Preoperative Nutrition in Bariatric Surgery: A Narrative Review on Enhancing Surgical Success and Patient Outcomes
Abstract
:1. Introduction
2. Preoperative Nutritional Deficiencies
2.1. Common Micronutrient Deficiencies
2.2. Macronutrient Concerns
2.3. Assessment of Nutritional Status
2.3.1. Nutritional Risk Index (NRI)
2.3.2. Geriatric Nutritional Risk Index (GNRI)
2.3.3. Malnutrition Screening Tool (MST)
2.3.4. Malnutrition Universal Screening Tool (MUST)
2.3.5. Nutritional Risk Screening 2002 (NRS 2002)
2.3.6. Mini Nutritional Assessment-Short Form (MNA-SF)
2.3.7. Subjective Global Assessment (SGA)
3. Nutritional Interventions
3.1. Preoperative Dietary Plans
3.2. Micronutrient Supplementation
3.3. Behavioral and Lifestyle Modifications
4. Clinical Guidelines and Best Practices
4.1. Overview of Existing Guidelines
4.1.1. The Initial Phase
4.1.2. Preoperative Period
4.2. Multidisciplinary Approach
4.3. Individualized Care
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASMBS | American Society for Metabolic and Bariatric Surgery. |
BMI | Body Mass Index. |
BS | Bariatric Surgery. |
CRP | C-Reactive Protein. |
ESPEN | European Society for Clinical Nutrition and Metabolism. |
GLIM | Global Leadership Initiative on Malnutrition. |
GNRI | Geriatric Nutrition Risk Index. |
IM | Intramuscular. |
LCD | Low-Calorie Diet. |
MNA | Mini Nutritional Assessment. |
MNA-SF | Mini Nutritional Assessment-Short Form. |
MST | Malnutrition Screening Tool. |
MUST | Malnutrition Universal Screening Tool. |
MUS | Non-Alcoholic Fatty Liver Disease. |
NRI | Nutritional Risk Index. |
PTH | Parathyroid Hormone. |
RYGB | Roux-en-Y Gastric Bypass. |
SG | Sleeve Gastrectomy. |
VLEKT | Very Low Energy Ketogenic Therapy. |
VLCKD | Very Low-Calorie Ketogenic Diet. |
VLCD | Very Low-Calorie Diet. |
References
- World Health Organization. Obesity and Overweight. In World Health Organization News. 1 March 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 January 2025).
- Sjöström, L.; Lindroos, A.-K.; Peltonen, M.; Torgerson, J.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Larsson, B.; Narbro, K.; Sjöström, C.D.; et al. Lifestyle, Diabetes, and Cardiovascular Risk Factors 10 Years after Bariatric Surgery. N. Engl. J. Med. 2004, 351, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Zarshenas, N.; Tapsell, L.C.; Neale, E.P.; Batterham, M.; Talbot, M.L. The Relationship Between Bariatric Surgery and Diet Quality: A Systematic Review. Obes. Surg. 2020, 30, 1768–1792. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.; Gervasoni, A.; Williams, T. The bariatric surgery patient—Nutrition considerations. Aust. Fam. Physician 2013, 42, 547–552. [Google Scholar] [PubMed]
- Aills, L.; Blankenship, J.; Buffington, C.; Furtado, M.; Parrott, J. ASMBS Allied Health Nutritional Guidelines for the Surgical Weight Loss Patient. Surg. Obes. Relat. Dis. 2008, 4, S73–S108. [Google Scholar] [CrossRef]
- Buchwald, H.; Estok, R.; Fahrbach, K.; Banel, D.; Jensen, M.D.; Pories, W.J.; Bantle, J.P.; Sledge, I. Weight and Type 2 Diabetes after Bariatric Surgery: Systematic Review and Meta-analysis. Am. J. Med. 2009, 122, 248–256.e5. [Google Scholar] [CrossRef]
- Schiavo, L.; De Stefano, G.; Persico, F.; Gargiulo, S.; Di Spirito, F.; Griguolo, G.; Petrucciani, N.; Fontas, E.; Iannelli, A.; Pilone, V. A Randomized, Controlled Trial Comparing the Impact of a Low-Calorie Ketogenic vs a Standard Low-Calorie Diet on Fat-Free Mass in Patients Receiving an Elipse™ Intragastric Balloon Treatment. Obes. Surg. 2021, 31, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Dagan, S.S.; Goldenshluger, A.; Globus, I.; Schweiger, C.; Kessler, Y.; Sandbank, G.K.; Ben-Porat, T.; Sinai, T. Nutritional Recommendations for Adult Bariatric Surgery Patients: Clinical Practice. Adv. Nutr. 2017, 8, 382–394. [Google Scholar] [CrossRef]
- Riess, K.P.; Baker, M.T.; Lambert, P.J.; Mathiason, M.A.; Kothari, S.N. Effect of preoperative weight loss on laparoscopic gastric bypass outcomes. Surg. Obes. Relat. Dis. 2008, 4, 704–708. [Google Scholar] [CrossRef]
- Sarno, G.; Calabrese, P.; Frias-Toral, E.; Ceriani, F.; Fuchs-Tarlovsky, V.; Spagnuolo, M.; Cucalón, G.; Córdova, L.Á.; Schiavo, L.; Pilone, V. The relationship between preoperative weight loss and intra and post-bariatric surgery complications: An appraisal of the current preoperative nutritional strategies. Crit. Rev. Food Sci. Nutr. 2023, 63, 10230–10238. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, J.; Chong, L.; Ward, S.; Sutherland, T.R.; Read, M.; Hii, M.W. Body Composition Changes Following a Very-Low-Calorie Pre-Operative Diet in Patients Undergoing Bariatric Surgery. Obes. Surg. 2020, 30, 119–126. [Google Scholar] [CrossRef] [PubMed]
