Endogenous Ketone Bodies Are Associated with Metabolic Vulnerability and Disability in Multiple Sclerosis
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Serum Nuclear Magnetic Resonance (NMR) Analysis
2.3. Lipids and Apolipoproteins
2.4. Lipid Peroxidation Products and Antioxidant Defense Enzyme Activity Measurements
2.5. Data Analysis
3. Results
3.1. Clinical and Demographic Characteristics
3.2. Associations of Ketone Bodies with MS Disease Course
3.3. Associations of Ketone Bodies with Inflammatory and Metabolic Vulnerability Indices
3.4. Lipid and Amino Acid Metabolic Pathways and Ketone Bodies
3.5. Lipid Peroxidation Products and Antioxidant Defense Enzyme Activities
3.6. MS Disability and Ketone Bodies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Lopez-Muguruza, E.; Matute, C. Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. Int. J. Mol. Sci. 2023, 24, 12912. [Google Scholar] [CrossRef]
- Laffel, L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 1999, 15, 412–426. [Google Scholar] [CrossRef]
- Beskow, A.P.; Fernandes, C.G.; Leipnitz, G.; Silva, L.d.B.d.; Seminotti, B.; Amaral, A.U.; Wyse, A.T.S.; Wannmacher, C.M.D.; Vargas, C.R.; Dutra-Filho, C.S.; et al. Influence of ketone bodies on oxidative stress parameters in brain of developing rats in vitro. Metab. Brain Dis. 2008, 23, 411–425. [Google Scholar] [CrossRef]
- Silva, B.; Mantha, O.L.; Schor, J.; Pascual, A.; Plaçais, P.-Y.; Pavlowsky, A.; Preat, T. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat. Metab. 2022, 4, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ojeda, W.; Hurley, R.A. Ketone Bodies and Brain Metabolism: New Insights and Perspectives for Neurological Diseases. J. Neuropsychiatry Clin. Neurosci. 2023, 35, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.A. Cerebral ketone body metabolism. J. Inherit. Metab. Dis. 2005, 28, 109–121. [Google Scholar] [CrossRef]
- Schonfeld, P.; Reiser, G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow. Metab. 2013, 33, 1493–1499. [Google Scholar] [CrossRef]
- Kolb, H.; Kempf, K.; Rohling, M.; Lenzen-Schulte, M.; Schloot, N.C.; Martin, S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021, 19, 313. [Google Scholar] [CrossRef]
- Williams, N.C.; O’Neill, L.A.J. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front. Immunol. 2018, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Cocco, E.; Murgia, F.; Lorefice, L.; Barberini, L.; Poddighe, S.; Frau, J.; Fenu, G.; Coghe, G.; Murru, M.R.; Murru, R.; et al. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflam. 2016, 3, e185. [Google Scholar] [CrossRef] [PubMed]
- Otvos, J.D.; Shalaurova, I.; May, H.T.; Muhlestein, J.B.; Wilkins, J.T.; McGarrah, R.W., III; Kraus, W.E. Multimarkers of metabolic malnutrition and inflammation and their association with mortality risk in cardiac catheterisation patients: A prospective, longitudinal, observational, cohort study. Lancet Healthy Longe. 2023, 4, e72–e82. [Google Scholar] [CrossRef]
