Unlocking the Predictive Power of Nutritional Scores in Septic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Selection and Data Collection
2.2. Nutritional Scores
2.3. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Comorbidities and Sepsis-Related Parameters
3.3. Nutritional and Severity Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care, T. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs. Claims Data, 2009–2014. JAMA 2017, 318, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Mellhammar, L.; Rose, N.; Cassini, A.; Rudd, K.E.; Schlattmann, P.; Allegranzi, B.; Reinhart, K. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020, 46, 1552–1562. [Google Scholar] [CrossRef]
- Caironi, P.; Langer, T.; Gattinoni, L. Albumin in critically ill patients: The ideal colloid? Curr. Opin. Crit. Care 2015, 21, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zheng, H.L.; Wu, M.M.; Wang, Q.Z.; Yan, S.J.; Wang, M.; Yu, J.J.; Li, D.P. Association between lactate-to-albumin ratio and 28-days all-cause mortality in patients with acute pancreatitis: A retrospective analysis of the MIMIC-IV database. Front. Immunol. 2022, 13, 1076121. [Google Scholar] [CrossRef]
- Ye, L.; Shi, H.; Wang, X.; Duan, Q.; Ge, P.; Shao, Y. Elevated Blood Urea Nitrogen to Serum Albumin Ratio Is an Adverse Prognostic Predictor for Patients Undergoing Cardiac Surgery. Front. Cardiovasc. Med. 2022, 9, 888736. [Google Scholar] [CrossRef] [PubMed]
- Pantano Nde, P.; Paiva, B.S.; Hui, D.; Paiva, C.E. Validation of the Modified Glasgow Prognostic Score in Advanced Cancer Patients Receiving Palliative Care. J. Pain Symptom Manag. 2016, 51, 270–277. [Google Scholar] [CrossRef]
- Proctor, M.J.; Morrison, D.S.; Talwar, D.; Balmer, S.M.; O’Reilly, D.S.; Foulis, A.K.; Horgan, P.G.; McMillan, D.C. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: A Glasgow Inflammation Outcome Study. Br. J. Cancer 2011, 104, 726–734. [Google Scholar] [CrossRef]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Sun, J.; Wang, D.; Mei, Y.; Jin, H.; Zhu, K.; Liu, X.; Zhang, Q.; Yu, J. Value of the prognostic nutritional index in advanced gastric cancer treated with preoperative chemotherapy. J. Surg. Res. 2017, 209, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chen, S.; Xu, J.; Li, G.; He, Y. The prognostic significance of the prognostic nutritional index in cancer: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2014, 140, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Mohri, Y.; Inoue, Y.; Tanaka, K.; Hiro, J.; Uchida, K.; Kusunoki, M. Prognostic nutritional index predicts postoperative outcome in colorectal cancer. World J. Surg. 2013, 37, 2688–2692. [Google Scholar] [CrossRef]
- Nakatani, M.; Migita, K.; Matsumoto, S.; Wakatsuki, K.; Ito, M.; Nakade, H.; Kunishige, T.; Kitano, M.; Kanehiro, H. Prognostic significance of the prognostic nutritional index in esophageal cancer patients undergoing neoadjuvant chemotherapy. Dis. Esophagus 2017, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; North, B.V.; Sharma, R. A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: The prognostic nutritional index (PNI). Br. J. Cancer 2012, 106, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Luo, Y.; Peng, Y.; Yu, H.; Sun, L.; Liu, S.; Zeng, X. Construction and validation of a prognostic nutritional index-based nomogram for predicting pathological complete response in breast cancer: A two-center study of 1170 patients. Front. Immunol. 2023, 14, 1335546. [Google Scholar] [CrossRef]
- Chen, L.; Bai, P.; Kong, X.; Huang, S.; Wang, Z.; Wang, X.; Fang, Y.; Wang, J. Prognostic Nutritional Index (PNI) in Patients with Breast Cancer Treated with Neoadjuvant Chemotherapy as a Useful Prognostic Indicator. Front. Cell Dev. Biol. 2021, 9, 656741. [Google Scholar] [CrossRef]
