The Associations of Vitamin D Status and Lifestyle Behaviors with General Obesity and Metabolically Unhealthy Obesity in Chinese Children and Adolescents
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Assessment of Vitamin D
2.3. Assessment Components of 24-HMG
2.4. Assessment Covariates
2.5. Outcome Ascertainment
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Associations Between Serum Vitamin D Status, General Obesity, and MUO
3.3. Associations Between the Number of Guidelines Met, General Obesity, and MUO
3.4. Combined Associations of Serum Vitamin D Status and the Number of Guidelines Met with General Obesity and MUO
3.5. Subgroup Analysis and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Childhood obesity: A growing pandemic. Lancet Diabetes Endocrinol. 2022, 10, 1. [CrossRef]
- Lopes, K.G.; Rodrigues, E.L.; da Silva Lopes, M.R.; do Nascimento, V.A.; Pott, A.; Guimarães, R.C.A.; Pegolo, G.E.; Freitas, K.C. Adiposity Metabolic Consequences for Adolescent Bone Health. Nutrients 2022, 14, 3260. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Mozaffari, H.; Askari, M.; Azadbakht, L. Association between overweight/obesity with depression, anxiety, low self-esteem, and body dissatisfaction in children and adolescents: A systematic review and meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 555–570. [Google Scholar] [CrossRef]
- Bendor, C.D.; Bardugo, A.; Pinhas-Hamiel, O.; Afek, A.; Twig, G. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 2020, 19, 79. [Google Scholar] [CrossRef]
- Bjerregaard, L.G.; Adelborg, K.; Baker, J.L. Change in body mass index from childhood onwards and risk of adult cardiovascular disease. Trends Cardiovasc. Med. 2020, 30, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, L.; Gao, L.; Pan, A.; Xue, H. Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 446–461. [Google Scholar] [CrossRef]
- World Obesity Federation. World Obesity Atlas; World Obesity Federation: Londong, UK, 2023. [Google Scholar]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.F. Recent insights into vitamin D, adipocyte, and adipose tissue biology. Obes. Rev. 2022, 23, e13453. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xu, C.; Shu, Y.; Xie, Z.; Lu, C.; Mo, X. Serum 25-hydroxyvitamin D is associated with obesity and metabolic parameters in US children. Public Health Nutr. 2020, 23, 1214–1222. [Google Scholar] [CrossRef]
- Hajhashemy, Z.; Lotfi, K.; Heidari, Z.; Saneei, P. Serum Vitamin D Levels in Relation to Abdominal Obesity in Children and Adolescents: A Systematic Review and Dose-Response Meta-Analysis. Front. Nutr. 2022, 9, 806459. [Google Scholar] [CrossRef] [PubMed]
- Patriota, P.; Rezzi, S.; Guessous, I.; Marques-Vidal, P. No Association between Vitamin D and Weight Gain: A Prospective, Population-Based Study. Nutrients 2022, 14, 3185. [Google Scholar] [CrossRef]
- Agbaje, A.O.; Perng, W.; Tuomainen, T.P. Effects of accelerometer-based sedentary time and physical activity on DEXA-measured fat mass in 6059 children. Nat. Commun. 2023, 14, 8232. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Han, S.; Miao, C.; Lou, H.; Gao, G.; Lou, X.; Hao, C.; Wang, X. Associations of multiple sleep dimensions with overall and abdominal obesity among children and adolescents: A population-based cross-sectional study. Int. J. Obes. 2023, 47, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Cho, Y.; Oh, H. Recreational screen time and obesity risk in Korean children: A 3-year prospective cohort study. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, N.J.; Kuswara, K.; Zheng, M.; Leech, R.; Downing, K.L.; Lioret, S.; Campbell, K.J.; Hesketh, K.D. A systematic review of lifestyle patterns and their association with adiposity in children aged 5-12 years. Obes. Rev. 2020, 21, e13029. [Google Scholar] [CrossRef]