- van Wissen, J.; Bakker, N.; Doodeman, H.J.; Jansma, E.P.; Bonjer, H.J.; Houdijk, A.P.J. Preoperative Methods to Reduce Liver Volume in Bariatric Surgery: A Systematic Review. Obes. Surg. 2016, 26, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Sarno, G.; Schiavo, L.; Calabrese, P.; Córdova, L.Á.; Frias-Toral, E.; Cucalón, G.; Garcia-Velasquez, E.; Fuchs-Tarlovsky, V.; Pilone, V. The Impact of Bariatric-Surgery-Induced Weight Loss on Patients Undergoing Liver Transplant: A Focus on Metabolism, Pathophysiological Changes, and Outcome in Obese Patients Suffering NAFLD-Related Cirrhosis. J. Clin. Med. 2022, 11, 5293. [Google Scholar] [CrossRef]
- Jastrzębska, W.; Boniecka, I.; Szostak-Węgierek, D. Validity and efficacy of diets used for preoperative weight reduction among patients qualified for bariatric surgery. Pol. J. Surg. 2021, 93, 53–58. [Google Scholar] [CrossRef]
- Mocanu, V.; Marcil, G.; Dang, J.T.; Birch, D.W.; Switzer, N.J.; Karmali, S. Preoperative weight loss is linked to improved mortality and leaks following elective bariatric surgery: An analysis of 548,597 patients from 2015–2018. Surg. Obes. Relat. Dis. 2021, 17, 1846–1853. [Google Scholar] [CrossRef] [PubMed]
- Carriel-Mancilla, J.; Suárez, R.; Frias-Toral, E.; Bautista-Valarezo, E.; Zambrano, T.A.; García, A.A.; Jaramillo, R.M.; Ferrín, M.; Martin, J.; Ramos, A.C.; et al. Short-medium term complications of bariatric surgery: A pilot study. Minerva Endocrinol. 2024, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cassie, S.; Menezes, C.; Birch, D.W.; Shi, X.; Karmali, S. Effect of preoperative weight loss in bariatric surgical patients: A systematic review. Surg. Obes. Relat. Dis. 2011, 7, 760–767. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, J.P.V.; Santos-Sousa, H.; Vieira, S.; Nunes, R.; Nogueiro, J.; Pereira, A.; Resende, F.; Costa-Pinho, A.; Preto, J.; Sousa-Pinto, B.; et al. Assessing Nutritional Deficiencies in Bariatric Surgery Patients: A Comparative Study of Roux-en-Y Gastric Bypass versus Sleeve Gastrectomy. J. Pers. Med. 2024, 14, 650. [Google Scholar] [CrossRef]
- Al-Maskari, J.; Al-Hadhrami, B.; Waly, M.I.; Al Subhi, L.; Ali, A. Assessment of dietary intake and biochemical parameters of morbidly obese Omani patients who are candidates for bariatric surgery. Clin. Nutr. Open Sci. 2024, 53, 68–77. [Google Scholar] [CrossRef]
- Gazouli, A. Perioperative nutritional assessment and management of patients undergoing gastrointestinal surgery. Ann. Gastroenterol. 2024, 37, 142–154. [Google Scholar] [CrossRef]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Capuozzo, V.; Barbarisi, A. Micronutrient Deficiencies in Patients Candidate for Bariatric Surgery: A Prospective, Preoperative Trial of Screening, Diagnosis, and Treatment. Int. J. Vitam. Nutr. Res. 2015, 85, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Thieme, R.D.; Cutchma, G.; Chieferdecker, M.E.M.; Campos, A.C.L. O índice de risco nutricional (nutritional risk index) é preditor de complicação pós-operatória em operações do aparelho digestivo ou parede abdominal? ABCD Arquivos Bras. Cir. Dig. 2013, 26, 286–292. [Google Scholar] [CrossRef]
- Ben-Porat, T.; Elazary, R.; Yuval, J.B.; Wieder, A.; Khalaileh, A.; Weiss, R. Nutritional deficiencies after sleeve gastrectomy: Can they be predicted preoperatively? Surg. Obes. Relat. Dis. 2015, 11, 1029–1036. [Google Scholar] [CrossRef]
- Chapela, S.P.; Martinuzzi, A.L.N.; Llobera, N.D.; Ceriani, F.; Gonzalez, V.; Montalvan, M.; Verde, L.; Frias-Toral, E. Obesity and micronutrients deficit, when and how to suplement. Food Agric. Immunol. 2024, 35, 2381725. [Google Scholar] [CrossRef]
- Schiavo, L.; Pilone, V.; Rossetti, G.; Romano, M.; Pieretti, G.; Schneck, A.-S.; Iannelli, A. Correcting micronutrient deficiencies before sleeve gastrectomy may be useful in preventing early postoperative micronutrient deficiencies. Int. J. Vitam. Nutr. Res. 2019, 89, 22–28. [Google Scholar] [CrossRef]
- Barrea, L.; Frias-Toral, E.; Pugliese, G.; Garcia-Velasquez, E.; Carignano, M.D.L.A.; Savastano, S.; Colao, A.; Muscogiuri, G. Vitamin D in obesity and obesity-related diseases: An overview. Minerva Endocrinol. 2021, 46, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Flancbaum, L.; Belsley, S.; Drake, V.; Colarusso, T.; Tayler, E. Preoperative Nutritional Status of Patients Undergoing Roux-en-Y Gastric Bypass for Morbid Obesity. J. Gastrointest. Surg. 2006, 10, 1033–1037. [Google Scholar] [CrossRef]
- Damms-Machado, A.; Friedrich, A.; Kramer, K.M.; Stingel, K.; Meile, T.; Küper, M.A.; Königsrainer, A.; Bischoff, S.C. Pre- and Postoperative Nutritional Deficiencies in Obese Patients Undergoing Laparoscopic Sleeve Gastrectomy. Obes. Surg. 2012, 22, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Pilone, V.; Tramontano, S.; Cutolo, C.; Marchese, F.; Pagano, A.M.; Di Spirito, F.; Schiavo, L. Clinical factors correlated with vitamin D deficiency in patients with obesity scheduled for bariatric surgery: A single center experience. Int. J. Vitam. Nutr. Res. 2020, 90, 346–352. [Google Scholar] [CrossRef]