- Ignacio de Ulibarri, J.; Gonzalez-Madrono, A.; de Villar, N.G.; Gonzalez, P.; Gonzalez, B.; Mancha, A.; Rodriguez, F.; Fernandez, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Chen, J.; Song, P.; Peng, Z.; Liu, Z.; Yang, L.; Wang, L.; Zhou, J.; Dong, Q. The Controlling Nutritional Status (CONUT) Score and Prognosis in Malignant Tumors: A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 3146–3163. [Google Scholar] [CrossRef]
- Huang, L.; He, R.; Sun, X.; Lv, J.; Chen, S. Association of Controlling Nutritional Status Score with Adverse Outcomes in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Angiology 2023, 74, 149–158. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, H.; Zheng, M.; Peng, J. The impact of malnutrition on atrial fibrillation recurrence post ablation. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Yamamoto, E.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Association with Controlling Nutritional Status (CONUT) Score and In-hospital Mortality and Infection in Acute Heart Failure. Sci. Rep. 2020, 10, 3320. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; D’Elia, L.; Ballarin, G.; Pasanisi, F.; Scalfi, L. Controlling Nutritional Status (CONUT) score and the risk of mortality or impaired physical function in stroke patients: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1501–1510. [Google Scholar] [CrossRef]
- Miano, N.; Di Marco, M.; Alaimo, S.; Coppolino, G.; L’Episcopo, G.; Leggio, S.; Scicali, R.; Piro, S.; Purrello, F.; Di Pino, A. Controlling Nutritional Status (CONUT) Score as a Potential Prognostic Indicator of In-Hospital Mortality, Sepsis and Length of Stay in an Internal Medicine Department. Nutrients 2023, 15, 1554. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Dhaliwal, R.; Jiang, X.; Day, A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care 2011, 15, R268. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Hasan, R.M.; Agarwala, R.; Martin, C.; Day, A.G.; Heyland, D.K. Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin. Nutr. 2016, 35, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Liberti, A.; Piacentino, E.; Umbrello, M.; Muttini, S. Comparison between Nutric Score and modified nutric score to assess ICU mortality in critically ill patients with COVID-19. Clin. Nutr. ESPEN 2021, 44, 479–482. [Google Scholar] [CrossRef]
- Kucuk, B.; Baltaci Ozen, S.; Kocabeyoglu, G.M.; Mutlu, N.M.; Cakir, E.; Ozkocak Turan, I. NUTRIC Score Is Not Superior to mNUTRIC Score in Prediction of Mortality of COVID-19 Patients. Int. J. Clin. Pract. 2022, 2022, 1864776. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.H.; Hong, S.B.; Lim, C.M.; Koh, Y.; Seo, J.; Kim, Y.; Min, J.Y.; Huh, J.W. Comparison of Accuracy of NUTRIC and Modified NUTRIC Scores in Predicting 28-Day Mortality in Patients with Sepsis: A Single Center Retrospective Study. Nutrients 2018, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Moretti, D.; Bagilet, D.H.; Buncuga, M.; Settecase, C.J.; Quaglino, M.B.; Quintana, R. Study of two variants of nutritional risk score “NUTRIC” in ventilated critical patients. Nutr. Hosp. 2014, 29, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Policarpo, S.; Fortuna, P.; Alves, M.; Virella, D.; Heyland, D.K.; Portuguese, N.S.G. Nutritional risk assessment and cultural validation of the modified NUTRIC score in critically ill patients-A multicenter prospective cohort study. J. Crit. Care 2017, 37, 249. [Google Scholar] [CrossRef]
- Kalaiselvan, M.S.; Renuka, M.K.; Arunkumar, A.S. Use of Nutrition Risk in Critically ill (NUTRIC) Score to Assess Nutritional Risk in Mechanically Ventilated Patients: A Prospective Observational Study. Indian J. Crit. Care Med. 2017, 21, 253–256. [Google Scholar] [CrossRef]
- Ozbilgin, S.; Hanci, V.; Omur, D.; Ozbilgin, M.; Tosun, M.; Yurtlu, S.; Kucukguclu, S.; Arkan, A. Morbidity and mortality predictivity of nutritional assessment tools in the postoperative care unit. Medicine 2016, 95, e5038. [Google Scholar] [CrossRef] [PubMed]
