (bpm) | 9 [7] | 7 [8] | 0.606 |
sBP (mmHg) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 min | 30 min | 60 min | 90 min | 120 min | 180 min | 240 min | 300 min | ||
Glucose (mg/dL) | r | −0.011 | 0.270 | 0.419 | 0.407 | 0.194 | 0.181 | −0.037 | 0.003 |
p | 0.912 | 0.007 | <0.001 | <0.001 | 0.055 | 0.073 | 0.718 | 0.975 | |
Insulin (mU/L) | r | −0.064 | −0.042 | 0.298 | 0.344 | 0.197 | 0.333 | 0.220 | 0.142 |
p | 0.531 | 0.679 | 0.003 | <0.001 | 0.050 | 0.001 | 0.029 | 0.160 | |
C-peptide (µg/L) | r | 0.230 | 0.076 | 0.263 | 0.373 | 0.333 | 0.424 | 0.315 | 0.283 |
p | 0.022 | 0.457 | 0.008 | <0.001 | 0.001 | <0.001 | 0.001 | 0.005 |
sBP (mmHg) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 min | 30 min | 60 min | 90 min | 120 min | 180 min | 240 min | 300 min | ||
Glucose (mg/dL) | r | 0.218 | −0.026 | 0.330 | 0.490 | 0.313 | 0.164 | −0.025 | −0.035 |
p | 0.319 | 0.906 | 0.124 | 0.018 | 0.146 | 0.454 | 0.910 | 0.873 | |
Insulin (mU/L) | r | −0.193 | −0.319 | 0.122 | 0.216 | 0.277 | 0.318 | 0.081 | 0.232 |
p | 0.378 | 0.138 | 0.579 | 0.322 | 0.201 | 0.140 | 0.713 | 0.287 | |
C-peptide (µg/L) | r | 0.278 | −0.184 | 0.092 | 0.326 | 0.214 | 0.285 | 0.184 | 0.324 |
p | 0.199 | 0.399 | 0.677 | 0.129 | 0.326 | 0.187 | 0.402 | 0.131 |
sBP (mmHg) | ||||||||
---|---|---|---|---|---|---|---|---|
Δ0–30 min | Δ30–60 min | Δ60–90 min | Δ90–120 min | Δ120–180 min | Δ180–240 min | Δ240–300 min | ||
Glucose (mg/dL) | r | −0.020 | −0.312 | 0.015 | 0.154 | −0.067 | −0.007 | −0.061 |
p | 0.848 | 0.002 | 0.884 | 0.128 | 0.509 | 0.942 | 0.550 | |
Insulin (mU/L) | r | 0.108 | −0.241 | −0.025 | 0.174 | −0.124 | 0.011 | 0.149 |
p | 0.288 | 0.016 | 0.804 | 0.085 | 0.222 | 0.917 | 0.140 | |
C-peptide (µg/L) | r | 0.035 | −0.221 | 0.071 | 0.028 | −0.057 | 0.068 | 0.028 |
p | 0.729 | 0.028 | 0.483 | 0.780 | 0.575 | 0.506 | 0.781 |
sBP (mmHg) | ||||||||
---|---|---|---|---|---|---|---|---|
Δ0–30 min | Δ30–60 min | Δ60–90 min | Δ90–120 min | Δ120–180 min | Δ180–240 min | Δ240–300 min | ||
Glucose (mg/dL) | r | 0.108 | −0.194 | 0.024 | 0.191 | 0.032 | 0.064 | 0.071 |
p | 0.625 | 0.375 | 0.914 | 0.382 | 0.883 | 0.773 | 0.748 | |
Insulin (mU/L) | r | 0.262 | −0.420 | 0.019 | −0.142 | −0.057 | 0.177 | −0.125 |
p | 0.227 | 0.046 | 0.932 | 0.519 | 0.798 | 0.420 | 0.570 | |
C-peptide (µg/L) | r | 0.300 | −0.564 | −0.006 | 0.021 | −0.003 | 0.103 | −0.097 |
p | 0.164 | 0.005 | 0.977 | 0.923 | 0.989 | 0.640 | 0.659 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakaya, R.E.; Tam, A.A.; Fakı, S.; Karaahmetli, G.; Özdemir, D.; Ersoy, R.; Topaloğlu, O. Postprandial Hypotension in Adults: Exploring Insulin Dynamics During a Mixed Meal Test. Nutrients 2025, 17, 479. https://doi.org/10.3390/nu17030479
Karakaya RE, Tam AA, Fakı S, Karaahmetli G, Özdemir D, Ersoy R, Topaloğlu O. Postprandial Hypotension in Adults: Exploring Insulin Dynamics During a Mixed Meal Test. Nutrients. 2025; 17(3):479. https://doi.org/10.3390/nu17030479
Chicago/Turabian StyleKarakaya, Rahime Evra, Abbas Ali Tam, Sevgül Fakı, Gülsüm Karaahmetli, Didem Özdemir, Reyhan Ersoy, and Oya Topaloğlu. 2025. "Postprandial Hypotension in Adults: Exploring Insulin Dynamics During a Mixed Meal Test" Nutrients 17, no. 3: 479. https://doi.org/10.3390/nu17030479
APA StyleKarakaya, R. E., Tam, A. A., Fakı, S., Karaahmetli, G., Özdemir, D., Ersoy, R., & Topaloğlu, O. (2025). Postprandial Hypotension in Adults: Exploring Insulin Dynamics During a Mixed Meal Test. Nutrients, 17(3), 479. https://doi.org/10.3390/nu17030479