- Stein, E.M.; Strain, G.; Sinha, N.; Ortiz, D.; Pomp, A.; Dakin, G.; McMahon, D.J.; Bockman, R.; Silverberg, S.J. Vitamin D insufficiency prior to bariatric surgery: Risk factors and a pilot treatment study. Clin. Endocrinol. 2009, 71, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Chakhtoura, M.T.; Nakhoul, N.; Akl, E.A.; Mantzoros, C.S.; El Hajj Fuleihan, G.A. Guidelines on vitamin D replacement in bariatric surgery: Identification and systematic appraisal. Metabolism 2016, 65, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Iglar, P.J.; Hogan, K.J. Vitamin D status and surgical outcomes: A systematic review. Patient Saf. Surg. 2015, 9, 14. [Google Scholar] [CrossRef]
- Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Peana, M.; Dosa, A.; Piscopo, S.; Benahmed, A.G.; Costea, D.O. Micronutrients deficiences in patients after bariatric surgery. Eur. J. Nutr. 2022, 61, 55–67. [Google Scholar] [CrossRef]
- Moizé, V.; Deulofeu, R.; Torres, F.; de Osaba, J.M.; Vidal, J. Nutritional Intake and Prevalence of Nutritional Deficiencies Prior to Surgery in a Spanish Morbidly Obese Population. Obes. Surg. 2011, 21, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Aasheim, E.T.; Hofsø, D.; Hjelmesæth, J.; Birkeland, K.I.; Bøhmer, T. Vitamin status in morbidly obese patients: A cross-sectional study. Am. J. Clin. Nutr. 2008, 87, 362–369. [Google Scholar] [CrossRef]
- Giuseppina, B.; Francesca, G.; Rezarta, K.; Laura, T.; Antonella, D.M.; Alessandra, P.; Rosaria, I.M.; Daniela, L.; Vito, D.G.C.; Vigna, L. Lifestyle intervention in workers with obesity and sedentary behavior: A pilot study for the “OTTiMo LavorO” project. Mediterr. J. Nutr. Metab. 2024, 17, 205–217. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Frias-Toral, E.; Garcia-Velasquez, E.; de Angelis, C.; Ordoñez, C.; Cucalón, G.; El Ghoch, M.; Colao, A.; Pivonello, R. Environmental Impact on Metabolism. In Environmental Endocrinology and Endocrine Disruptors; Springer: Cham, Switzerland, 2023; pp. 397–425. [Google Scholar] [CrossRef]
- Bayraktaroglu, E.; Hizli-Guldemir, H.; Eti, S.; Kayali-Sevim, M.; Saleki, N. The relationship between perceived stress and emotional eating in bus drivers: The effect of shift work. Int. J. Food Sci. Nutr. 2024, 75, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Frame-Peterson, L.A.; Megill, R.D.; Carobrese, S.; Schweitzer, M. Nutrient Deficiencies Are Common Prior to Bariatric Surgery. Nutr. Clin. Pract. 2017, 32, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Laudisio, D.; Frias-Toral, E.; Barrea, L.; Muscogiuri, G.; Savastano, S.; Colao, A. Anti-Inflammatory Nutrients and Obesity-Associated Metabolic-Inflammation: State of the Art and Future Direction. Nutrients 2022, 14, 1137. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Gangadharan, K.; Pitchumoni, C.S. Malnutrition in obesity before and after bariatric surgery. Dis. Month 2020, 66, 100866. [Google Scholar] [CrossRef]
- Coupaye, M.; Rivière, P.; Breuil, M.C.; Castel, B.; Bogard, C.; Dupré, T.; Flamant, M.; Msika, S.; Ledoux, S. Comparison of Nutritional Status During the First Year After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obes. Surg. 2014, 24, 276–283. [Google Scholar] [CrossRef] [PubMed]
- van Rutte, P.W.J.; Aarts, E.O.; Smulders, J.F.; Nienhuijs, S.W. Nutrient Deficiencies Before and After Sleeve Gastrectomy. Obes. Surg. 2014, 24, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, C.; Weiss, R.; Berry, E.; Keidar, A. Nutritional Deficiencies in Bariatric Surgery Candidates. Obes. Surg. 2010, 20, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Al-Mutawa, A.; Anderson, A.K.; Alsabah, S.; Al-Mutawa, M. Nutritional Status of Bariatric Surgery Candidates. Nutrients 2018, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Marcos, J.L.; Olivares-Barraza, R.; Ceballo, K.; Wastavino, M.; Ortiz, V.; Riquelme, J.; Martínez-Pinto, J.; Muñoz, P.; Cruz, G.; Sotomayor-Zárate, R. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake. Int. J. Mol. Sci. 2023, 24, 1468. [Google Scholar] [CrossRef]
- Schumann, R.; Ziemann-Gimmel, P.; Sultana, A.; Eldawlatly, A.A.; Kothari, S.N.; Shah, S.; Wadhwa, A. Postoperative nausea and vomiting in bariatric surgery: A position statement endorsed by the ASMBS and the ISPCOP. Surg. Obes. Relat. Dis. 2021, 17, 1829–1833. [Google Scholar] [CrossRef]
- Ferraz, Á.A.B.; Carvalho, M.R.C.; Siqueira, L.T.; Santa-Cruz, F.; Campos, J.M. Deficiências de micronutrientes após cirurgia bariátrica: Análise comparativa entre gastrectomia vertical e derivação gástrica em Y de Roux. Rev. Col. Bras. Cir. 2018, 45, e2016. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Aliberti, S.M.; Calabrese, P.; Senatore, A.M.; Severino, L.; Sarno, G.; Iannelli, A.; Pilone, V. Changes in Food Choice, Taste, Desire, and Enjoyment 1 Year after Sleeve Gastrectomy: A Prospective Study. Nutrients 2022, 14, 2060. [Google Scholar] [CrossRef]
- Barrea, L.; Verde, L.; Schiavo, L.; Sarno, G.; Camajani, E.; Iannelli, A.; Caprio, M.; Pilone, V.; Colao, A.; Muscogiuri, G. Very Low-Calorie Ketogenic Diet (VLCKD) as Pre-Operative First-Line Dietary Therapy in Patients with Obesity Who Are Candidates for Bariatric Surgery. Nutrients 2023, 15, 1907. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Belligoli, A.; Fabris, R.; Busetto, L. Diet approach before and after bariatric surgery. Rev. Endocr. Metab. Disord. 2020, 21, 297–306. [Google Scholar] [CrossRef] [PubMed]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M. Consensus Statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition. J. Parenter. Enter. Nutr. 2012, 36, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.; Frank, L.; Rabena, R.; Craggs-Dino, L.; Isom, K.A.; Greiman, L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surg. Obes. Relat. Dis. 2017, 13, 727–741. [Google Scholar] [CrossRef]
- Williams, D.G.; Molinger, J.; Wischmeyer, P.E. The malnourished surgery patient. Curr. Opin. Anaesthesiol. 2019, 32, 405–411. [Google Scholar] [CrossRef]
- Sherf-Dagan, S.; Sinai, T.; Goldenshluger, A.; Globus, I.; Kessler, Y.; Schweiger, C.; Ben-Porat, T. Nutritional Assessment and Preparation for Adult Bariatric Surgery Candidates: Clinical Practice. Adv. Nutr. Int. Rev. J. 2021, 12, 1020–1031. [Google Scholar] [CrossRef] [PubMed]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Moreno, V.J.S. Niveles de hemoglobina para la determinación de la anemia: Nueva guía de la Organización Mundial de la Salud y adecuación de la norma nacional. Rev. Peru Med. Exp. Salud Publica 2024, 41, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Kuzuya, M.; Kanda, S.; Koike, T.; Suzuki, Y.; Iguchi, A. Lack of correlation between total lymphocyte count and nutritional status in the elderly. Clin. Nutr. 2005, 24, 427–432. [Google Scholar] [CrossRef]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marín-Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and meta analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- Kudsk, K.; Tolley, E.; DeWitt, R.; Janu, P.; Blackwell, A.; Yeary, S.; King, B. Preoperative albumin and surgical site identify surgical risk for major postoperative complications. J. Parenter. Enter. Nutr. 2003, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dellière, S.; Cynober, L. Is transthyretin a good marker of nutritional status? Clin. Nutr. 2016, 36, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition: Laboratory markers vs nutritional assessment. Gastroenterol. Rep. 2016, 4, gow013. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; Coin, A.; Enzi, G.; Volpato, S.; Inelmen, E.M.; Buttarello, M.; Peloso, M.; Mulone, S.; Marin, S.; Bonometto, P. Role of visceral proteins in detecting malnutrition in the elderly. Eur. J. Clin. Nutr. 2006, 60, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef]
- Ingenbleek, Y. Plasma Transthyretin as A Biomarker of Sarcopenia in Elderly Subjects. Nutrients 2019, 11, 895. [Google Scholar] [CrossRef] [PubMed]
- David, D.; Poli, C.; Savian, J.; Amaral, G.; Azevedo, E.; Jochims, F. Urinary creatinine as a nutritional and urinary volume marker in sheep fed with tropical or temperate forages. Arq. Bras. Med. Vet. Zootec. 2015, 67, 1009–1015. [Google Scholar] [CrossRef]
- Remer, T.; Neubert, A.; Maser-Gluth, C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am. J. Clin. Nutr. 2002, 75, 561–569. [Google Scholar] [CrossRef]
- Malinowska-Borowska, J.; Kulik, A.; Buczkowska, M.; Ostręga, W.; Stefaniak, A.; Piecuch, M.; Garbicz, J.; Nowak, J.U.; Tajstra, M.; Jankowska, E.A.; et al. Nutritional and Non-Nutritional Predictors of Low Spot Urinary Creatinine Concentration in Patients with Heart Failure. Nutrients 2021, 13, 3994. [Google Scholar] [CrossRef] [PubMed]
- Adewusi, S.; Torimiro, S.; Akindahunsi, A. Prediction of Nutritional Status by Chemical Analysis of Urine and Anthropometric Methods. Nutr. Health 2002, 16, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, L. Nutritional status affects renal 3-methylhistidine handling in humans. Metabolism 1990, 39, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Long, C.L.; Birkhahn, R.H.; Geiger, J.W.; Betts, J.E.; Schiller, W.R.; Blakemore, W.S. Urinary excretion of 3-methylhistidine: An assessment of muscle protein catabolism in adult normal subjects and during malnutrition, sepsis, and skeletal trauma. Metabolism 1981, 30, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Kurasawa, S.-I.; Matsuzaki, M.; Tanaka, A. Body weight reduction by exercise increases the urinary 3-methylhistidine excretion level with relatively positive nitrogen, sodium, and potassium balances when compared to dietary restriction. Heliyon 2023, 9, e19632. [Google Scholar] [CrossRef]
