Association of Mediterranean Diet with Cardiovascular Risk Factors and with Metabolic Syndrome in Subjects with Long COVID: BioICOPER Study
Highlights
- The relationship between the Mediterranean diet, components of metabolic syndrome, and cardiovascular risk factors in a newly emerged condition, long COVID, was investigated.
- Higher Mediterranean diet scores were associated with lower uric acid levels, fewer metabolic syndrome components and a smaller waist circumference in individuals with long COVID.
- A positive association was found between Mediterranean diet adherence and higher HDL cholesterol levels, suggesting potential cardiovascular benefits for patients with long COVID.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Study Population
2.3. Variables and Measuring Instruments
2.3.1. Definition of Long COVID
2.3.2. Mediterranean Diet
2.3.3. Metabolic Syndrome
2.3.4. Diagnosis of Cardiovascular Risk Factors
2.4. Ethics Committee and Informed Consent
2.5. Analysis
3. Results
3.1. General Characteristics of Participants
3.2. MD, Vascular Risk Factors and Metabolic Syndrome
3.3. Correlation Coefficient Between the Mediterranean Diet Score with Cardiovascular Risk Factors and MetS Components
3.4. Association Between Adherence to the Mediterranean Diet with Vascular Risk Factors and MetS and Its Components
4. Discussion
Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martini, D. Health Benefits of Mediterranean Diet. Nutrients 2019, 11, 1802. [Google Scholar] [CrossRef]
- Román, G.C.; Jackson, R.E.; Reis, J.; Román, A.N.; Toledo, J.B.; Toledo, E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev. Neurol. 2019, 175, 705–723. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. J. Intern. Med. 2024, 295, 508–531. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Martinez-Gonzalez, M.A.; Tong, T.Y.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2019, 3, Cd009825. [Google Scholar] [CrossRef]
- Ying, Z.; Fu, M.; Fang, Z.; Ye, X.; Wang, P.; Lu, J. Mediterranean diet lowers risk of new-onset diabetes: A nationwide cohort study in China. Nutr. J. 2024, 23, 131. [Google Scholar] [CrossRef]
- Kushkestani, M.; Moghadassi, M.; Sidossis, L. Mediterranean Lifestyle: More Than a Diet, A Way of Living (and Thriving). Endocr. Metab. Immune Disord. Drug Targets 2024, 24, 1785–1793. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Frank, G.; Cianci, R.; Raffaelli, G.; Peluso, D.; Bigioni, G.; De Lorenzo, A. Sex-Specific Adherence to the Mediterranean Diet in Obese Individuals. Nutrients 2024, 16, 3076. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef] [PubMed]
- van Soest, A.P.; Beers, S.; van de Rest, O.; de Groot, L.C. The Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet for the Aging Brain: A Systematic Review. Adv. Nutr. 2024, 15, 100184. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-Style Diet for the Primary and Secondary Prevention of Cardiovascular Disease: A Cochrane Review. Glob. Heart 2020, 15, 56. [Google Scholar] [CrossRef]
- Ecarnot, F.; Maggi, S. The impact of the Mediterranean diet on immune function in older adults. Aging Clin. Exp. Res. 2024, 36, 117. [Google Scholar] [CrossRef]
- Ilari, S.P.S.; Milani, F.; Vitiello, L.; Muscoli, C.; Russo, P.; Bonassi, S. Dietary Patterns, Oxidative Stress, and Early Inflammation: A Systematic Review and Meta-Analysis Comparing Mediterranean, Vegan, and Vegetarian Diets. Nutrients 2025, 17, 548–567. [Google Scholar] [CrossRef]
