Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood—Could the Comparison Between Diets Be Improved?
Abstract
:1. Introduction
1.1. Influence of Dietary Components on IMIDs. Table 1
1.1.1. Diet Composition, Intestinal Microbiota, and Dysbiosis
1.1.2. Diet Composition and Intestinal Permeability
1.1.3. Diet Composition, Inflammation, and Immune System
1.2. Dietary Inflammatory Index (DII)
1.3. Obesity
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Eligibility Criteria Used for Literature Search and Screening
2.4. Data Extraction
2.5. Outcomes Measures
2.6. Quality of Meta-Analyses
3. Results
3.1. Characteristics of Eligible Studies
3.2. Cochrane SRs
3.2.1. Cochrane SR and Meta-Analyses on the Outcomes of Diet on Rheumatic and Musculoskeletal Diseases
3.2.2. Cochrane SR on the Outcomes of Diets in IBD
3.2.3. Cochrane SR on the Outcomes of Diets and MS
3.3. Meta-Analyses
3.3.1. RA, PsA, and SpA
Reference | Study Design | Studies | Pathology | Intervention/Exposure/Control | Outcomes | Main Results |
---|---|---|---|---|---|---|
(Genel et al., 2020) [63] | SR and MA | 5 RCT (2 RA, 3 OA), 2 PPT (RA). 468 P. I: 259; C:226. | RA, OA, Seronegative arthropathies (psoriatic, reactive, ankylosing spondylitis or IBD-related) | Low-inflammatory diet, Anti-inflammatory diet, Mediterranean diet -caloric or non-caloric restricted-, to the usual diet. | Meta-analysis (not including ketogenic diet) of (1) weight change (2) CRP, Interleukin 6. (3) Pain score | (1) Weight SMD −0.45 (CI −0.71, −0.18). (2) CRP: −50.65 mg/L (−83.4, −18.26), RA patients. Inflammatory biomarkers (SMD −2.33. (CI −3.82, −0.84), p = 0.002, OA + RA patients. RA group (SMD −1.10 [95 % CI −1.71, −0.49], p = 0.0004 (3) Joint pain (SMD −0.98; CI −2.90, 0.93), p = 0.31. In a subgroup analysis pooled pain scores in a RA group were (SMD −2.81 CI −3.6, −2.02), p < 0.00001. |
(Schönenberger et al., 2021) [62] | SR and MA | 7 RCT. 326 P. (92% female P.). | RA | Mediterranean, vegetarian, vegan, and ketogenic diets, to usual diet. | Meta-analysis of RA pain, and CRP. | Anti-inflammatory diets resulted in significantly lower pain than ordinary diets (−9.22 mm; 95% CI −14.15 to −4.29; p = 0.0002. There were no significant differences in CRP levels (SMD −2.51 CI −6.10, −1.08). |
(Turk et al., 2023) [64] | SR and MA | 11 RCT. | RA | Dietary changes. | Meta-analyses of RA DAS28, and pain. | DAS28 was significantly improved in the group treated with diet (SMD −0.46 CI −0.91, −0.02), p = 0.04, with a very low level of evidence. Pain (SMD −1.23 CI −1.96, −0.5), p = 0.001. |
(Comeche et al., 2020) [65] | SR and MA | 31 research studies. MA: 10 trials: RCT, UNRCT, NRCT. 279 P. | IBD (CD, UC) | Low microparticle diet, semi-vegetarian diet (lacto-ovo-vegetarian diet- fish once a week and meat once every 2 weeks, both of them at half the average amount, bread rarely), IgG4-guided exclusion diet (CD), and others. to the usual diet. | Meta-analyses of CDAI for CD patients. FC, CRP, and ALB, for IBD patients. | A tendency to CDAI reduction (SMD −107.62 CI −182.12; −33.12), p < 0.01. No differences were observed for CRP (SMD −0.45 CI −1.06, 0.16), ALB (SMD 0.16 CI 0.09, 0.41), and FC (SMD −7.40 CI −54.12, 39.32). |
(Zhan et al., 2018) [66] | SR and MA | 2 RCTs and 4 before-after studies. 319 P. | IBD | LFD to the usual diet. | The effect of diets on diarrhea, abdominal bloating, abdominal pain, fatigue, and nausea. | Improvement in other symptoms: diarrhea response (OR: 0.24, 95% CI: 0.11–0.52, p = 0.0003), abdominal bloating (OR: 0.10, 95% CI: 0.06–0.16, p < 0.00001), abdominal pain (OR: 0.24, 95% CI: 0.16–0.35, p < 0.00001), fatigue (OR: 0.40, 95% CI: 0.24–0.66, p = 0.0003) and nausea (OR: 0.51, 95% CI: 0.31–0.85, p = 0.009). Very low level of evidence. |
(Peng et al., 2022) [67] | SR and MA | 4 RCTs and 5 before–after studies. 446 P. (96% in remission). | IBD | LFD to the usual diet. | FGSs. QoL -SIBDQ-(only 2 studies). | Overall FGSs (RR: 0.47, 95% CI: 0.33–0.66, p = 0.0000). QoL -SIBDQ (MD = 11.24, 95% CI 6.61 to 15.87, p = 0.0000). CD patients (RR: 0.44 CI 0.34–0.55) UC (RR: 0.43 CI 0.33–0.56). No statistically significant differences in normal stool consistency and mucosal inflammation. |
(Guerrero Aznar et al., 2022) [68] | RR and MA | 8 RCT. 515 P. | MS | Modified anti-inflammatory diet, Modified Mediterranean diet, Fasting-Mimicking-diet + Mediterranean diet, Modified Paleolithic diet -gluten-free-, Co- hot nature diet, very low-fat plant-based Diet, Supplemented Mediterranean-type diet, to usual diet. | The effect of some anti-inflammatory diets on EDSS, MFIS, and QOL. | MA: A trend of reduction in fatigue (MFIS) (308 pat.) SMD −2.033, 95%-CI (−3.195, −0.152), p-value: 0.0341; increase in QOL Physical (77 pat.), SMD 1.297, (0.2454, 2.3485). p-value of 0.01; and in QOL mental (44 pat.), SMD 1.1086, 95%-CI (0.6143, 1.6029). p < 0.0001. No significant effect on EDSS (337 pat.), and no severe adverse events. |
(Snetselaar et al., 2023) [69] | SR and NWMA | 12 RT. 608 P. | MS | Low-fat, Mediterranean, ketogenic, anti-inflammatory, Paleolithic, fasting, calorie restriction, to the usual diet. | The effect of diets on MFIS, and QOL. | NWMA: The Paleolithic (SMD −1.27; 95% CI −1.81 to −0.74), low-fat (SMD −0.90; 95% CI −1.39 to −0.42), and Mediterranean (SMD −0.89; 95% CI −1.15 to −0.64) diets showed greater reductions in fatigue compared with control. The Paleolithic and Mediterranean diets showed greater improvements in physical and mental QoL compared with the control. Very low level of evidence. |
References | ITEMS | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Final rating | |
(Genel et al., 2020) [63] | Y | Y | Y | pY | Y | Y | Y | Y | Y | N | N | Y | N | N | NA | Y | Y:10, pY:1, N:4, NA:1 |
(Schönenberger et al., 2021) [62] | Y | Y | Y | pY | Y | Y | Y | Y | Y | N | Y | Y | Y | N | NA | Y | Y:12, pY:1, N:2, NA:1 |
(Turk et al., 2023) [64] | Y | pY | Y | pY | Y | N | pY | y | Y | N | Y | Y | Y | N | Y | Y | Y:9, pY:4, N:3 |
(Comeche et al., 2020) [65] | Y | pY | Y | pY | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | NA | Y | Y:11, pY:3, N:1, NA:1 |
(Zhan et al., 2018) [66] | Y | pY | Y | pY | N | Y | pY | Y | pY | N | Y | Y | N | N | NA | Y | Y:8, pY:4, N:3, NA:1 |
(Peng et al., 2022) [67] | Y | Y | Y | pY | Y | Y | pY | Y | Y | N | Y | Y | Y | Y | y | Y | Y:13, pY:2, N:1 |
(Guerrero Aznar et al., 2022) [68] | Y | pY | Y | pY | Y | Y | Y | Y | pY | N | Y | Y | Y | Y | NA | Y | Y:10, pY:3, N:2, NA:1 |
(Snetselaar et al., 2023) [69] | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | Y | N | N | Y | Y | Y:12, N:4 |
3.3.2. IBD
3.3.3. MS
3.3.4. Psoriasis
4. Discussion
4.1. Efficacy of Diets with Specific Compositions to Reduce IMID Symptoms. Quality of Evidence
4.2. Measurement of the Inflammatory Effect of Different Components of the Diet
4.3. DII May Be Correlated with Circulating Inflammatory Marker Levels
4.4. Restriction of Common Components in Many Diets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Schett, G.; McInnes, I.B.; Neurath, M.F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 2021, 385, 628–639. [Google Scholar] [CrossRef] [PubMed]
- El-Gabalawy, H.; Guenther, L.C.; Bernstein, C.N. Epidemiology of immune-mediated inflammatory diseases: Incidence, prevalence, natural history, and comorbidities. J. Rheumatol. Suppl. 2010, 85, 2–10. [Google Scholar] [CrossRef]
- Monteleone, G.; Moscardelli, A.; Colella, A.; Marafini, I.; Salvatori, S. Immune-mediated inflammatory diseases: Common and different pathogenic and clinical features. Autoimmun. Rev. 2023, 22, 103410. [Google Scholar] [CrossRef]