- Jawzali, J.; Saber, H.; Khalil, K. Assessment of nutritional status among dyslipidemia patients. Saudi J. Health Sci. 2017, 6, 34–43. [Google Scholar] [CrossRef]
- Delisle, H.; Ntandou, G.; Sodjinou, R.; Couillard, C.; Després, J.-P. At-Risk Serum Cholesterol Profile at Both Ends of the Nutrition Spectrum in West African Adults? The Benin Study. Nutrients 2013, 5, 1366–1383. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.P.; Friões, F.; Azevedo, A.; Lourenço, P.; Rocha-Gonçalves, F.; Ferreira, A.; Bettencourt, P. Cholesterol—A marker of nutritional status in mild to moderate heart failure. Int. J. Cardiol. 2008, 129, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Imai, K.; Masuda, T.; Abe, S.; Nakao, H.; Tanaka, M.; Nakamura, M. Relationship between serum total cholesterol level and nutritional status in Japanese young female. Nutr. Res. 1999, 19, 1145–1152. [Google Scholar] [CrossRef]
- Sue, M.; Takeuchi, Y.; Hirata, S.; Takaki, A.; Otsuka, M. Impact of Nutritional Status on Neutrophil-to-Lymphocyte Ratio as a Predictor of Efficacy and Adverse Events of Immune Check-Point Inhibitors. Cancers 2024, 16, 1811. [Google Scholar] [CrossRef]
- Dionigi, P.; Jemos, V.; Cebrelli, T. Serum and Immunological Parameters in the Assessment of Nutritional Status. In Nutrition and Ventilatory Function; Springer: London, UK, 1992; pp. 13–22. [Google Scholar] [CrossRef]
- Dionigi, R. Immunological factors in nutritional assessment. Proc. Nutr. Soc. 1982, 41, 355–371. [Google Scholar] [CrossRef]
- Usta, M.; Ersoy, A.; Ayar, Y.; Budak, F. The relationship between lymphocyte subsets, nutritional status and tuberculin reactivity in continuous ambulatory peritoneal dialysis and hemodialysis patients. Int. Urol. Nephrol. 2020, 52, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, F.; Sun, H.; Zhang, L.; Gao, X.; Huang, Y.; Yang, J.; Shen, R.; Wang, J.; Jiang, T.; et al. Insulin-like growth factor-1 as a nutritional monitoring factor in patients with chronic intestinal failure. Clin. Nutr. 2019, 38, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Fouad, H.M.; Mohamed, A.A.; Adel, N.; Abdulhay, M.; Khalifa, I.; Ibrahim, R.; Elsalway, N.; Thabet, G.M.; Nasraldin, K.; El-Hefny, I.M.; et al. Evaluation of insulin-like growth factor-1 in apparently healthy infants and prepubertal Egyptian children with different nutritional statuses. BMC Pediatr. 2024, 24, 673. [Google Scholar] [CrossRef] [PubMed]
- Caregaro, L.; Favaro, A.; Santonastaso, P.; Alberino, F.; DI Pascoli, L.; Nardi, M.; Favaro, S.; Gatta, A. Insulin-like growth factor 1 (IGF-1), a nutritional marker in patients with eating disorders. Clin. Nutr. 2001, 20, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.P.; Grimberg, A. Insulin-Like Growth Factor-I is a Marker for the Nutritional State. Pediatr. Endocrinol. Rev. 2015, 13, 499–511. [Google Scholar] [PubMed]
- Amarase, C.; Weerasopone, S.; Osateerakun, P.; Honsawek, S.; Limpaphayom, N. Serum Leptin as a Nutritional Biomarker in Children with Cerebral Palsy. Tohoku J. Exp. Med. 2016, 239, 139–146. [Google Scholar] [CrossRef]
- Ma, W.; Zheng, Y.; Lin, J.; Zhou, S.; Liao, S.; Fu, Y.; Zhang, Y.; Chen, X.; Li, J.; Sha, W.; et al. Circulating leptin levels in the assessment of Crohn’s disease activity and its relation to nutritional status. Nutr. Hosp. 2023, 41, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Lin, Y.; Kuo, C.; Lai, Y.; Wang, C.; Hsu, B. Low serum leptin levels are associated with malnutrition status according to malnutrition-inflammation score in patients undergoing chronic hemodialysis. Hemodial. Int. 2020, 24, 221–227. [Google Scholar] [CrossRef]
- Oztekin, M.G.; Erel, S.; Kismet, K.; Kilicoglu, B.; Gencay, C.; Astarci, H.M.; Akkus, M.A. Use of serum leptin levels for determination of nutritional status and the effects of different enteral nutrients on intestinal mucosa after minor surgery: An experimental study. Int. J. Surg. 2007, 5, 336–341. [Google Scholar] [CrossRef]
- Akib, R.D.; Aminuddin, A.; Hamid, F.; Prihantono, P.; Bahar, B.; Hadju, V. Leptin levels in children with malnutrition. Gac. Sanit. 2021, 35, S278–S280. [Google Scholar] [CrossRef] [PubMed]
- Paillaud, E.; Poisson, J.; Granier, C.; Ginguay, A.; Plonquet, A.; Conti, C.; Broussier, A.; Raynaud-Simon, A.; Bastuji-Garin, S. Serum Leptin Levels, Nutritional Status, and the Risk of Healthcare-Associated Infections in Hospitalized Older Adults. Nutrients 2022, 14, 226. [Google Scholar] [CrossRef]