- Lugones-Sanchez, C.; Recio-Rodriguez, J.I.; Agudo-Conde, C.; Repiso-Gento, I.; E, G.A.; Ramirez-Manent, J.I.; Sanchez-Calavera, M.A.; Rodriguez-Sanchez, E.; Gomez-Marcos, M.A.; Garcia-Ortiz, L. Long-term Effectiveness of a Smartphone App Combined With a Smart Band on Weight Loss, Physical Activity, and Caloric Intake in a Population With Overweight and Obesity (Evident 3 Study): Randomized Controlled Trial. J. Med. Internet Res. 2022, 24, e30416. [Google Scholar] [CrossRef] [PubMed]
- Madan, K.; Paliwal, S.; Sharma, S.; Kesar, S.; Chauhan, N.; Madan, M. Metabolic Syndrome: The Constellation of Co-morbidities, A Global Threat. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 1491–1504. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed]
- Kotani, K.; Satoh-Asahara, N.; Nakakuki, T.; Yamakage, H.; Shimatsu, A.; Tsukahara, T. Association between metabolic syndrome and multiple lesions of intracranial atherothrombotic stroke: A hospital-based study. Cardiovasc. Diabetol. 2015, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Li, B.; Wang, Y.; Han, B.; Wang, N.; Li, Q.; Yang, W.; Huang, G.; Wang, J.; Chen, Y.; et al. The nine-year changes of the incidence and characteristics of metabolic syndrome in China: Longitudinal comparisons of the two cross-sectional surveys in a newly formed urban community. Cardiovasc. Diabetol. 2016, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Feldman, I.; Natsheh, A.; Breuer, G.S. Hyperuricemia and Adverse Outcomes in Patients Hospitalized for COVID-19 Disease. Clin. Med. Res. 2023, 21, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lou, X. The Bidirectional Association Between Metabolic Syndrome and Long-COVID-19. Diabetes Metab. Syndr. Obes. 2024, 17, 3697–3710. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Behl, T.; Sharma, N.; Singh, S.; Grewal, A.S.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Bungau, S. COVID-19 and diabetes: Association intensify risk factors for morbidity and mortality. Biomed. Pharmacother. 2022, 151, 113089. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Ledford, H. How obesity could create problems for a COVID vaccine. Nature 2020, 586, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Aghili, S.M.M.; Ebrahimpur, M.; Arjmand, B.; Shadman, Z.; Pejman Sani, M.; Qorbani, M.; Larijani, B.; Payab, M. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: A review and meta-analysis. Int. J. Obes. 2021, 45, 998–1016. [Google Scholar] [CrossRef] [PubMed]
- Zuin, M.; Rigatelli, G.; Zuliani, G.; Rigatelli, A.; Mazza, A.; Roncon, L. Arterial hypertension and risk of death in patients with COVID-19 infection: Systematic review and meta-analysis. J. Infect. 2020, 81, e84–e86. [Google Scholar] [CrossRef]
- Chidambaram, V.; Kumar, A.; Majella, M.G.; Seth, B.; Sivakumar, R.K.; Voruganti, D.; Bavineni, M.; Baghal, A.; Gates, K.; Kumari, A.; et al. HDL cholesterol levels and susceptibility to COVID-19. EBioMedicine 2022, 82, 104166. [Google Scholar] [CrossRef]