- Browne, R.W.; Weinstock-Guttman, B.; Horakova, D.; Zivadinov, R.; Bodziak, M.L.; Tamaño-Blanco, M.; Badgett, D.; Tyblova, M.; Vaneckova, M.; Seidl, Z.; et al. Apolipoproteins are associated with new MRI lesions and deep grey matter atrophy in clinically isolated syndromes. J. Neurol. Neurosurg. Psychiatry 2014, 85, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Essenburg, C.; Browne, R.W.; Ghazal, D.; Tamaño-Blanco, M.; Jakimovski, D.; Weinstock-Guttman, B.; Zivadinov, R.; Ramanathan, M. Antioxidant defense enzymes in multiple sclerosis: A 5-year follow-up study. Eur. J. Neurol. 2023, 30, 2338–2347. [Google Scholar] [CrossRef] [PubMed]
- Ganeshan, K.; Chawla, A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014, 32, 609–634. [Google Scholar] [CrossRef] [PubMed]
- Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARalpha. Int. J. Mol. Sci. 2016, 17, 2093. [Google Scholar] [CrossRef]
- Chen, J.; Ou, Y.; Luo, R.; Wang, J.; Wang, D.; Guan, J.; Li, Y.; Xia, P.; Chen, P.R.; Liu, Y. SAR1B senses leucine levels to regulate mTORC1 signalling. Nature 2021, 596, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Ricoult, S.J.; Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013, 14, 242–251. [Google Scholar] [CrossRef]
- Sengupta, S.; Peterson, T.R.; Laplante, M.; Oh, S.; Sabatini, D.M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468, 1100–1104. [Google Scholar] [CrossRef]
- Lebrun-Julien, F.; Bachmann, L.; Norrmén, C.; Trötzmüller, M.; Köfeler, H.; Rüegg, M.A.; Hall, M.N.; Suter, U. Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J. Neurosci. 2014, 34, 8432–8448. [Google Scholar] [CrossRef] [PubMed]
- Dello Russo, C.; Lisi, L.; Feinstein, D.L.; Navarra, P. mTOR kinase, a key player in the regulation of glial functions: Relevance for the therapy of multiple sclerosis. Glia 2013, 61, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Vakrakou, A.G.; Alexaki, A.; Brinia, M.E.; Anagnostouli, M.; Stefanis, L.; Stathopoulos, P. The mTOR Signaling Pathway in Multiple Sclerosis; from Animal Models to Human Data. Int. J. Mol. Sci. 2022, 23, 8077. [Google Scholar] [CrossRef]
- Brenton, J.N.; Lehner-Gulotta, D.; Woolbright, E.; Banwell, B.; Bergqvist, A.G.C.; Chen, S.; Coleman, R.; Conaway, M.; Goldman, M.D. Phase II study of ketogenic diets in relapsing multiple sclerosis: Safety, tolerability and potential clinical benefits. J. Neurol. Neurosurg. Psychiatry 2022, 93, 637–644. [Google Scholar] [CrossRef]
- Orti, J.E.R.; Cuerda-Ballester, M.; Sanchis-Sanchis, C.E.; Lajara Romance, J.M.; Navarro-Illana, E.; Garcia Pardo, M.P. Exploring the impact of ketogenic diet on multiple sclerosis: Obesity, anxiety, depression, and the glutamate system. Front. Nutr. 2023, 10, 1227431. [Google Scholar] [CrossRef]
- Iatan, I.; Huang, K.; Vikulova, D.; Tanjan, S.; Brunham, L.R. Association of a Low-Carbohydrate High-Fat Diet with Plasma Lipid Levels and Cardiovascular Risk. JACC Adv. 2024, 3, 100924. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.-J.; Schell, J.R.; Chocron, E.S.; Varmazyad, M.; Xu, G.; Chen, W.H.; Martinez, G.M.; Dong, F.F.; Sreenivas, P.; Trevino, R.; et al. Ketogenic diet induces p53-dependent cellular senescence in multiple organs. Sci. Adv. 2024, 10, eado1463. [Google Scholar] [CrossRef]
- Arsyad, A.; Idris, I.; Rasyid, A.A.; Usman, R.A.; Faradillah, K.R.; Latif, W.O.U.; Lubis, Z.I.; Aminuddin, A.; Yustisia, I.; Djabir, Y.Y. Long-Term Ketogenic Diet Induces Metabolic Acidosis, Anemia, and Oxidative Stress in Healthy Wistar Rats. J. Nutr. Metab. 2020, 2020, 3642035. [Google Scholar] [CrossRef] [PubMed]