- Burisch, J.; Jess, T.; Egeberg, A. Incidence of Immune-Mediated Inflammatory Diseases Among Patients with Inflammatory Bowel Diseases in Denmark. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2019, 17, 2704–2712.e3. [Google Scholar] [CrossRef] [PubMed]
- Mazzucca, C.B.; Raineri, D.; Cappellano, G.; Chiocchetti, A. How to Tackle the Relationship Between Autoimmune Diseases and Diet: Well Begun Is Half-Done. Nutrients 2021, 13, 3956. [Google Scholar] [CrossRef] [PubMed]
- Nezamoleslami, S.; Ghiasvand, R.; Feizi, A.; Salesi, M.; Pourmasoumi, M. The relationship between dietary patterns and rheumatoid arthritis: A case-control study. Nutr. Metab. 2020, 17, 75. [Google Scholar] [CrossRef]
- Li, T.; Qiu, Y.; Yang, H.S.; Li, M.Y.; Zhuang, X.J.; Zhang, S.H.; Feng, R.; Chen, B.L.; He, Y.; Zeng, Z.R.; et al. Systematic review and meta-analysis: Association of a pre-illness Western dietary pattern with the risk of developing inflammatory bowel disease. J. Dig. Dis. 2020, 21, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Rastall, R.A.; Diez-Municio, M.; Forssten, S.D.; Hamaker, B.; Meynier, A.; Moreno, F.J.; Respondek, F.; Stahl, B.; Venema, K.; Wiese, M. Structure and Function of Non-Digestible Carbohydrates in the Gut Microbiome. Benef. Microbes 2022, 13, 95–168. [Google Scholar] [CrossRef]
- Zhao, T.; Wei, Y.; Zhu, Y.; Xie, Z.; Hai, Q.; Li, Z.; Qin, D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front. Immunol. 2022, 13, 1007165. [Google Scholar] [CrossRef] [PubMed]
- Serrano Fernandez, V.; Seldas Palomino, M.; Laredo-Aguilera, J.A.; Pozuelo-Carrascosa, D.P.; Carmona-Torres, J.M. High-Fiber Diet and Crohn’s Disease: Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3114. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Gao, H.; Li, D.; Jiang, R.; Ge, L.; Tong, C.; Xu, K. Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediat. Inflamm. 2021, 2021, 8879227. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Schuppan, D.; Rojas Tovar, L.E.; Zevallos, V.F.; Loponen, J.; Gänzle, M. Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods 2020, 9, 943. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Esposito, V.; Di Tolla, M.F.; Lecce, M.; Cavalli, F.; Libutti, M.; Misso, S.; Cabaro, S.; Ambrosio, M.R.; Parascandolo, A.; Covelli, B.; et al. Lifestyle and Dietary Habits Affect Plasma Levels of Specific Cytokines in Healthy Subjects. Front. Nutr. 2022, 9, 913176. [Google Scholar] [CrossRef] [PubMed]
- Khademi, Z.; Milajerdi, A.; Larijani, B.; Esmaillzadeh, A. Dietary Intake of Total Carbohydrates, Sugar and Sugar-Sweetened Beverages, and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2021, 8, 707795. [Google Scholar] [CrossRef]
- Graff, E.; Vedantam, S.; Parianos, M.; Khakoo, N.; Beiling, M.; Pearlman, M. Dietary Intake and Systemic Inflammation: Can We Use Food as Medicine? Curr. Nutr. Rep. 2023, 12, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.E.; Silman, A.J. Risk Factors for the Development of Rheumatoid Arthritis. Scand. J. Rheumatol. 2006, 35, 169–174. [Google Scholar] [CrossRef] [PubMed]
- de Punder, K.; Pruimboom, L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 2013, 5, 771–787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Miao, Z. High-fat diet induces intestinal mucosal barrier dysfunction in ulcerative colitis: Emerging mechanisms and dietary intervention perspective. Am. J. Transl. Res. 2023, 15, 653–677. [Google Scholar] [PubMed] [PubMed Central]
- Zitvogel, L.; Guido, K. Immunostimulatory gut bacteria. Science 2019, 366, 1077–1078. [Google Scholar] [CrossRef] [PubMed]
- Meade, S.; Liu Chen Kiow, J.; Massaro, C.; Kaur, G.; Squirell, E.; Bressler, B.; Lunken, G. Gut Microbiome-Associated Predictors as Biomarkers of Response to Advanced Therapies in Inflammatory Bowel Disease: A Systematic Review. Gut Microbes 2023, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Chehadeh, F.; Husband, S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front. Immunol. 2022, 13, 906258. [Google Scholar] [CrossRef]
- Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin. Microbiol. Rev. 2022, 35, e0033820. [Google Scholar] [CrossRef] [PubMed]
- Arroyo Hornero, R.; Hamad, I.; Côrte-Real, B.; Kleinewietfeld, M. The Impact of Dietary Components on Regulatory T-cells and Disease. Front. Immunol. 2020, 11, 253. [Google Scholar] [CrossRef]
- Bäcklund, R.; Drake, I.; Bergström, U.; Compagno, M.; Sonestedt, E.; Turesson, C. Diet and the risk of rheumatoid arthritis-A systematic literature review. Semin. Arthritis Rheum. 2023, 58, 152118. [Google Scholar] [CrossRef] [PubMed]
- Bolte, L.A.; Vich Vila, A.; Imhann, F.; Collij, V.; Gacesa, R.; Peters, V.; Wijmenga, C.; Kurilshikov, A.; Campmans-Kuijpers, M.J.E.; Fu, J.; et al. Long-Term Dietary Patterns Are Associated with pro-Inflammatory and Anti-Inflammatory Features of the Gut Microbiome. Gut 2021, 70, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Mallon, K.; McBride, C.; Doherty, P.G.; Burns, D.R. P862 Dietary Risk Factors Associated with Onset of IBD: A Systematic Literature Review and Meta-Analysis. J. Crohn’s Colitis 2023, 17 (Suppl. S1), i985–i986. [Google Scholar] [CrossRef]
- Wagenaar, C.A.; van de Put, M.; Bisschops, M.; Walrabenstein, W.; de Jonge, C.S.; Herrema, H.; van Schaardenburg, D. The Effect of Dietary Interventions on Chronic Inflammatory Diseases in Relation to the Microbiome: A Systematic Review. Nutrients 2021, 13, 3208. [Google Scholar] [CrossRef] [PubMed]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef]
- Gowen, R.; Gamal, A.; Di Martino, L.; McCormick, T.S.; Ghannoum, M.A. Modulating the Microbiome for Crohn’s Disease Treatment. Gastroenterology 2023, 164, 828–840. [Google Scholar] [CrossRef]
- Camara-Lemarroy, C.R.; Metz, L.; Meddings, J.B.; Sharkey, K.A.; Wee Yong, V. The intestinal barrier in multiple sclerosis: Implications for pathophysiology and therapeutics. Brain 2018, 141, 1900–1916. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Kirby, J.; Reilly, C.M.; Luo, X.M. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front. Immunol. 2017, 8, 598. [Google Scholar] [CrossRef]
- Esposito, S.; Bonavita, S.; Sparaco, M.; Gallo, A.; Tedeschi, G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 2018, 21, 377–390. [Google Scholar] [CrossRef]
- Bilal, M.; Ashraf, S.; Zhao, X. Dietary Component-Induced Inflammation and Its Amelioration by Prebiotics, Probiotics, and Synbiotics. Front. Nutr. 2022, 9, 931458. [Google Scholar] [CrossRef] [PubMed]
- Cowan, S.; Gibson, S.; Sinclair, A.J.; Truby, H.; Dordevic, A.L. Meals That Differ in Nutrient Composition and Inflammatory Potential Do Not Differentially Impact Postprandial Circulating Cytokines in Older Adults above a Healthy Weight. Nutrients 2022, 14, 1470. [Google Scholar] [CrossRef] [PubMed]
- Gershteyn, I.M.; Burov, A.A.; Miao, B.Y.; Morais, V.H.; Ferreira, L.M.R. Immunodietica: Interrogating the Role of Diet in Autoimmune Disease. Int. Immunol. 2020, 32, 771–783. [Google Scholar] [CrossRef]
- Yang, W.; Cong, Y. Gut Microbiota-Derived Metabolites in the Regulation of Host Immune Responses and Immune-Related Inflammatory Diseases. Cell. Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and Developing a Literature-Derived, Population-Based Dietary Inflammatory Index. Public Health Nutr. 2013, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, D.; Mao, Y.; Xu, Y.; Xu, X.; Xie, Z.; Wen, C. Lifestyle Factors Associated with Incidence of Rheumatoid Arthritis in US Adults: Analysis of National Health and Nutrition Examination Survey Database and Meta-Analysis. BMJ Open 2021, 11, e038137. [Google Scholar] [CrossRef] [PubMed]
- Ortolan, A.; Lorenzin, M.; Felicetti, M.; Ramonda, R. Do Obesity and Overweight Influence Disease Activity Measures in Axial Spondyloarthritis? A Systematic Review and Meta-Analysis. Arthritis Care Res. 2021, 73, 1815–1825. [Google Scholar] [CrossRef]
- Liu, Y.; Hazlewood, G.S.; Kaplan, G.G.; Eksteen, B.; Barnabe, C. Impact of Obesity on Remission and Disease Activity in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res. 2017, 69, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Moroni, L.; Farina, N.; Dagna, L. Obesity and its role in the management of rheumatoid and psoriatic arthritis. Clin. Rheumatol. 2020, 39, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Ortolan, A.; Felicetti, M.; Lorenzin, M.; Cozzi, G.; Ometto, F.; Striani, G.; Favero, M.; Doria, A.; Ramonda, R. The Impact of Diet on Disease Activity in Spondyloarthritis: A Systematic Literature Review. Jt. Bone Spine 2023, 90, 105476. [Google Scholar] [CrossRef] [PubMed]
- Upala, S.; Sanguankeo, A. Effect of Lifestyle Weight Loss Intervention on Disease Severity in Patients with Psoriasis: A Systematic Review and Meta-Analysis. Int. J. Obes. 2015, 39, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.; Pigni, S.; Antoniotti, V.; Agosti, E.; Caramaschi, A.; Antonioli, A.; Aimaretti, G.; Manfredi, M.; Bona, E.; Prodam, F. Targeting Microbiota in Dietary Obesity Management: A Systematic Review on Randomized Control Trials in Adults. Crit. Rev. Food Sci. Nutr. 2022, 63, 11449–11481. [Google Scholar] [CrossRef] [PubMed]
- Julian, P.T.H.; Sally, G. Cochrane Handbook for Systematic Reviews of Interventions; Wiley: New York, NY, USA, 2006; pp. 633–649. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Reingold, S.C.; Polman, C.H.; Wolinsky, J.S. Disability Outcome Measures in Multiple Sclerosis Clinical Trials: Current Status and Future Prospects. Lancet Neurol. 2012, 11, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Vickrey, B.G.; Hays, R.D.; Harooni, R.; Myers, L.W.; Ellison, G.W. A Health-Related Quality of Life Measure for Multiple Sclerosis. Qual. Life Res. 1995, 4, 187–206. [Google Scholar] [CrossRef]
- Fisk, J.D.; Ritvo, P.G.; Ross, L.; Haase, D.A.; Marrie, T.J.; Schlech, W.F. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clin. Infect. Dis. 1994, 18 (Suppl. S1), S79–S83. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.F.; Bradshaw, J.M. A simple index of Crohn’s-disease activity. Lancet 1980, 1, 514. [Google Scholar] [CrossRef] [PubMed]
- Prevoo, M.L.; van ’t Hof, M.A.; Kuper, H.H.; van Leeuwen, M.A.; van de Putte, L.B.; van Riel, P.L. Modified disease activity scores that include twenty-eight joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 1977. [Google Scholar] [CrossRef]
- Lu, C.; Lu, T.; Ge, L.; Yang, N.; Yan, P.; Yang, K. Use of AMSTAR-2 in the methodological assessment of systematic reviews: Protocol for a methodological study. Ann. Transl. Med. 2020, 8, 652. [Google Scholar] [CrossRef] [PubMed]
- Gwinnutt, J.M.; Wieczorek, M.; Rodríguez-Carrio, J.; Balanescu, A.; Bischoff-Ferrari, H.A.; Boonen, A.; Cavalli, G.; de Souza, S.; de Thurah, A.; Dorner, T.E.; et al. Effects of Diet on the Outcomes of Rheumatic and Musculoskeletal Diseases (RMDs): Systematic Review and Meta-Analyses Informing the 2021 EULAR Recommendations for Lifestyle Improvements in People with RMDs. RMD Open 2022, 8, e002167. [Google Scholar] [CrossRef]
- Cramp, F.; Hewlett, S.; Almeida, C.; Kirwan, J.R.; Choy, E.H.; Chalder, T.; Pollock, J.; Christensen, R. Non-Pharmacological Interventions for Fatigue in Rheumatoid Arthritis. Cochrane Database Syst. Rev. 2013, 2013, CD008322. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Iheozor-Ejiofor, Z.; Gjuladin-Hellon, T.; Parian, A.; Matarese, L.E.; Bracewell, K.; MacDonald, J.K.; Gordon, M.; Mullin, G.E. Dietary Interventions for Induction and Maintenance of Remission in Inflammatory Bowel Disease. Cochrane Database Syst. Rev. 2019, 2, CD012839. [Google Scholar] [CrossRef] [PubMed]