- Feingold, K.R. Lipid and Lipoprotein Levels in Patients with COVID-19 Infections. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc. Copyright © 2000–2024, MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Hu, X.; Chen, D.; Wu, L.; He, G.; Ye, W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin. Chim. Acta 2020, 510, 105–110. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Zhao, X.; Dong, H.; Wu, C.; Wu, F.; Yu, B.; Lv, J.; Zhang, S.; Wu, G.; et al. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: An observational study. Lipids Health Dis. 2020, 19, 204. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Hossain, K.M.A.; Saunders, K.; Uddin, Z.; Walton, L.M.; Raigangar, V.; Sakel, M.; Shafin, R.; Hossain, M.S.; Kabir, M.F.; et al. Prevalence of Long COVID symptoms in Bangladesh: A prospective Inception Cohort Study of COVID-19 survivors. BMJ Glob. Health 2021, 6, e006838. [Google Scholar] [CrossRef]
- Loosen, S.H.; Jensen, B.O.; Tanislav, C.; Luedde, T.; Roderburg, C.; Kostev, K. Obesity and lipid metabolism disorders determine the risk for development of long COVID syndrome: A cross-sectional study from 50,402 COVID-19 patients. Infection 2022, 50, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Chan Sui Ko, A.; Candellier, A.; Mercier, M.; Joseph, C.; Schmit, J.L.; Lanoix, J.P.; Andrejak, C. Number of initial symptoms is more related to long COVID-19 than acute severity of infection: A prospective cohort of hospitalized patients. Int. J. Infect. Dis. 2022, 118, 220–223. [Google Scholar] [CrossRef]
- Steenblock, C.; Hassanein, M.; Khan, E.G.; Yaman, M.; Kamel, M.; Barbir, M.; Lorke, D.E.; Rock, J.A.; Everett, D.; Bejtullah, S.; et al. Diabetes and COVID-19: Short- and Long-Term Consequences. Horm. Metab. Res. 2022, 54, 503–509. [Google Scholar] [CrossRef]
- Abrignani, M.G.; Maloberti, A.; Temporelli, P.L.; Binaghi, G.; Cesaro, A.; Ciccirillo, F.; Oliva, F.; Gabrielli, D.; Riccio, C.; Gulizia, M.M.; et al. [Long COVID: Nosographic aspects and clinical epidemiology]. G. Ital. Cardiol. 2022, 23, 651–662. [Google Scholar] [CrossRef]
- Kazakou, P.; Lambadiari, V.; Ikonomidis, I.; Kountouri, A.; Panagopoulos, G.; Athanasopoulos, S.; Korompoki, E.; Kalomenidis, I.; Dimopoulos, M.A.; Mitrakou, A. Diabetes and COVID-19; A Bidirectional Interplay. Front. Endocrinol. 2022, 13, 780663. [Google Scholar] [CrossRef]
- Yousif, E.; Premraj, S. A Review of Long COVID With a Special Focus on Its Cardiovascular Manifestations. Cureus 2022, 14, e31933. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [CrossRef] [PubMed]
- Santana-de Anda, K.; Torres-Ruiz, J.; Mejía-Domínguez, N.R.; Alcalá-Carmona, B.; Maravillas-Montero, J.L.; Páez-Franco, J.C.; Vargas-Castro, A.S.; Lira-Luna, J.; Camacho-Morán, E.A.; Juarez-Vega, G.; et al. Novel Clinical, Immunological, and Metabolic Features Associated with Persistent Post-Acute COVID-19 Syndrome. Int. J. Mol. Sci. 2024, 25, 9661. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sánchez, L.; Tamayo-Morales, O.; Suárez-Moreno, N.; Bermejo-Martín, J.F.; Domínguez-Martín, A.; Martín-Oterino, J.A.; Martín-González, J.I.; González-Calle, D.; García-García, Á.; Lugones-Sánchez, C.; et al. Relationship between the structure, function and endothelial damage, and vascular ageing and the biopsychological situation in adults diagnosed with persistent COVID (BioICOPER study). A research protocol of a cross-sectional study. Front. Physiol. 2023, 14, 1236430. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Sugiyama, A.; Miwata, K.; Kitahara, Y.; Okimoto, M.; Abe, K.; E, B.; Ouoba, S.; Akita, T.; Tanimine, N.; Ohdan, H.; et al. Long COVID occurrence in COVID-19 survivors. Sci. Rep. 2022, 12, 6039. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef]
- ISO 15189; Medical laboratories—Requirements for quality and competence. International Organization for Standardization: Geneva, Switzerland, 2022.