- Gzielo, K.; Janeczko, K.; Weglarz, W.; Jasinski, K.; Klodowski, K.; Setkowicz, Z. MRI spectroscopic and tractography studies indicate consequences of long-term ketogenic diet. Brain Struct. Funct. 2020, 225, 2077–2089. [Google Scholar] [CrossRef]
- Zhu, K.; Browne, R.W.; Blair, R.H.; Bonner, M.R.; Tian, M.; Niu, Z.; Deng, F.; Farhat, Z.; Mu, L. Changes in arachidonic acid (AA)- and linoleic acid (LA)-derived hydroxy metabolites and their interplay with inflammatory biomarkers in response to drastic changes in air pollution exposure. Environ. Res. 2021, 200, 111401. [Google Scholar] [CrossRef]
- Mendiara, I.; Domeño, C.; Nerín, C.; Geurts, A.M.; Osada, J.; Martínez-Beamonte, R. Determination of total plasma oxysterols by enzymatic hydrolysis, solid phase extraction and liquid chromatography coupled to mass-spectrometry. J. Pharm. Biomed. Anal. 2018, 150, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Pippenger, C.E.; Browne, R.W.; Armstrong, D. Regulatory antioxidant enzymes. Methods Mol. Biol. 1998, 108, 299–313. [Google Scholar] [PubMed]
- Browne, R.W.; Koury, S.T.; Marion, S.; Wilding, G.; Muti, P.; Trevisan, M. Accuracy and biological variation of human serum paraoxonase 1 activity and polymorphism (Q192R) by kinetic enzyme assay. Clin. Chem. 2007, 53, 310–317. [Google Scholar] [CrossRef]
HC | RR-MS | P-MS | p-Value | |
---|---|---|---|---|
Sample size n | 152 | 184 | 91 | |
Gender, Female (%) | 85 (55.9) | 139 (75.5) | 66 (72.5) | <0.001 |
Age, years | 45.7 (13.9) | 44.2 (9.70) | 54.1 (8.82) | <0.001 |
Body mass index, kg/m2 | 28.1 (5.97) | 27.0 (6.09) | 25.6 (3.30) | 0.009 |
Race: | 0.48 | |||
Caucasian | 131 (87.9%) | 168 (92.3%) | 86 (94.5%) | |
African American | 13 (8.7%) | 9 (4.95%) | 4 (4.4%) | |
Hispanic/Latino | 1 (0.67%) | 3 (1.65%) | 1 (1.1%) | |
Asian | 3 (2.0%) | 1 (0.55%) | 0 | |
Other | 1 (0.67%) | 0 | 0 | |
Missing | 3 (2.0%) | 3 (1.65%) | 0 | |
Disease duration, years | 12.0 (8.49) | 21.5 (11.4) | <0.001 | |
EDSS | 2.5 (1.5–3.5) | 6.0 (5.0–6.5) | <0.001 | |
Disease-modifying treatments: | 0.17 | |||
No treatment | - | 20 (10.9%) | 16 (17.6%) | |
Interferon | - | 66 (35.7%) | 31 (34.1%) | |
Glatiramer acetate | - | 34 (18.5%) | 25 (27.5) | |
Other | - | 43 (23.4%) | 16 (17.6%) | |
Missing | - | 21 (11.4%) | 3 (3.3%) | |
Ketone bodies | ||||
Ketone bodies, µM | 163 (67.8) | 191 (159) | 210 (140) | 0.021 |
β-hydroxybutyrate, µM | 84.1 (47.3) | 104 (106) | 120 (99) | 0.018 |
Acetoacetate, µM | 20.9 (14.2) | 24.1 (26.4) | 27.3 (21.7) | 0.046 |
Acetone, µM | 58.4 (29.3) | 62.8 (44.3) | 62.4 (36.2) | 0.96 |
Biomarker | IVX | MMX | MVX |
---|---|---|---|
BHB | 4.98 0.012 (0.029) | 4.57 0.023 (0.002) | 6.43 0.034 (< 0.001) |
AcAc | −6.23 0.073 (<0.001) | 2.84 0.035 (<0.001) | −2.74 0.025 (0.002) |
Acetone | 5.41 0.015 (0.014) | −2.15 0.005 (0.14) | 2.51 0.006 (0.13) |
Ketone bodies | 3.01 0.003 (0.30) | 4.54 0.014 (0.019) | 5.03 0.013 (0.023) |
Lipid Biomarker | BHB | Acetoacetate | Acetone | Ketone Bodies |
---|---|---|---|---|
Triglycerides | −4.77 <0.001 (0.74) | 0.489 <0.001 (0.94) | −6.45 <0.001 (0.64) | −17.4 0.002 (0.34) |