- Rollo, S.; Antsygina, O.; Tremblay, M.S. The whole day matters: Understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J. Sport Health Sci. 2020, 9, 493–510. [Google Scholar] [CrossRef]
- Okely, A.D.; Ghersi, D.; Loughran, S.P.; Cliff, D.P.; Shilton, T.; Jones, R.A.; Stanley, R.M.; Sherring, J.; Toms, N.; Eckermann, S.; et al. A collaborative approach to adopting/adapting guidelines. The Australian 24-hour movement guidelines for children (5-12 years) and young people (13–17 years): An integration of physical activity, sedentary behaviour, and sleep. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 2. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, N.; Haapala, E.A.; Gao, Y. Association between meeting 24-h movement guidelines and health in children and adolescents aged 5-17 years: A systematic review and meta-analysis. Front. Public Health 2024, 12, 1351972. [Google Scholar] [CrossRef]
- Ouyang, S.; Li, Q.; Liu, Z.; Yin, Y. The relationship between physical activity levels and serum vitamin D levels varies among children and adolescents in different age groups. Front. Nutr. 2024, 11, 1435396. [Google Scholar] [CrossRef] [PubMed]
- Schiza, S.; Bouloukaki, I.; Kaditis, A.; Lombardi, C.; Bonsignore, M.R. Vitamin D deficiency: A forgotten aspect in sleep disorders? A critical update. Sleep Med. 2024, 121, 77–84. [Google Scholar] [CrossRef]
- Hibler, E.A.; Sardo Molmenti, C.L.; Dai, Q.; Kohler, L.N.; Warren Anderson, S.; Jurutka, P.W.; Jacobs, E.T. Physical activity, sedentary behavior, and vitamin D metabolites. Bone 2016, 83, 248–255. [Google Scholar] [CrossRef]
- Chang, Y.H.; Lin, C.R.; Shih, Y.L.; Shih, C.C.; Chen, J.Y. The Relationship between Self-Reported Sitting Time and Vitamin D Levels in Middle-Aged and Elderly Taiwanese Population: A Community-Based Cross-Sectional Study. Nutrients 2023, 15, 4766. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Häring, H.U.; Hu, F.B.; Schulze, M.B. Metabolically healthy obesity: Epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013, 1, 152–162. [Google Scholar] [CrossRef]
- Liu, F.; Kong, B.; Zhang, Z.; Chen, L.; Li, Y.; Xiong, J.; Yao, P.; Li, Y.; Tang, Y. Associations between adherence to 24-Hour Movement Guidelines with continuous metabolic syndrome score among Chinese children and adolescents. Public Health 2024, 236, 274–280. [Google Scholar] [CrossRef]
- Fraser, W.D.; Milan, A.M. Vitamin D assays: Past and present debates, difficulties, and developments. Calcif. Tissue Int. 2013, 92, 118–127. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Harel, Z.; Cromer, B.; DiVasta, A.D.; Gordon, C.M.; Pitts, S. Recommended vitamin D intake and management of low vitamin D status in adolescents: A position statement of the society for adolescent health and medicine. J. Adolesc. Health 2013, 52, 801–803. [Google Scholar] [CrossRef]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Consensus Statement of the American Academy of Sleep Medicine on the Recommended Amount of Sleep for Healthy Children: Methodology and Discussion. J. Clin. Sleep Med. 2016, 12, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.Y. Report on childhood obesity in China (1)--body mass index reference for screening overweight and obesity in Chinese school-age children. Biomed. Environ. Sci. 2005, 18, 390–400. [Google Scholar] [PubMed]
- Damanhoury, S.; Newton, A.S.; Rashid, M.; Hartling, L.; Byrne, J.L.S.; Ball, G.D.C. Defining metabolically healthy obesity in children: A scoping review. Obes. Rev. 2018, 19, 1476–1491. [Google Scholar] [CrossRef]
- Xiao, P.; Cheng, H.; Zhao, X.; Hou, D.; Mi, J. Longitudinal association of serum 25-hydroxyvitamin D levels with metabolically healthy body size transition in children and adolescents: A prospective cohort study with 2 years of follow-up. Diabetes Metab. Syndr. 2023, 17, 102904. [Google Scholar] [CrossRef] [PubMed]