- Gómez-Sánchez, M.; Patino-Alonso, M.C.; Gómez-Sánchez, L.; Recio-Rodríguez, J.I.; Rodríguez-Sánchez, E.; Maderuelo-Fernández, J.A.; García-Ortiz, L.; Gómez-Marcos, M.A. Reference values of arterial stiffness parameters and their association with cardiovascular risk factors in the Spanish population. The EVA Study. Rev. Esp. Cardiol. Engl. Ed. 2020, 73, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.H.; Narkiewicz, K.; Redán, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.F.; et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2013, 31, 1925–1938. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [PubMed]
- Hirode, G.; Wong, R.J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA 2020, 323, 2526–2528. [Google Scholar] [CrossRef]
- Ma, K.; Liu, H.; Guo, L.; Li, J.; Lei, Y.; Li, X.; Sun, L.; Yang, L.; Yuan, T.; Wang, C.; et al. Comparison of metabolic syndrome prevalence and characteristics using five different definitions in China: A population-based retrospective study. Front. Public Health 2024, 12, 1333910. [Google Scholar] [CrossRef] [PubMed]
- Jahangiry, L.; Khosravi-Far, L.; Sarbakhsh, P.; Kousha, A.; EntezarMahdi, R.; Ponnet, K. Prevalence of metabolic syndrome and its determinants among Iranian adults: Evidence of IraPEN survey on a bi-ethnic population. Sci. Rep. 2019, 9, 7937. [Google Scholar] [CrossRef] [PubMed]
- Guallar-Castillón, P.; Pérez, R.F.; López García, E.; León-Muñoz, L.M.; Aguilera, M.T.; Graciani, A.; Gutiérrez-Fisac, J.L.; Banegas, J.R.; Rodríguez-Artalejo, F. Magnitude and management of metabolic syndrome in Spain in 2008–2010: The ENRICA study. Rev. Esp. Cardiol. Engl. Ed. 2014, 67, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Alipour, P.; Azizi, Z.; Raparelli, V.; Norris, C.M.; Kautzky-Willer, A.; Kublickiene, K.; Herrero, M.T.; Emam, K.E.; Vollenweider, P.; Preisig, M.; et al. Role of sex and gender-related variables in development of metabolic syndrome: A prospective cohort study. Eur. J. Intern. Med. 2024, 121, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bergés, D.; Cabrera de León, A.; Sanz, H.; Elosua, R.; Guembe, M.J.; Alzamora, M.; Vega-Alonso, T.; Félix-Redondo, F.J.; Ortiz-Marrón, H.; Rigo, F.; et al. Metabolic syndrome in Spain: Prevalence and coronary risk associated with harmonized definition and WHO proposal. DARIOS study. Rev. Esp. Cardiol. Engl. Ed. 2012, 65, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, M.D.; Chrysohoou, C.; Panagiotakos, D.B.; Tsetsekou, E.; Zeimbekis, A.; Pitsavos, C.; Stefanadis, C. Adherence to the Mediterranean diet and serum uric acid: The ATTICA study. Scand. J. Rheumatol. 2012, 41, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, K.; Pattharanitima, P.; Piani, F.; Johnson, R.J.; Uribarri, J.; Chan, L.; Coca, S.G. Prevalence and Outcomes Associated with Hyperuricemia in Hospitalized Patients with COVID-19. Am. J. Nephrol. 2022, 53, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, K.; Lipski, D.; Uruski, P.; Narkiewicz, K.; Januszewicz, A.; Wolf, J.; Prejbisz, A.; Rajzer, M.; Więcek, A.; Tykarski, A. Randomised, double-blind, placebo-controlled study evaluating the effect of allopurinol on the risk of cardiovascular events in patients with high and very high cardiovascular risk, including the presence of long-COVID-19 syndrome: The ALL-VASCOR study protocol. BMJ Open 2024, 14, e075741. [Google Scholar] [CrossRef]
- Cubas-Basterrechea, G.; Elío, I.; Alonso, G.; Otero, L.; Gutiérrez-Bardeci, L.; Puente, J.; Muñoz-Cacho, P. Adherence to the Mediterranean Diet Is Inversely Associated with the Prevalence of Metabolic Syndrome in Older People from the North of Spain. Nutrients 2022, 14, 4536. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Alfaro, L.; Bibiloni, M.D.M.; Mascaró, C.M.; Montemayor, S.; Ruiz-Canela, M.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Romaguera, D.; Vioque, J.; et al. Leisure-Time Physical Activity, Sedentary Behaviour and Diet Quality are Associated with Metabolic Syndrome Severity: The PREDIMED-Plus Study. Nutrients 2020, 12, 1013. [Google Scholar] [CrossRef] [PubMed]
- Al Kudsee, K.; Vahid, F.; Bohn, T. High adherence to the Mediterranean diet and Alternative Healthy Eating Index are associated with reduced odds of metabolic syndrome and its components in participants of the ORISCAV-LUX2 study. Front. Nutr. 2022, 9, 1087985. [Google Scholar] [CrossRef] [PubMed]
- Hassani Zadeh, S.; Salehi-Abargouei, A.; Mirzaei, M.; Nadjarzadeh, A.; Hosseinzadeh, M. The association between dietary approaches to stop hypertension diet and mediterranean diet with metabolic syndrome in a large sample of Iranian adults: YaHS and TAMYZ Studies. Food Sci. Nutr. 2021, 9, 3932–3941. [Google Scholar] [CrossRef] [PubMed]
- Romero-Cabrera, J.L.; García-Ríos, A.; Sotos-Prieto, M.; Quintana-Navarro, G.; Alcalá-Díaz, J.F.; Martín-Piedra, L.; Torres-Peña, J.D.; Luque, R.M.; Yubero-Serrano, E.M.; Delgado-Lista, J.; et al. Adherence to a Mediterranean lifestyle improves metabolic status in coronary heart disease patients: A prospective analysis from the CORDIOPREV study. J. Intern. Med. 2023, 293, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Sotos-Prieto, M.; Ortolá, R.; Ruiz-Canela, M.; Garcia-Esquinas, E.; Martínez-Gómez, D.; Lopez-Garcia, E.; Martínez-González, M.; Rodriguez-Artalejo, F. Association between the Mediterranean lifestyle, metabolic syndrome and mortality: A whole-country cohort in Spain. Cardiovasc. Diabetol. 2021, 20, 5. [Google Scholar] [CrossRef]
- Gómez-Sánchez, L.; Gómez-Sánchez, M.; Tamayo-Morales, O.; Lugones-Sánchez, C.; González-Sánchez, S.; Martí-Lluch, R.; Rodríguez-Sánchez, E.; García-Ortiz, L.; Gómez-Marcos, M.A. Relationship between the Mediterranean Diet and Metabolic Syndrome and Each of the Components That Form It in Caucasian Subjects: A Cross-Sectional Trial. Nutrients 2024, 16, 1948. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Chrysoula, L.; Kotzakioulafi, E.; Theodoridis, X.; Chourdakis, M. Impact of the Level of Adherence to Mediterranean Diet on the Parameters of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2021, 13, 1514. [Google Scholar] [CrossRef] [PubMed]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alblihed, M.; Guerreiro, S.G.; Cruz-Martins, N.; Batiha, G.E. COVID-19 in Relation to Hyperglycemia and Diabetes Mellitus. Front. Cardiovasc. Med. 2021, 8, 644095. [Google Scholar] [CrossRef] [PubMed]
- Khanam, R. Bidirectional Relationship between COVID-19 and Diabetes: Role of Renin-Angiotensin-Aldosterone System and Drugs Modulating It. J. Pharm. Bioallied Sci. 2021, 13, 149–154. [Google Scholar] [CrossRef]
- Vasbinder, A.; Anderson, E.; Shadid, H.; Berlin, H.; Pan, M.; Azam, T.U.; Khaleel, I.; Padalia, K.; Meloche, C.; O'Hayer, P.; et al. Inflammation, Hyperglycemia, and Adverse Outcomes in Individuals With Diabetes Mellitus Hospitalized for COVID-19. Diabetes Care 2022, 45, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Tleyjeh, I.M.; Saddik, B.; AlSwaidan, N.; AlAnazi, A.; Ramakrishnan, R.K.; Alhazmi, D.; Aloufi, A.; AlSumait, F.; Berbari, E.; Halwani, R. Prevalence and predictors of Post-Acute COVID-19 Syndrome (PACS) after hospital discharge: A cohort study with 4 months median follow-up. PLoS ONE 2021, 16, e0260568. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, O.; Shibata, S. Severe COVID-19 and preexisting hypertension: A matter of age? Hypertens. Res. 2022, 45, 1523–1525. [Google Scholar] [CrossRef] [PubMed]
- Aparisi, Á.; Martín-Fernández, M.; Ybarra-Falcón, C.; Gil, J.F.; Carrasco-Moraleja, M.; Martínez-Paz, P.; Cusácovich, I.; Gonzalo-Benito, H.; Fuertes, R.; Marcos-Mangas, M.; et al. Dyslipidemia and Inflammation as Hallmarks of Oxidative Stress in COVID-19: A Follow-Up Study. Int. J. Mol. Sci. 2022, 23, 1530. [Google Scholar] [CrossRef]
- Souza Junior, D.R.; Silva, A.R.M.; Rosa-Fernandes, L.; Reis, L.R.; Alexandria, G.; Bhosale, S.D.; Ghilardi, F.R.; Dalçóquio, T.F.; Bertolin, A.J.; Nicolau, J.C.; et al. HDL proteome remodeling associates with COVID-19 severity. J. Clin. Lipidol. 2021, 15, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sánchez, M.; Gómez-Sánchez, L.; Patino-Alonso, M.C.; Alonso-Domínguez, R.; Sánchez-Aguadero, N.; Recio-Rodríguez, J.I.; González-Sánchez, J.; García-Ortiz, L.; Gómez-Marcos, M.A. on behalf of the Grupo EVA. Relationship of healthy vascular aging with lifestyle and metabolic syndrome in the general Spanish population. The EVA study. Rev. Esp. Cardiol. 2021, 74, 854–861. [Google Scholar] [CrossRef]
- Angelico, F.; Baratta, F.; Coronati, M.; Ferro, D.; Del Ben, M. Diet and metabolic syndrome: A narrative review. Intern. Emerg. Med. 2023, 18, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef] [PubMed]
Blood Pressure | BP ≥ 130/85 mmHg or Treatment with Antihypertensive Drugs |
---|---|
Glycemia | FBG ≥ 100 mg/dL or treatment with hypoglycemic medication |
Triglycerides | TGC ≥ 150 mg/dL or treatment with lipid-lowering medication |
HDL cholesterol | HDL-C < 40 mg/dL in men or <50 mg/dL in women |
Waist circumference | WC ≥ 88 cm in women or WC ≥ 102 cm in men |
Overall | Men | Women | |||||
---|---|---|---|---|---|---|---|
MD | Mean or n | SD or (%) | Mean or n | SD or (%) | Mean or n | SD or (%) | p Value |
MD (total score) | 7.8 | 2.4 | 7.7 | 2.2 | 7.8 | 2.4 | 0.438 |
Evolution time, months | 38.7 | 9.6 | 38.7 | 9.6 | 38.7 | 9.6 | 0.990 |
Conventional risk factors | |||||||
Sex, n (%) | --- | ---- | 98 | (32) | 207 | (68) | <0.001 |
Age (years) | 52.8 | 11.9 | 55.7 | 12.2 | 51.3 | 11.6 | 0.002 |
No. cigarettes (per day) | 6.0 | 10.2 | 9.1 | 12.4 | 4.5 | 8.5 | <0.001 |
Smoker, n (%) | 8 | (8.3) | 10 | (5.1) | 18 | (6.1) | 0.272 |
SBP (mmHg) | 120.1 | 16.9 | 129.8 | 14.5 | 115.6 | 16.0 | <0.001 |
DBP (mmHg) | 76.9 | 11.1 | 82.3 | 11.0 | 74.3 | 10.2 | <0.001 |
PP (mmHg) | 43.3 | 10.3 | 47.5 | 10.9 | 41.3 | 9.3 | <0.001 |
Uric Acid (mg/dL) | 5.0 | 1.2 | 5.9 | 1.1 | 4.5 | 1.1 | <0.001 |
Hypertension, n (%) | 110 | (36.2) | 53 | (54.1) | 57 | (27.7) | <0.001 |
Antihypertensive drugs, n (%) | 79 | (26.0) | 34 | (34.7) | 45 | (21.8) | 0.012 |
Total cholesterol (mg/dL) | 187.5 | 34.5 | 181.9 | 32.9 | 190.2 | 35.0 | 0.070 |
LDL cholesterol (mg/dL) | 112.7 | 30.8 | 113.2 | 32.3 | 112.5 | 30.2 | 0.422 |
HDL cholesterol (mg/dL) | 57.0 | 13.7 | 48.9 | 10.9 | 60.8 | 13.2 | <0.001 |