- Limketkai, B.N.; Godoy-Brewer, G.; Parian, A.M.; Noorian, S.; Krishna, M.; Shah, N.D.; White, J.; Mullin, G.E. Dietary Interventions for the Treatment of Inflammatory Bowel Diseases: An Updated Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2022, 21, 2508–2525.e10. [Google Scholar] [CrossRef]
- Parks, N.E.; Jackson-Tarlton, C.; Vacchi, L.; Merdad, R.; Johnston, B.C. Dietary Interventions for Multiple Sclerosis-Related Outcomes. Cochrane Database Syst. Rev. 2020, 2020, CD004192. [Google Scholar] [CrossRef]
- Schönenberger, K.A.; Schüpfer, A.C.; Gloy, V.L.; Hasler, P.; Stanga, Z.; Kaegi-Braun, N.; Reber, E. Effect of Anti-Inflammatory Diets on Pain in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 4221. [Google Scholar] [CrossRef] [PubMed]
- Genel, F.; Kale, M.; Pavlovic, N.; Flood, V.M.; Naylor, J.M.; Adie, S. Health Effects of a Low-Inflammatory Diet in Adults with Arthritis: A Systematic Review and Meta-Analysis. J. Nutr. Sci. 2020, 9, e37. [Google Scholar] [CrossRef]
- Turk, M.A.; Liu, Y.; Pope, J.E. Non-pharmacological interventions in the treatment of rheumatoid arthritis: A systematic review and meta-analysis. Autoimmun. Rev. 2023, 22, 103323. [Google Scholar] [CrossRef] [PubMed]
- Comeche, J.M.; Gutierrez-Hervás, A.; Tuells, J.; Altavilla, C.; Caballero, P. Predefined Diets in Patients with Inflammatory Bowel Disease: Systematic Review and Meta-Analysis. Nutrients 2020, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.L.; Zhan, Y.A.; Dai, S.X. Is a Low FODMAP Diet Beneficial for Patients with Inflammatory Bowel Disease? A Meta-Analysis and Systematic Review. Clin. Nutr. 2018, 37, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Yi, J.; Liu, X. A Low-FODMAP Diet Provides Benefits for Functional Gastrointestinal Symptoms but Not for Improving Stool Consistency and Mucosal Inflammation in IBD: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2072. [Google Scholar] [CrossRef] [PubMed]
- Guerrero Aznar, M.D.; Villanueva Guerrero, M.D.; Cordero Ramos, J.; Eichau Madueño, S.; Morales Bravo, M.; López Ruiz, R.; Beltrán García, M. Efficacy of diet on fatigue, quality of life and disability status in multiple sclerosis patients: Rapid review and meta-analysis of randomized controlled trials. BMC Neurol. 2022, 22, 388. [Google Scholar] [CrossRef] [PubMed]
- Snetselaar, L.G.; Cheek, J.J.; Fox, S.S.; Healy, H.S.; Schweizer, M.L.; Bao, W.; Kamholz, J.; Titcomb, T.J. Efficacy of Diet on Fatigue and Quality of Life in Multiple Sclerosis: A Systematic Review and Network Meta-Analysis of Randomized Trials. Neurology 2022, 100, E357–E366. [Google Scholar] [CrossRef]
- Ortolan, A.; Webers, C.; Sepriano, A.; Falzon, L.; Baraliakos, X.; Landewé, R.B.; Ramiro, S.; van der Heijde, D.; Nikiphorou, E. Efficacy and Safety of Non-Pharmacological and Non-Biological Interventions: A Systematic Literature Review Informing the 2022 Update of the ASAS/EULAR Recommendations for the Management of Axial Spondyloarthritis. Ann. Rheum. Dis. 2022, 82, 142–152. [Google Scholar] [CrossRef]
- Bohlouli, J.; Namjoo, I.; Borzoo-Isfahani, M.; Poorbaferani, F.; Moravejolahkami, A.R.; Clark, C.C.T.; Hojjati Kermani, M.A. Modified Mediterranean Diet v. Traditional Iranian Diet: Efficacy of Dietary Interventions on Dietary Inflammatory Index Score, Fatigue Severity and Disability in Multiple Sclerosis Patients. Br. J. Nutr. 2021, 128, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.R.; Siegel, M.; Bagel, J.; Cordoro, K.M.; Garg, A.; Gottlieb, A.; Green, L.J.; Gudjonsson, J.E.; Koo, J.; Lebwohl, M.; et al. Dietary Recommendations for Adults With Psoriasis or Psoriatic Arthritis from the Medical Board of the National Psoriasis Foundation. JAMA Dermatol. 2018, 154, 934. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.A.; Inniss, S.; Kumagai, T.; Rahman, F.Z.; Smith, A.M. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front. Immunol. 2022, 13, 866059. [Google Scholar] [CrossRef]