- Samani, S. Serum Nesfatin-1 Level in Healthy Subjects with Weight-Related Abnormalities and Newly Diagnosed Patients with Type 2 Diabetes Mellitus; a Case-Control Study. Acta Endocrinol. 2019, 15, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Çoban, Y.; Köker, A.; Aydın, S.; Akbaş, Y.; Kömüroğlu, A.U. Investigation of the Role of Nesfatin-1 Levels in the Evaluation of Nutrition Monitoring in the PICU. Turk. J. Pediatr. Emerg. Intensiv. Care Med. 2023, 10, 39–43. [Google Scholar] [CrossRef]
- Stengel, A.; Mori, M.; Taché, Y. The role of nesfatin-1 in the regulation of food intake and body weight: Recent developments and future endeavors. Obes. Rev. 2013, 14, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Elthakaby, A.H.M.; Elsayed, H.M.; Mohamed, N.A.E.-G.; Ahmed, K.Y.; Mohamed, R.R.; Esso, H.Y. Effect of nesfatin-1 on the nutritional status of hemodialysis patients. J. Med. Sci. Res. 2022, 5, 385. [Google Scholar] [CrossRef]
- Ahsan, A.K.; Tebha, S.S.; Sangi, R.; Kamran, A.; Zaidi, Z.A.; Haque, T.; Hamza, M.S.A. Zinc Micronutrient Deficiency and Its Prevalence in Malnourished Pediatric Children as Compared to Well-Nourished Children: A Nutritional Emergency. Glob. Pediatr. Health 2021, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Özen, H.; Emiroğlu, H.H.; Emiroğlu, M.; Akdam, N.; Yorulmaz, A. Serum Zinc in Patients with Protein-Energy Malnutrition Retrospective Assessment of Levels. Genel Tıp Dergisi. 2023, 33, 274–277. [Google Scholar] [CrossRef]
- Abeywickrama, H.M.; Uchiyama, M.; Sumiyoshi, T.; Okuda, A.; Koyama, Y. The role of zinc on nutritional status, sarcopenia, and frailty in older adults: A scoping review. Nutr. Rev. 2024, 82, 988–1011. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.Y.; Zarshenas, N.; Jorgensen, J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition 2009, 25, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, M. The Albumin-nutrition connection: Separating myth from fact. Nutrition 2002, 18, 199–200. [Google Scholar] [CrossRef]
- Kushiyama, S.; Sakurai, K.; Kubo, N.; Tamamori, Y.; Nishii, T.; Tachimori, A.; Inoue, T.; Maeda, K. The Preoperative Geriatric Nutritional Risk Index Predicts Postoperative Complications in Elderly Patients with Gastric Cancer Undergoing Gastrectomy. In Vivo 2018, 32, 1667–1672. [Google Scholar] [CrossRef]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Oh, C.A. Nutritional risk index as a predictor of postoperative wound complications after gastrectomy. World J. Gastroenterol. 2012, 18, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.; Capra, S.; Bauer, J.; Banks, M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition 1999, 15, 458–464. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, T.A.; Luft, V.C.; Souza, G.C.; Santos, Z.d.A.; Jochims, A.M.K.; de Almeida, J.C. Malnutrition screening tool and malnutrition universal screening tool as a predictors of prolonged hospital stay and hospital mortality: A cohort study. Clin. Nutr. ESPEN 2023, 54, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Stratton, R.J.; Hackston, A.; Longmore, D.; Dixon, R.; Price, S.; Stroud, M.; King, C.; Elia, M. Malnutrition in hospital outpatients and inpatients: Prevalence, concurrent validity and ease of use of the ‘malnutrition universal screening tool’ (‘MUST’) for adults. Br. J. Nutr. 2004, 92, 799–808. [Google Scholar] [CrossRef]
- Almasaudi, A.S.; McSorley, S.T.; Dolan, R.D.; Edwards, C.A.; McMillan, D.C. The relation between Malnutrition Universal Screening Tool (MUST), computed tomography–derived body composition, systemic inflammation, and clinical outcomes in patients undergoing surgery for colorectal cancer. Am. J. Clin. Nutr. 2019, 110, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T.; Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Yıldırım, R.; Candaş, B.; Usta, M.A.; Erkul, O.; Türkyılmaz, S.; Güner, A. Comparison of Nutritional Screening Tools in Patients Undergoing Surgery for Gastric Cancer. Med. Bull. Haseki 2020, 58, 153–161. [Google Scholar] [CrossRef]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for Undernutrition in Geriatric Practice: Developing the Short-Form Mini-Nutritional Assessment (MNA-SF). J. Gerontol. Ser. A 2001, 56, M366–M372. [Google Scholar] [CrossRef] [PubMed]
- Soysal, P.; Veronese, N.; Arik, F.; Kalan, U.; Smith, L.; Isik, A.T. Mini Nutritional Assessment Scale-Short Form can be useful for frailty screening in older adults. Clin. Interv. Aging 2019, 14, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Detsky, A.S.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? J. Parenter. Enter. Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.; Coxreijven, P.; Greve, J.; Soeters, P. Application of subjective global assessment as a screening tool for malnutrition in surgical patients in Vietnam. Clin. Nutr. 2006, 25, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Fink, J.d.S.; de Mello, P.D.; de Mello, E.D. Subjective global assessment of nutritional status—A systematic review of the literature. Clin. Nutr. 2015, 34, 785–792. [Google Scholar] [CrossRef]