Triglycerides (mg/dL) | 102.1 | 50.5 | 116.9 | 54.4 | 95.1 | 47.0 | <0.001 |
Dyslipidemia, n (%) | 168 | (56.0) | 64 | (66.0) | 104 | (51.2) | <0.001 |
Lipid–lowering drugs, n (%) | 75 | (24.8) | 40 | (41.2) | 35 | (17.1) | <0.001 |
FPG (mg/dL) | 87.9 | 17.7 | 94.3 | 19.7 | 84.9 | 15.8 | <0.001 |
Diabetes mellitus, n (%) | 37 | (12.2) | 22 | (22.4) | 15 | (7.3) | <0.001 |
Hypoglycemic drugs, n (%) | 32 | (10.5) | 18 | (18.4) | 14 | (6.8) | 0.003 |
Weight (kg) | 75.9 | 17.4 | 88.1 | 14.9 | 70.2 | 15.4 | <0.001 |
Height (cm) | 164.6 | 8.8 | 172.6 | 7.4 | 160.7 | 6.5 | <0.001 |
BMI (kg/m2) | 28.0 | 5.5 | 29.6 | 4.6 | 27.2 | 5.8 | <0.001 |
WC (cm) | 93.9 | 15.5 | 104.4 | 12.5 | 88.9 | 14.3 | <0.001 |
Obesity, n (%) | 98 | (32.1) | 44 | (44.9) | 54 | (26.1) | <0.001 |
MetS and its components | |||||||
Number of MetS components | 1.5 | 1.3 | 2.1 | 1.4 | 1.3 | 1.3 | <0.001 |
MetS, n (%) | 72 | (23.6) | 39 | (39.8) | 33 | (15.9) | <0.001 |
BP ≥ 130/85 mmHg, n (%) | 145 | (47.7) | 71 | (72.4) | 74 | (35.9) | <0.001 |
FPG ≥ 100 mg/dL, n (%) | 53 | (17.5) | 32 | (32.7) | 21 | (10.2) | <0.001 |
TGC ≥ 150 mg/dL, n (%) | 43 | (14.1) | 21 | (21.4) | 22 | (10.7) | 0.012 |
HDL-C < 40 mg/dL men, <50 mg/dL women, n (%) | 70 | (23.0) | 23 | (23.5) | 47 | (22.8) | 0.832 |
WC ≥ 88 cm women, ≥102 cm men, n (%) | 157 | (51.5) | 53 | (54.1) | 104 | (50.2) | 0.532 |
1st Tertile | 2nd Tertile | 3rd Tertile | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p Value | |
CVRF | |||||||
Cigarettes per day (n) | 15.6 | 11.4 | 15.3 | 10.8 | 15.5 | 10.4 | 0.991 |
PP (mmHg) | 42.4 | 11.1 | 43.0 | 9.6 | 44.9 | 10.8 | 0.300 |
Uric acid (mg/dL) a,b,c | 5.2 | 1.5 | 5.0 | 1.2 | 4.6 | 1.1 | 0.011 |
Total cholesterol (mg/dL) | 190.4 | 38.0 | 187.2 | 31.9 | 184.5 | 36.5 | 0.586 |
LDL cholesterol (mg/dL) | 114.4 | 33.3 | 113.4 | 30.2 | 109.7 | 30.6 | 0.635 |
BMI (kg/m2) | 28.5 | 5.8 | 28.1 | 5.5 | 27.0 | 5.5 | 0.261 |
MetS | |||||||
MetS components (n) b | 1.7 | 1.4 | 1.6 | 1.4 | 1.3 | 1.2 | 0.149 |
SBP (mmHg) | 119.7 | 16.5 | 120.2 | 16.6 | 120.2 | 18.2 | 0.976 |
DBP (mmHg) | 77.4 | 10.7 | 77.2 | 11.6 | 75.3 | 10.3 | 0.450 |
FPG (mg/dL) | 88.4 | 13.6 | 87.9 | 18.0 | 87.2 | 21.1 | 0.922 |
Triglycerides (mg/dL) | 112.7 | 54.7 | 99.2 | 46.8 | 96.6 | 52.7 | 0.092 |
HDL cholesterol (mg/dL) a,b,c | 56.0 | 14.4 | 56.0 | 13.2 | 60.6 | 13.4 | 0.029 |
WC (cm) a | 96.0 | 16.5 | 94.0 | 15.3 | 90.9 | 14.5 | 0.139 |
MD | Cigarettes | MetS Number | SBP | DBP | PP | UA | Total-c | LDL | HDL | TGC | FPG | BMI | WC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Global | −0.002 | −0.083 | −0.057 | −0.016 | 0.149 ** | −0.117 * | 0.014 | 0.008 | 0.143 * | −0.065 | 0.061 | −0.099 | −0.123 * |
Men | −0.016 | −0.135 | −0.073 | −0.076 | 0.075 | −0.174 | −0.065 | −0.027 | 0.072 | −0.179 | −0.072 | −0.158 | −0.212 * |
Women | 0.059 | −0.028 | −0.029 | 0.016 | 0.202 ** | −0.02 | 0.035 | 0.022 | 0.137 * | −0.015 | −0.024 | −0.057 | −0.064 |
Partial correlation | |||||||||||||
Global | 0.007 | −0.134 * | −0.018 | −0.072 | 0.051 | −0.161 * | −0.007 | 0.006 | 0.115 * | −0.069 | −0.012 | −0.133 * | −0.151 * |
Men | −0.009 | −0.111 | −0.081 | −0.116 | 0.015 | −0.248 * | −0.024 | 0.008 | 0.050 | −0.090 | −0.003 | −0.177 | −0.213 * |
Women | 0.026 | −0.126 | −0.035 | −0.029 | 0.094 | −0.132 | −0.054 | −0.036 | 0.115 | −0.053 | −0.028 | −0.102 | −0.104 |
CVRF | β | (95% | CI) | p |
---|---|---|---|---|
No. Cigarettes (per day) | 0.004 | −0.035 | 0.042 | 0.854 |