Total cholesterol | 12.7 0.006 (0.11) | 4.67 0.003 (0.24) | 9.66 0.004 (0.20) | 16.3 0.007 (0.11) |
HDL-C | 5.31 0.009 (0.063) | 2.53 0.008 (0.077) | 2.70 0.002 (0.32) | 8.48 0.013 (0.020) |
LDL-C | 1.55 <0.001 (0.78) | −3.13 0.003 (0.26) | 8.1 0.006 (0.12) | 3.3 <0.001 (0.64) |
Apo-AI | 10.5 0.014 (0.019) | −0.637 <0.001 (0.78) | 8.18 0.009 (0.058) | 14.1 0.015 (0.014) |
Apo-AII | 2.78 0.012 (0.027) | −1.35 0.011 (0.033) | 1.50 0.004 (0.22) | 2.76 0.007 (0.086) |
ApoB | 0.985 <0.001 (0.83) | -2.00 0.002 (0.38) | 2.90 0.001 (0.5) | 0.476 <0.001 (0.93) |
ApoE | −227 0.007 (0.086) | 16.6 <0.001 (0.8) | 26.2 <0.001 (0.84) | −177 0.003 (0.30) |
NMR Biomarker | BHB | Acetoacetate | Acetone | Ketone Bodies |
Alanine | −0.129 0.105 (<0.001) | −0.0681 0.116 (<0.001) | −0.0296 0.006 (0.12) | −0.172 0.115 (<0.001) |
Valine | −0.0141 0.001 (0.49) | −0.0257 0.015 (0.013) | 0.0326 0.007 (0.099) | −0.00641 <0.001 (0.81) |
Leucine | −0.00259 <0.001 (0.93) | −0.0544 0.032 (<0.001) | 0.105 0.033 (<0.001) | 0.0240 <0.001 (0.54) |
Isoleucine | 0.0191 0.001 (0.48) | −0.0227 0.007 (0.099) | 0.0271 0.003 (0.30) | 0.0177 <0.001 (0.61) |
Citrate | 0.0528 0.01 (0.049) | 0.0196 0.005 (0.15) | 0.0383 0.005 (0.14) | 0.0811 0.014 (0.018) |
sHDLP | −0.000333 <0.001 (0.99) | 0.0532 0.081 (<0.001) | −0.0471 0.017 (0.008) | 0.00907 <0.001 (0.70) |
GlycA | 0.0487 0.03 (<0.001) | −0.00788 0.003 (0.26) | −0.00249 <0.001 (0.85) | 0.0347 0.009 (0.053) |
Biomarker | EDSS | EDSS Quartiles | MSSS | Ambulation Time |
---|---|---|---|---|
BHB | 0.915 0.015 (0.051) | 0.566 0.021 (0.022) | 1.54 0.031 (0.009) | 0.283 0.065 (<0.001) |
AcAc | 0.469 0.01 (0.12) | 0.315 0.016 (0.048) | 0.549 0.01 (0.15) | 0.135 0.036 (0.008) |
Acetone | 0.24 0.001 (0.59) | 0.0736 0.00041 (0.75) | 0.331 0.002 (0.55) | 0.0822 0.006 (0.29) |
Ketone bodies | 1.06 0.013 (0.071) | 0.634 0.017 (0.041) | 1.74 0.026 (0.018) | 0.335 0.058 (<0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wicks, T.R.; Shalaurova, I.; Wolska, A.; Browne, R.W.; Weinstock-Guttman, B.; Zivadinov, R.; Remaley, A.T.; Otvos, J.D.; Ramanathan, M. Endogenous Ketone Bodies Are Associated with Metabolic Vulnerability and Disability in Multiple Sclerosis. Nutrients 2025, 17, 640. https://doi.org/10.3390/nu17040640
Wicks TR, Shalaurova I, Wolska A, Browne RW, Weinstock-Guttman B, Zivadinov R, Remaley AT, Otvos JD, Ramanathan M. Endogenous Ketone Bodies Are Associated with Metabolic Vulnerability and Disability in Multiple Sclerosis. Nutrients. 2025; 17(4):640. https://doi.org/10.3390/nu17040640
Chicago/Turabian StyleWicks, Taylor R., Irina Shalaurova, Anna Wolska, Richard W. Browne, Bianca Weinstock-Guttman, Robert Zivadinov, Alan T. Remaley, James D. Otvos, and Murali Ramanathan. 2025. "Endogenous Ketone Bodies Are Associated with Metabolic Vulnerability and Disability in Multiple Sclerosis" Nutrients 17, no. 4: 640. https://doi.org/10.3390/nu17040640
APA StyleWicks, T. R., Shalaurova, I., Wolska, A., Browne, R. W., Weinstock-Guttman, B., Zivadinov, R., Remaley, A. T., Otvos, J. D., & Ramanathan, M. (2025). Endogenous Ketone Bodies Are Associated with Metabolic Vulnerability and Disability in Multiple Sclerosis. Nutrients, 17(4), 640. https://doi.org/10.3390/nu17040640