- Ukleja, A.; Gilbert, K.; Mogensen, K.M.; Walker, R.; Ward, C.T.; Ybarra, J.; Holcombe, B.; Ukleja, A.A.; Gilbert, M.K.; Mogensen, R.K.M.; et al. Standards for Nutrition Support: Adult Hospitalized Patients. Nutr. Clin. Pract. 2018, 33, 906–920. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Scalera, G.; Sergio, R.; De Sena, G.; Pilone, V.; Barbarisi, A. Clinical impact of Mediterranean-enriched-protein diet on liver size, visceral fat, fat mass, and fat-free mass in patients undergoing sleeve gastrectomy. Surg. Obes. Relat. Dis. 2015, 11, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Pilone, V.; Rossetti, G.; Barbarisi, A.; Cesaretti, M.; Iannelli, A. A 4-Week Preoperative Ketogenic Micronutrient-Enriched Diet Is Effective in Reducing Body Weight, Left Hepatic Lobe Volume, and Micronutrient Deficiencies in Patients Undergoing Bariatric Surgery: A Prospective Pilot Study. Obes. Surg. 2018, 28, 2215–2224. [Google Scholar] [CrossRef] [PubMed]
- Pilone, V.; Tramontano, S.; Renzulli, M.; Romano, M.; Cobellis, L.; Berselli, T.; Schiavo, L. Metabolic effects, safety, and acceptability of very low-calorie ketogenic dietetic scheme on candidates for bariatric surgery. Surg. Obes. Relat. Dis. 2018, 14, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Suarez, R.; Chapela, S.; Llobera, N.D.; Montalván, M.; Vásquez, C.A.; Martinuzzi, A.L.N.; Katsanos, C.S.; Verde, L.; Frias-Toral, E.; Barrea, L.; et al. Very Low Calorie Ketogenic Diet: What Effects on Lipid Metabolism? Curr. Nutr. Rep. 2024, 13, 516–526. [Google Scholar] [CrossRef]
- Barrea, L.; Caprio, M.; Grassi, D.; Cicero, A.F.G.; Bagnato, C.; Paolini, B.; Muscogiuri, G. A New Nomenclature for the Very Low-Calorie Ketogenic Diet (VLCKD): Very Low-Energy Ketogenic Therapy (VLEKT). Ketodiets and Nutraceuticals Expert Panels: “KetoNut”, Italian Society of Nutraceuticals (SINut) and the Italian Association of Dietetics and Clinical Nutrition (ADI). Curr. Nutr. Rep. 2024, 13, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, G.; Schiavo, L.; Pagano, I.; Molettieri, P.; Conte, A.; Sarno, G.; Pilone, V.; Rastrelli, L. Clinical Impact of Enteral Protein Nutritional Therapy on Patients with Obesity Scheduled for Bariatric Surgery: A Focus on Safety, Efficacy, and Pathophysiological Changes. Nutrients 2023, 15, 1492. [Google Scholar] [CrossRef]
- Berardi, G.; Vitiello, A.; Abu-Abeid, A.; Schiavone, V.; Franzese, A.; Velotti, N.; Musella, M. Micronutrients Deficiencies in Candidates of Bariatric Surgery: Results from a Single Institution over a 1-Year Period. Obes. Surg. 2023, 33, 212–218. [Google Scholar] [CrossRef]
- Giustina, A.; di Filippo, L.; Facciorusso, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Casanueva, F.F.; Cavestro, G.M.; Chakhtoura, M.; et al. Vitamin D status and supplementation before and after Bariatric Surgery: Recommendations based on a systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2023, 24, 1011–1029. [Google Scholar] [CrossRef]
- O’Kane, M.; Parretti, H.M.; Pinkney, J.; Welbourn, R.; Hughes, C.A.; Mok, J.; Walker, N.; Thomas, D.; Devin, J.; Coulman, K.D.; et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. Obes. Rev. 2020, 21i, e13087. [Google Scholar] [CrossRef] [PubMed]
- Leahy, C.R.; Luning, A. Review of Nutritional Guidelines for Patients Undergoing Bariatric Surgery. AORN J. 2015, 102, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Salzano, C.; Pugliese, G.; Laudisio, D.; Frias-Toral, E.; Savastano, S.; Colao, A.; Muscogiuri, G. The challenge of weight loss maintenance in obesity: A review of the evidence on the best strategies available. Int. J. Food Sci. Nutr. 2022, 73, 1030–1046. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Pilone, V.; Rossetti, G.; Iannelli, A. The Role of the Nutritionist in a Multidisciplinary Bariatric Surgery Team. Obes. Surg. 2019, 29, 1028–1030. [Google Scholar] [CrossRef] [PubMed]
- Verde, L.; Frias-Toral, E.; Cardenas, D. Editorial: Environmental factors implicated in obesity. Front. Nutr. 2023, 10, 1171507. [Google Scholar] [CrossRef] [PubMed]
- Chaim, E.A.; Pareja, J.C.; Gestic, M.A.; Utrini, M.P.; Cazzo, E. Preoperative multidisciplinary program for bariatric surgery: A proposal for the Brazilian Public Health System. Arq. Gastroenterol. 2017, 54, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Farrell, T.M. Importance of a Multidisciplinary Approach for Bariatric Surgery. In Foregut Surgery; Springer International Publishing: Cham, Switzerland, 2020; pp. 227–235. [Google Scholar] [CrossRef]
- Patel, P.; Hartland, A.; Hollis, A.; Ali, R.; Elshaw, A.; Jain, S.; Khan, A.; Mirza, S. Tier 3 multidisciplinary medical weight management improves outcome of Roux-en-Y gastric bypass surgery. Ind. Mark. Manag. 2015, 97, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Delgado Floody, P.; Caamaño Navarrete, F.; Jerez Mayorga, D.; Campos Jara, C.; Ramírez Campillo, R.; Osorio Poblete, A.; Hormazábal, M.A.; Lepeley, N.T.; Mansilla, C.S. Effects of a multidisciplinary program on morbid obese patients and patients with comorbility who are likely to be candidates for bariatric surgery. Nutr. Hosp. 2015, 31, 2011–2016. [Google Scholar] [CrossRef]
- Gorodner, V.; Di Corpo, M.; Schlottmann, F. Tailoring Surgical Treatment for the Individual Patient. In Foregut Surgery; Springer International Publishing: Cham, Switzerland, 2020; pp. 283–293. [Google Scholar] [CrossRef]
- Tursun, S.; Şahin, Y.; Alçiğir, M.E.; Çínar, M.; Karahan, I. Cafeteria diet can cause systemic inflammation and oxidative damage in the various tissues. Mediterr. J. Nutr. Metab. 2024, 17, 81–91. [Google Scholar] [CrossRef]
- Golshany, H.; Helmy, S.A.; Morsy, N.F.S.; Kamal, A.; Yu, Q.; Fan, L. The gut microbiome across the lifespan: How diet modulates our microbial ecosystem from infancy to the elderly. Int. J. Food Sci. Nutr. 2024, 75, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Obeid, N.R.; Dimick, J.B. Sleeve Gastrectomy. In Foregut Surgery; Springer International Publishing: Cham, Switzerland, 2020; pp. 255–264. [Google Scholar] [CrossRef]
- Laxague, F.; Schlottmann, F.; Buxhoeveden, R. Laparoscopic Roux-en-Y Gastric Bypass. In Foregut Surgery; Springer International Publishing: Cham, Switzerland, 2020; pp. 249–254. [Google Scholar] [CrossRef]
Marker | Supporting Studies |
---|---|
Urinary creatinine | [68,69,70,71] |
Urinary 3-methylhistidine | [72,73,74] |
Serum cholesterol | [75,76,77,78] |
Delayed hypersensitivity and blood lymphocyte count | [79,80,81,82] |
Serum insulin-growth factor 1 (IGF-1) | [83,84,85,86] |
Serum Leptin | [87,88,89,90,91,92] |
Serum Nesfatin-1 | [93,94,95,96] |
Serum Zinc | [97,98,99] |
Micronutrient | Deficiency Threshold | Recommended Dose | Timing | Notes |
---|---|---|---|---|
Vitamin D [119] | <30 ng/mL (insufficiency) | 4000–6000 IU/day (severe deficiency) | Begin at least 10 weeks preoperatively | Maintenance dose: 2000 IU/day post-surgery; monitor to avoid hypervitaminosis. |
Vitamin B12 [118,120] | <200 pg/mL (deficiency) | 1000 µg IM every 2 weeks | Start immediately upon diagnosis | Oral/sublingual: 500–1000 µg/day for mild to moderate deficiencies. |
Iron [120] | Ferritin < 30 ng/mL | 100–200 mg/day | Begin at least 8–10 weeks preoperatively | Combine with 500 mg vitamin C for improved absorption; consider IV iron for intolerance to oral administration. |
Folate [120] | <3.4 ng/mL | 2 mg/day | Start immediately upon diagnosis | Ensure concurrent correction of anemia if present. |
Zinc [118] | <70 µg/dL | 8–11 mg/day | Adjust based on preoperative levels | Monitor levels post-surgery, particularly in malabsorptive procedures like Roux-en-Y gastric bypass. |
Calcium [119] | <8.5 mg/dL | 1000–1200 mg/day | Integrate into routine supplementation | Combine with 800–1000 IU vitamin D to support bone health. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simancas-Racines, D.; Frias-Toral, E.; Campuzano-Donoso, M.; Ramos-Sarmiento, D.; Zambrano-Villacres, R.; Reytor-González, C.; Schiavo, L. Preoperative Nutrition in Bariatric Surgery: A Narrative Review on Enhancing Surgical Success and Patient Outcomes. Nutrients 2025, 17, 566. https://doi.org/10.3390/nu17030566
Simancas-Racines D, Frias-Toral E, Campuzano-Donoso M, Ramos-Sarmiento D, Zambrano-Villacres R, Reytor-González C, Schiavo L. Preoperative Nutrition in Bariatric Surgery: A Narrative Review on Enhancing Surgical Success and Patient Outcomes. Nutrients. 2025; 17(3):566. https://doi.org/10.3390/nu17030566
Chicago/Turabian StyleSimancas-Racines, Daniel, Evelyn Frias-Toral, Martín Campuzano-Donoso, Daniel Ramos-Sarmiento, Raynier Zambrano-Villacres, Claudia Reytor-González, and Luigi Schiavo. 2025. "Preoperative Nutrition in Bariatric Surgery: A Narrative Review on Enhancing Surgical Success and Patient Outcomes" Nutrients 17, no. 3: 566. https://doi.org/10.3390/nu17030566
APA StyleSimancas-Racines, D., Frias-Toral, E., Campuzano-Donoso, M., Ramos-Sarmiento, D., Zambrano-Villacres, R., Reytor-González, C., & Schiavo, L. (2025). Preoperative Nutrition in Bariatric Surgery: A Narrative Review on Enhancing Surgical Success and Patient Outcomes. Nutrients, 17(3), 566. https://doi.org/10.3390/nu17030566