PP (mmHg) | 0.017 | −0.010 | 0.044 | 0.215 |
Uric acid (mg/dL) | −0.295 | −0.496 | −0.093 | 0.004 |
Total cholesterol (mg/dL) | 0.000 | −0.008 | 0.007 | 0.905 |
LDL cholesterol (mg/dL) | 0.000 | −0.008 | 0.009 | 0.923 |
BMI (kg/m2) | −0.049 | −0.096 | −0.002 | 0.042 |
MetS | β | (IC | 95%) | p |
Number of MetS components | −0.210 | −0.410 | −0.010 | 0.039 |
SBP (mmHg) | −0.001 | −0.018 | 0.016 | 0.892 |
DBP (mmHg) | −0.016 | −0.041 | 0.008 | 0.187 |
FPG (mg/dL) | −0.001 | −0.017 | 0.014 | 0.847 |
Triglycerides (mg/dL) | −0.003 | −0.008 | 0.002 | 0.232 |
HDL cholesterol (mg/dL) | 0.018 | 0.001 | 0.037 | 0.050 |
WC (cm) | −0.021 | −0.037 | −0.003 | 0.021 |
1st Tertile | 2nd Tertile | 3rd Tertile | |||||
---|---|---|---|---|---|---|---|
CVRF | β | IC 95% | β | IC 95% | |||
No. cigarettes | Reference | 1.013 | 0.970 | 1.057 | 1.014 | 0.960 | 1.071 |
PP | Reference | 1.008 | 0.979 | 1.038 | 1.030 | 0.995 | 1.066 |
Uric acid | Reference | 0.854 | 0.690 | 1.057 | 0.657 | 0.497 | 0.868 |
Total cholesterol | Reference | 0.997 | 0.990 | 1.005 | 0.995 | 0.986 | 1.005 |
BMI | Reference | 0.989 | 0.943 | 1.038 | 0.952 | 0.894 | 1.013 |
MetS | |||||||
MetS components | Reference | 0.911 | 0.743 | 1.116 | 0.761 | 0.584 | 0.992 |
SBP | Reference | 1.003 | 0.985 | 1.020 | 1.004 | 0.983 | 1.025 |
DBP | Reference | 0.999 | 0.974 | 1.025 | 0.983 | 0.952 | 1.014 |
FPG | Reference | 0.999 | 0.984 | 1.014 | 0.987 | 0.977 | 1.017 |
Triglycerides | Reference | 0.995 | 0.990 | 1.000 | 0.954 | 0.987 | 1.001 |
HDL cholesterol | Reference | 0.999 | 0.979 | 1.021 | 1.024 | 1.000 | 1.050 |
WC | Reference | 0.995 | 0.974 | 1.024 | 0.994 | 0.956 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Moreno, N.; Gómez-Sánchez, L.; Navarro-Caceres, A.; Arroyo-Romero, S.; Domínguez-Martín, A.; Lugones-Sánchez, C.; Tamayo-Morales, O.; González-Sánchez, S.; Castro-Rivero, A.B.; Rodríguez-Sánchez, E.; et al. Association of Mediterranean Diet with Cardiovascular Risk Factors and with Metabolic Syndrome in Subjects with Long COVID: BioICOPER Study. Nutrients 2025, 17, 656. https://doi.org/10.3390/nu17040656
Suárez-Moreno N, Gómez-Sánchez L, Navarro-Caceres A, Arroyo-Romero S, Domínguez-Martín A, Lugones-Sánchez C, Tamayo-Morales O, González-Sánchez S, Castro-Rivero AB, Rodríguez-Sánchez E, et al. Association of Mediterranean Diet with Cardiovascular Risk Factors and with Metabolic Syndrome in Subjects with Long COVID: BioICOPER Study. Nutrients. 2025; 17(4):656. https://doi.org/10.3390/nu17040656
Chicago/Turabian StyleSuárez-Moreno, Nuria, Leticia Gómez-Sánchez, Alicia Navarro-Caceres, Silvia Arroyo-Romero, Andrea Domínguez-Martín, Cristina Lugones-Sánchez, Olaya Tamayo-Morales, Susana González-Sánchez, Ana B. Castro-Rivero, Emiliano Rodríguez-Sánchez, and et al. 2025. "Association of Mediterranean Diet with Cardiovascular Risk Factors and with Metabolic Syndrome in Subjects with Long COVID: BioICOPER Study" Nutrients 17, no. 4: 656. https://doi.org/10.3390/nu17040656
APA StyleSuárez-Moreno, N., Gómez-Sánchez, L., Navarro-Caceres, A., Arroyo-Romero, S., Domínguez-Martín, A., Lugones-Sánchez, C., Tamayo-Morales, O., González-Sánchez, S., Castro-Rivero, A. B., Rodríguez-Sánchez, E., García-Ortiz, L., Navarro-Matias, E., & Gómez-Marcos, M. A. (2025). Association of Mediterranean Diet with Cardiovascular Risk Factors and with Metabolic Syndrome in Subjects with Long COVID: BioICOPER Study. Nutrients, 17(4), 656. https://doi.org/10.3390/nu17040656