- De Vries, M.C.; Koekkoek, W.K.; Opdam, M.H.; van Blokland, D.; van Zanten, A.R. Nutritional assessment of critically ill patients: Validation of the modified NUTRIC score. Eur. J. Clin. Nutr. 2018, 72, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Mayr, U.; Pfau, J.; Lukas, M.; Bauer, U.; Herner, A.; Rasch, S.; Schmid, R.M.; Huber, W.; Lahmer, T.; Batres-Baires, G. NUTRIC and Modified NUTRIC are Accurate Predictors of Outcome in End-Stage Liver Disease: A Validation in Critically Ill Patients with Liver Cirrhosis. Nutrients 2020, 12, 2134. [Google Scholar] [CrossRef]
- Peng, X.; Huang, Y.; Fu, H.; Zhang, Z.; He, A.; Luo, R. Prognostic Value of Blood Urea Nitrogen to Serum Albumin Ratio in Intensive Care Unit Patients with Lung Cancer. Int. J. Gen. Med. 2021, 14, 7349–7359. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Hong, L.; Hou, T.; Liu, H.; Li, M.; Yang, S.; Zhang, Y. Prognostic impact of blood urea nitrogen to albumin ratio on patients with sepsis: A retrospective cohort study. Sci. Rep. 2023, 13, 10013. [Google Scholar] [CrossRef]
- Zeng, Z.; Ke, X.; Gong, S.; Huang, X.; Liu, Q.; Huang, X.; Cheng, J.; Li, Y.; Wei, L. Blood urea nitrogen to serum albumin ratio: A good predictor of in-hospital and 90-day all-cause mortality in patients with acute exacerbations of chronic obstructive pulmonary disease. BMC Pulm. Med. 2022, 22, 476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhong, L.; Min, J.; Wei, Y.; Ding, L. Relationship between blood urea nitrogen to serum albumin ratio and short-term mortality among patients from the surgical intensive care unit: A population-based real-world study. BMC Anesthesiol. 2023, 23, 416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xing, M.; Yu, Q.; Li, Z.; Tong, Y.; Li, W. Blood urea nitrogen to serum albumin ratio: A novel mortality indicator in intensive care unit patients with coronary heart disease. Sci. Rep. 2024, 14, 7466. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.L.; Feng, D.Y.; Wu, W.B.; Yang, H.L.; Zhang, T.T. Blood urea nitrogen to serum albumin ratio independently predicts 30-day mortality and severity in patients with Escherichia coli bacteraemia. Med. Clin. 2021, 157, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.C.; et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef]
- Bodolea, C.; Nemes, A.; Avram, L.; Craciun, R.; Coman, M.; Ene-Cocis, M.; Ciobanu, C.; Crisan, D. Nutritional Risk Assessment Scores Effectively Predict Mortality in Critically Ill Patients with Severe COVID-19. Nutrients 2022, 14, 2105. [Google Scholar] [CrossRef]
- Zou, S.; Lin, P.; Chen, X.; Xia, L.; Liu, X.; Su, S.; Zhou, Y.; Li, Y. Comparative analysis of six nutritional scores in predicting prognosis of COVID-19 patients. Front. Nutr. 2024, 11, 1501132. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, O.M.; Emam, M.H.; Irandoost, P.; Hejazi, M.; Iraji, Z.; Yazdanpanah, L.; Mirhosseini, S.F.; Mollajan, A.; Lahiji, M.N. Relation between nutritional status on clinical outcomes of critically ill patients: Emphasizing nutritional screening tools in a prospective cohort investigation. BMC Nutr. 2024, 10, 69. [Google Scholar] [CrossRef]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Himmelfarb, J.; Stenvinkel, P.; Ikizler, T.A.; Hakim, R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002, 62, 1524–1538. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.; Mulwande, E.; Steinau, M.; Bergmann, I.; Popov, A.F.; Ghadimi, M.; Beissbarth, T.; Bauer, M.; Hinz, J. Chronic kidney disease is associated with a higher 90-day mortality than other chronic medical conditions in patients with sepsis. Sci. Rep. 2015, 5, 10539. [Google Scholar] [CrossRef] [PubMed]
- Iorember, F.M. Malnutrition in Chronic Kidney Disease. Front. Pediatr. 2018, 6, 161. [Google Scholar] [CrossRef] [PubMed]
Variable | Normal | Light | Moderate | Severe |
---|---|---|---|---|
Serum albumin (g/dL) | 3.5–4.5 | 3.0–3.49 | 2.5–2.9 | <2.5 |