- Dahlqwist, E.; Zetterqvist, J.; Pawitan, Y.; Sjölander, A. Model-based estimation of the attributable fraction for cross-sectional, case-control and cohort studies using the R package AF. Eur. J. Epidemiol. 2016, 31, 575–582. [Google Scholar] [CrossRef]
- Esmaili, H.; Heshmat, R.; Ejtahed, H.S.; Rastad, H.; Motlagh, M.E.; Asayesh, H.; Jafarnejad, M.; Seif, E.; Qorbani, M.; Kelishadi, R. Association of Serum 25-Hydroxyvitamin D Level With Metabolic Phenotypes of Obesity in Children and Adolescents: The CASPIAN-V Study. Front. Endocrinol. 2020, 11, 310. [Google Scholar] [CrossRef]
- Barja-Fernández, S.; Aguilera, C.M.; Martínez-Silva, I.; Vazquez, R.; Gil-Campos, M.; Olza, J.; Bedoya, J.; Cadarso-Suárez, C.; Gil, Á.; Seoane, L.M.; et al. 25-Hydroxyvitamin D levels of children are inversely related to adiposity assessed by body mass index. J. Physiol. Biochem. 2018, 74, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Dong, H.; Li, H.; Yan, Y.; Cheng, H.; Liu, J.; Zhao, X.; Hou, D.; Mi, J. Adequate 25-hydroxyvitamin D levels are inversely associated with various cardiometabolic risk factors in Chinese children, especially obese children. BMJ Open Diabetes Res. Care 2020, 8, e000846. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Huang, S.; Ma, R.; Zheng, H.; Zhu, Y. Low vitamin D status is associated with obesity but no other cardiovascular risk factors in Chinese children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Miazek, K.; Selmi, A.; Balcerczyk, A.; Śliwińska, A. The Action of Vitamin D in Adipose Tissue: Is There the Link between Vitamin D Deficiency and Adipose Tissue-Related Metabolic Disorders? Int. J. Mol. Sci. 2022, 23, 956. [Google Scholar] [CrossRef] [PubMed]
- Hyppönen, E.; Boucher, B.J. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities. Nutr. Rev. 2018, 76, 678–692. [Google Scholar] [CrossRef]
- Tanriover, C.; Copur, S.; Gaipov, A.; Ozlusen, B.; Akcan, R.E.; Kuwabara, M.; Hornum, M.; Van Raalte, D.H.; Kanbay, M. Metabolically healthy obesity: Misleading phrase or healthy phenotype? Eur. J. Intern. Med. 2023, 111, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Serrano, M.A.; Sevil-Serrano, J.; Sánchez-Miguel, P.A.; López-Gil, J.F.; Tremblay, M.S.; García-Hermoso, A. Prevalence of meeting 24-Hour Movement Guidelines from pre-school to adolescence: A systematic review and meta-analysis including 387,437 participants and 23 countries. J. Sport Health Sci. 2022, 11, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Huang, Y.; Gu, Y.; Chen, H.; Lv, R.; Wu, S.; Song, P.; Zhao, D.; Hu, L.; Yuan, C. Adherence to 24-Hour Movement Guidelines in Relation to the Risk of Overweight and Obesity Among Children and Adolescents. J. Adolesc. Health 2023, 73, 887–895. [Google Scholar] [CrossRef]
- Jakubec, L.; Gába, A.; Dygrýn, J.; Rubín, L.; Šimůnek, A.; Sigmund, E. Is adherence to the 24-hour movement guidelines associated with a reduced risk of adiposity among children and adolescents? BMC Public Health 2020, 20, 1119. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.Y.; Sit, C.H.; Wong, S.H. Compliance with 24-Hour Movement Guidelines in Hong Kong Adolescents: Associations with Weight Status. J. Phys. Act. Health 2020, 17, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Constable, A.M.; Vlachopoulos, D.; Barker, A.R.; Moore, S.A.; Soininen, S.; Haapala, E.A.; Väistö, J.; Westgate, K.; Brage, S.; Mahonen, A.; et al. The independent and interactive associations of physical activity intensity and vitamin D status with bone mineral density in prepubertal children: The PANIC Study. Osteoporos. Int. 2021, 32, 1609–1620. [Google Scholar] [CrossRef]
- Atoui, S.; Chevance, G.; Romain, A.J.; Kingsbury, C.; Lachance, J.P.; Bernard, P. Daily associations between sleep and physical activity: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 57, 101426. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Dong, H.; Wang, T.; Feng, J.; Jia, F. