The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic
Abstract
:1. Introduction
Nociceptive Signaling and Receptors
2. Classifications of Phytochemicals
2.1. Polyphenols
2.1.1. Curcumin
2.1.2. Resveratrol
2.1.3. Quercetin
2.1.4. Naringenin
2.1.5. Epigallocatechin Gallate (EGCG)
2.2. Terpenoids
Eugenol
2.3. Alkaloids
Capsaicin
3. Inflammatory Mediators
3.1. Pro-Inflammatory Cytokines
3.1.1. Tumor Necrosis Factor-Alpha (TNF-α)
3.1.2. Interleukin (IL-1β, IL-6)
3.2. Inflammatory Enzymes
3.2.1. Cyclooxygenase (COX)
3.2.2. Nitric Oxide Synthase (NOS)
3.3. Inflammatory Pathways
3.3.1. Nuclear Factor Kappa B (NF-kB)
3.3.2. MAPK
4. Future Use and Overall Findings
Funding
Conflicts of Interest
References
- Johnson, I.T. Phytochemicals and cancer. Proc. Nutr. Soc. 2007, 66, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, L.; Hou, X. Potential Roles and Molecular Mechanisms of Phytochemicals against Cancer. Food Funct. 2022, 13, 9208–9225. Available online: https://pubs.rsc.org/en/content/articlelanding/2022/fo/d2fo01663j/unauth (accessed on 1 September 2022). [CrossRef]
- Shin, S.A.; Joo, B.J.; Lee, J.S.; Ryu, G.; Han, M.; Kim, W.Y.; Park, H.H.; Lee, J.H.; Lee, C.S. Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases. Molecules 2020, 25, 5932. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, S.; Vinayak, M. Recent development in the antihyperalgesic effect of phytochemicals: Anti-inflammatory and neuro-modulatory actions. Inflamm. Res. 2018, 67, 633–654. [Google Scholar] [CrossRef]
- Rahman, M.; Jo, Y.-Y.; Kim, Y.H.; Park, C.-K. Current insights and therapeutic strategies for targeting TRPV1 in neuropathic pain management. Life Sci. 2024, 355, 122954. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Tian, Q.; Deng, Q.; Wang, Y.; Zhou, T.; Liu, Q.; Mei, K.; Wang, Y.; Liu, H.; et al. TRPV1 SUMOylation regulates nociceptive signaling in models of inflammatory pain. Nat. Commun. 2018, 9, 1529. [Google Scholar] [CrossRef] [PubMed]
- González-Ramírez, R.; Chen, Y.; Liedtke, W.B.; Morales-Lázaro, S.L. TRP Channels and Pain. In Neurobiology of TRP Channels; Emir, T.L.R., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017; Chapter 8. [Google Scholar] [CrossRef]
- Abdelkhalek, S.T.; Shi, J.H.; Jin, M.X.; Abdelgayed, S.S.; Wang, M.Q. Classification of Phytochemicals in Plants with Herbal Value. In Herbal Medicine Phytochemistry; Izah, S.C., Ogwu, M.C., Akram, M., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Brunton, N.P.; Brennan, C. (Eds.) Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Avantario, P.; Azzollini, D.; Buongiorno, S.; Viapiano, F.; Campanelli, M.; Ciocia, A.M.; De Leonardis, N.; et al. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism-A Systematic Review. Nutrients 2022, 14, 3519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saleh, H.A.; Yousef, M.H.; Abdelnaser, A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front. Immunol. 2021, 12, 606069. [Google Scholar] [CrossRef]
- Bisht, K.; Wagner, K.-H.; Bulmer, A.C. Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology 2009, 278, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Motallebi, M.; Bhia, M.; Rajani, H.F.; Bhia, I.; Tabarraei, H.; Mohammadkhani, N.; Pereira-Silva, M.; Kasaii, M.S.; Nouri-Majd, S.; Mueller, A.-L.; et al. Naringenin: A Potential Flavonoid Phytochemical for Cancer Therapy. Life Sci. 2022, 305, 120752. Available online: www.sciencedirect.com/science/article/abs/pii/S0024320522004520?via%3Dihub (accessed on 29 June 2022). [CrossRef] [PubMed]
- Liu, C.; Liu, D.Q.; Tian, Y.K.; Mei, W.; Tian, X.B.; Xu, A.J.; Zhou, Y.Q. The Emerging Role of Quercetin in the Treatment of Chronic Pain. Curr. Neuropharmacol. 2022, 20, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeda, M.; Sashide, Y.; Toyota, R.; Ito, H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024, 29, 3957. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Escogido Mde, L.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and pharmacological aspects of capsaicin. Molecules 2011, 16, 1253–1270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, H.; Li, Y.; Ling, F.; Guan, Y.; Zhang, D.; Zhu, Q.; Liu, J.; Wu, Y.; Niu, Y. The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism and reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell 2020, 19, e13199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nisar, M.F.; Khadim, M.; Rafiq, M.; Chen, J.; Yang, Y.; Wan, C.C. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. Oxid. Med. Cell Longev. 2021, 2021, 2497354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). Recent. Adv. Nat. Prod. Anal. 2020, 505–567. [Google Scholar] [CrossRef] [PubMed Central]
- Frias, B.; Merighi, A. Capsaicin, Nociception and Pain. Molecules 2016, 21, 797. [Google Scholar] [CrossRef]
- Zelová, H.; Hošek, J. TNF-α signaling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef]
- Idriss, H.T.; Naismith, J.H. TNF? and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Subedi, L.; Lee, S.E.; Madiha, S.; Gaire, B.P.; Jin, M.; Yumnam, S.; Kim, S.Y. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 764. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Castejon, G.; Brough, D. Understanding the Mechanism of Il-1β Secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. Available online: www.sciencedirect.com/science/article/pii/S1359610111000475?via%3Dihub (accessed on 22 October 2011). [CrossRef] [PubMed]
- Mertowska, P.; Mertowski, S.; Smarz-Widelska, I.; Grywalska, E. Biological Role, Mechanism of Action and the Importance of Interleukins in Kidney Diseases. Int. J. Mol. Sci. 2022, 23, 647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Justiz Vaillant, A.A.; Qurie, A. Interleukin. [Updated 2022 Aug 22]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Müller-Newen, G.; Schaper, F. Principles of interleukin (IL)-6-type cytokine signaling and its regulation. Biochem. J. 2003, 374 Pt 1, 1–20. [Google Scholar] [CrossRef]
- Nørregaard, R.; Kwon, T.H.; Frøkiær, J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res. Clin. Pract. 2015, 34, 194–200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salvemini, D.; Kim, S.F.; Mollace, V. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: Relevance and clinical implications. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R473–R487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Papi, S.; Ahmadizar, F.; Hasanvand, A. The role of nitric oxide in inflammation and oxidative stress. Immunopathol. Persa 2019, 5, e80. [Google Scholar] [CrossRef]
- Subedi, L.; Gaire, B.P.; Parveen, A.; Kim, S.Y. Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy. Int. J. Mol. Sci. 2021, 22, 4771. [Google Scholar] [CrossRef]
- Behl, T.; Rana, T.; Sehgal, A.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Bhatia, S.; Sachdeva, M. Phytochemicals targeting nitric oxide signaling in neurodegenerative diseases. Nitric Oxide Biol. Chem. 2023, 130, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cruz-Martins, N. Molecular Mechanisms of Anti-Inflammatory Phytochemicals 2.0. Int. J. Mol. Sci. 2023, 24, 17443. [Google Scholar] [CrossRef]
- Sajad, M.; Kumar, R.; Thakur, S.C. History in Perspective: The prime pathological players and role of phytochemicals in Alzheimer’s disease. IBRO Neurosci. Rep. 2022, 12, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Moens, U.; Kostenko, S.; Sveinbjørnsson, B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes 2013, 4, 101–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal HM, N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders—A Review. Recent. Pat. Inflamm. Allergy Drug Discov. 2018, 12, 39–58. [Google Scholar] [CrossRef]
Phytochemicals | Type | Effects |
---|---|---|
Curcumin | Polyphenol | Inhibits the COX-2, NF-kB, inducible NOS, and NO enzymes in specific macrophages and natural killer cells |
Resveratrol | Polyphenol | Can inhibit NF-kB and TNF-alpha |
Querecetin | Polyphenol | Inhibition of nociceptive effects of IL-1Beta and TNF-alpha |
Naringenin | Polyphenol | Modulation of ROS and raises superoxide dismutase levels |
EGCG | Polyphenol | Decreases IL-6, TNF-alpha, and ROS |
Eugenol | Terpenoid | Reduced inflammation markers of COX-2, iNOS, TNF-alpha, and antioxidant enzymes |
Capsaicin | Alkaloid | Desensitization of TRPV1 receptors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, M.; Wahezi, S.; Mavrocordatos, P.; Abd-Elsayed, A. The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic. Nutrients 2025, 17, 633. https://doi.org/10.3390/nu17040633
Patel M, Wahezi S, Mavrocordatos P, Abd-Elsayed A. The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic. Nutrients. 2025; 17(4):633. https://doi.org/10.3390/nu17040633
Chicago/Turabian StylePatel, Milan, Sayed Wahezi, Philippe Mavrocordatos, and Alaa Abd-Elsayed. 2025. "The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic" Nutrients 17, no. 4: 633. https://doi.org/10.3390/nu17040633
APA StylePatel, M., Wahezi, S., Mavrocordatos, P., & Abd-Elsayed, A. (2025). The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic. Nutrients, 17(4), 633. https://doi.org/10.3390/nu17040633