Albumin score | 0 | 2 | 4 | 6 |
Total lymphocyte count (mm3) | ≥1600 | 1200–1599 | 800–1199 | <800 |
Total lymphocyte count score | 0 | 1 | 2 | 3 |
Total cholesterol (mg/dL) | >180 | 140–180 | 100–139 | <100 |
Total cholesterol score | 0 | 1 | 2 | 3 |
CONUT score | 0–1 | 2–4 | 5–8 | 9–12 |
Assessment | Normal | Light | Moderate | Severe |
Total: 143 Patients | |
---|---|
Patient characteristics | |
Age, years | 79.3 (12.94) |
Women, n [%] | 62 [43.4%] |
Length of stay (days) | 12 (12) |
Vital signs | |
SBP (mmHg) | 110 (40) |
DBP (mmHg) | 60 (20) |
MAP (mmHg) | 76.7 (23.3) |
HR (bpm) | 90 (31) |
RR (bpm) | 20 (7) |
BT (°C) | 37.2 (0.8) |
GCS (points) | 14 (2) |
Laboratory data | |
Hematological profile | |
Hb (g/dL) | 10.4 (3.4) |
HCT (%) | 31 (10.3) |
WBC (cells/mmc) | 13,950 (12,538) |
N (%) | 84 (8) |
L (%) | 10 (7) |
N/L | 8.4 (6.8) |
Platelets (cells/mmc) | 196,000 (159,000) |
PLR | 158.5 (151) |
Renal function markers | |
Urea (mg/dL) | 87 (37.3) |
BUN (mg/dL) | 41.3 (37.3) |
Serum creatinine (mg/dL) | 1.7 (2) |
eGFR (CKD EPI 2021, mL/min) | 34.9 (41.5) |
Uric acid (mg/dL) | 7.2 (4.4) |
Sodium (mmol/L) | 137 (8) |
Potassium (mmol/L) | 4 (1.3) |
Calcium (mg/dL) | 8.2 (0.9) |
Chloride (mmol/L) | 101 (7) |
Liver function tests (LFTs) | |
AST (U/L) | 27 (42) |
ALT (U/L) | 20 (31) |
INR | 1.27 (0.34) |
Serum albumin (g/dL) | 2.67 (0.65) |
Lipid panel | |
Total cholesterol (mg/dL) | 110 (51) |
HDL cholesterol (mg/dL) | 27.5 (22) |
Triglyceride (mg/dL) | 118 (80) |
LDL cholesterol (mg/dL) | 54.4 (43.4) |
NT-proBNP (ng/mL) | 6517 (15,141) |
Plasma glucose (mg/dL) | 134.5 (129) |
Inflammatory and sepsis-related indicators | |
hs-CRP (mg/dL) | 12.6 (13) |
PCT (ng/mL) | 3.4 (11.6) |
Lactate (mmol/L) | 2 (1.4) |
APACHE | 20 (8) |
SOFA | 5 (4) |
qSOFA | 1 (1) |
Nutritional scores | |
mGPS | 2 (0) |
PNI | 33.9 (9.6) |
CONUT | 8 (3) |
mNUTRIC | 4 (3) |
BAR | 15.1 (13.2) |
Pathogen | Cases | Percentage (%) |
---|---|---|
Escherichia coli | 24 | 27.0% |
Acinetobacter baumannii | 13 | 14.6% |
Klebsiella pneumoniae | 11 | 12% |
Proteus mirabilis | 8 | 9.0% |
Staphylococcus aureus | 8 | 9.0% |
Pseudomonas aeruginosa | 5 | 5.6% |
Streptococcus haemolyticus | 3 | 3.4% |
Enterobacter faecalis | 3 | 3.4% |
Streptococcus epidermidis | 2 | 2.2% |
Enterobacter cloacae | 1 | 1.1% |
Staphylococcus hominis | 1 | 1.1% |
Streptococcus sanguinis | 1 | 1.1% |
Moraxella catarrhalis | 1 | 1.1% |
Streptococcus pneumoniae | 1 | 1.1% |
Staphylococcus ludgunensis | 1 | 1.1% |
Raoultella ornithinolytica | 1 | 1.1% |
Enterococcus faecium | 1 | 1.1% |
Staphylococcus spp. | 1 | 1.1% |
Bacteroides spp. | 1 | 1.1% |
Enterobacter spp. | 1 | 1.1% |
SARS-CoV-2 | 1 | 1.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toscano, A.; Bellone, F.; Maggio, N.; Cinquegrani, M.; Spadaro, F.; Bueti, F.M.; Lorello, G.; Marini, H.R.; Lo Gullo, A.; Basile, G.; et al. Unlocking the Predictive Power of Nutritional Scores in Septic Patients. Nutrients 2025, 17, 545. https://doi.org/10.3390/nu17030545
Toscano A, Bellone F, Maggio N, Cinquegrani M, Spadaro F, Bueti FM, Lorello G, Marini HR, Lo Gullo A, Basile G, et al. Unlocking the Predictive Power of Nutritional Scores in Septic Patients. Nutrients. 2025; 17(3):545. https://doi.org/10.3390/nu17030545
Chicago/Turabian StyleToscano, Arianna, Federica Bellone, Noemi Maggio, Maria Cinquegrani, Francesca Spadaro, Francesca Maria Bueti, Giuseppe Lorello, Herbert Ryan Marini, Alberto Lo Gullo, Giorgio Basile, and et al. 2025. "Unlocking the Predictive Power of Nutritional Scores in Septic Patients" Nutrients 17, no. 3: 545. https://doi.org/10.3390/nu17030545
APA StyleToscano, A., Bellone, F., Maggio, N., Cinquegrani, M., Spadaro, F., Bueti, F. M., Lorello, G., Marini, H. R., Lo Gullo, A., Basile, G., Squadrito, G., Mandraffino, G., & Morace, C. (2025). Unlocking the Predictive Power of Nutritional Scores in Septic Patients. Nutrients, 17(3), 545. https://doi.org/10.3390/nu17030545