- Johnston, B.C.; Seivenpiper, J.L.; Vernooij, R.W.M.; de Souza, R.J.; Jenkins, D.J.A.; Zeraatkar, D.; Bier, D.M.; Guyatt, G.H. The Philosophy of Evidence-Based Principles and Practice in Nutrition. Mayo Clin. Proc. Innov. Qual. Outcomes 2019, 3, 189–199. [Google Scholar] [CrossRef]
- Nelson, J.; Sjöblom, H.; Gjertsson, I.; Ulven, S.M.; Lindqvist, H.M.; Bärebring, L. Do Interventions with Diet or Dietary Supplements Reduce the Disease Activity Score in Rheumatoid Arthritis? A Systematic Review of Randomized Controlled Trials. Nutrients 2020, 12, 2991. [Google Scholar] [CrossRef]
- Lomer, M.C.E.; Wilson, B.; Wall, C.L. British Dietetic Association consensus guidelines on the nutritional assessment and dietary management of patients with inflammatory bowel disease. J. Hum. Nutr. Diet. 2023, 36, 336–377. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, Z.; Lei, Y.; Lin, Z. Effects of Crohn’s Disease Exclusion Diet on Remission: A Systematic Review. Ther. Adv. Gastroenterol. 2023, 16, 2023. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Bager, P.; Escher, J.; Forbes, A.; Hébuterne, X.; Hvas, C.L.; Joly, F.; Klek, S.; Krznaric, Z.; Ockenga, J.; et al. ESPEN guideline on Clinical Nutrition in inflammatory bowel disease. Clin. Nutr. 2023, 42, 352–379. [Google Scholar] [CrossRef]
- Correia, I.; Oliveira, P.A.; Antunes, M.L.; Raimundo, M.D.G.; Moreira, A.C. Is There Evidence of Crohn’s Disease Exclusion Diet (CDED) in Remission of Active Disease in Children and Adults? A Systematic Review. Nutrients 2024, 16, 987. [Google Scholar] [CrossRef] [PubMed]
- Herrador-López, M.; Martín-Masot, R.; Navas-López, V.M. Dietary Interventions in Ulcerative Colitis: A Systematic Review of the Evidence with Meta-Analysis. Nutrients 2023, 15, 4194. [Google Scholar] [CrossRef]
- Weissman, S.; Fung, B.M.; Bangolo, A.; Rashid, A.; Khan, B.F.; Tirumala, A.K.G.; Nagpaul, S.; Cornwell, S.; Karamthoti, P.; Murugan, V.; et al. The Overall Quality of Evidence of Recommendations Surrounding Nutrition and Diet in Inflammatory Bowel Disease. Int. J. Color. Dis. 2023, 38, 98. [Google Scholar] [CrossRef] [PubMed]
- Chiba, M.; Hosoba, M.; Yamada, K. Plant-Based Diet Recommended for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2023, 29, e17–e18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kheirouri, S.; Mohammad, A. Dietary Inflammatory Potential and the Risk of Neurodegenerative Diseases in Adults. Epidemiol. Rev. 2019, 41, 109–120. [Google Scholar] [CrossRef]
- Hajianfar, H.; Mirmossayeb, O.; Mollaghasemi, N.V.; Nejad, V.S.; Arab, A. Association between Dietary Inflammatory Index and Risk of Demyelinating Autoimmune Diseases. Int. J. Vitam. Nutr. Res. 2022, 94, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Yousefi Rad, E.; Saboori, S.; Tektonidis, T.G.; Simpson, S.; Reece, J.; Hébert, J.R.; Nicholas, R.; Middleton, R.M.; Tammam, J.; Black, L.J.; et al. A systematic review and meta-analysis of Dietary Inflammatory Index and the likelihood of multiple sclerosis/demyelinating autoimmune disease. Clin. Nutr. ESPEN 2024, 62, 108–114. [Google Scholar] [CrossRef]
- Mirhosseini, S.M.; Mahdavi, A.; Yarmohammadi, H.; Razavi, A.; Rezaei, M.; Soltanipur, M.; Karimi Nemch, M.; Jafari Naeini, S.; Siadat, S.D. What is the link between the dietary inflammatory index and the gut microbiome? A systematic review. Eur. J. Nutr. 2024, 63, 2407–2419. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Freire de Carvalho, J.; Kotrova, A.; Shoenfeld, Y. Gluten-Free Diet Can Ameliorate the Symptoms of Non-Celiac Autoimmune Diseases. Nutr. Rev. 2021, 80, 525–543. [Google Scholar] [CrossRef]
- Bhatia, B.K.; Millsop, J.W.; Debbaneh, M.; Koo, J.; Linos, E.; Liao, W. Diet and Psoriasis, Part II: Celiac Disease and Role of a Gluten-Free Diet. J. Am. Acad. Dermatol. 2014, 71, 350–358. [Google Scholar] [CrossRef]
- Bell, K.A.; Pourang, A.; Mesinkovska, N.A.; Cardis, M.A. The Effect of Gluten on Skin and Hair: A Systematic Review. Dermatol. Online J. 2021, 27, 4. [Google Scholar] [CrossRef]
- Dieterich, W.; Yurdagül, Z. Gluten FODMAPS—Sense A Restrict. /When Is Restrict. Necessary? Nutrients 2019, 11, 1957. [Google Scholar] [CrossRef]
- Cenni, S.; Sesenna, V.; Boiardi, G.; Casertano, M.; Russo, G.; Reginelli, A.; Esposito, S.; Strisciuglio, C. The Role of Gluten in Gastrointestinal Disorders: A Review. Nutrients 2023, 15, 1615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Component | Disease | Results |
---|---|---|
Dietary fiber | - | The high-fiber food improves IM [8]. |
RA | Can help reduce joint pain [9]. | |
CD, RA | Improve remission rates [9,10]. | |
Omega-3 polyunsaturated fatty acids | - | The microbiota modulates the gut immune system through omega-3 polyunsaturated fatty acids, maintaining gut health [11]. |
RA | A low omega-3/omega-6 fatty acid ratio promotes inflammation and increases the risk of RA [9]. | |
Vitamin D | RA, MS | Deficiency reported as a risk factor [5]. |
Sourdough fermentation | - | Reduces pro-inflammatory activity [12]. |
Shelled fruits | - | A higher intake of shelled fruits correlated with lower levels of IL-6, a study in HP (LGCI) [13]. |
High carbohydrate intake | RA | Reducing dietary carbohydrates can help improve the balance between IM and immune function [9]. |
IBD | The onset of IBD is associated with high carbohydrate intake, including sugar [14]. | |
Sweets | IL-8 levels were increased with the frequent intake of sweets -A study in HP- (LGCI) [13]. | |
Red meat | Red and processed meats, correlated with alterations in the IB [15] | |
Red meat was associated with an inflammatory pattern, characterized by an increase in IL-6 and IL-8 levels -A study in HP- (LGCI) [13]. | ||
RA | Excessive consumption of red meat can lead to changes in the microbiota, and increase the risk of RA [16]. | |
Dairy | IBD Psoriasis | Excessive consumption may increase the risk of acute flares [15]. |
Wheat and other cereals | ADs | Contribute to chronic inflammation and ADs by increasing intestinal permeability [17]. |
Alcohol and food additives (sweeteners, emulsifiers, advanced glycation end products) | IB can be negatively affected [18]. | |
High-sodium diet | Can lead to dysbiosis [9]. | |
High-fat diet | UC | IB dysfunction -dysregulated microbiota and metabolites- [19]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero Aznar, M.D.; Villanueva Guerrero, M.D.; Beltrán García, M.; Hernández Cruz, B. Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood—Could the Comparison Between Diets Be Improved? Nutrients 2025, 17, 493. https://doi.org/10.3390/nu17030493
Guerrero Aznar MD, Villanueva Guerrero MD, Beltrán García M, Hernández Cruz B. Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood—Could the Comparison Between Diets Be Improved? Nutrients. 2025; 17(3):493. https://doi.org/10.3390/nu17030493
Chicago/Turabian StyleGuerrero Aznar, M. Dolores, M. Dolores Villanueva Guerrero, Margarita Beltrán García, and Blanca Hernández Cruz. 2025. "Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood—Could the Comparison Between Diets Be Improved?" Nutrients 17, no. 3: 493. https://doi.org/10.3390/nu17030493
APA StyleGuerrero Aznar, M. D., Villanueva Guerrero, M. D., Beltrán García, M., & Hernández Cruz, B. (2025). Specific Composition Diets and Improvement of Symptoms of Immune-Mediated Inflammatory Diseases in Adulthood—Could the Comparison Between Diets Be Improved? Nutrients, 17(3), 493. https://doi.org/10.3390/nu17030493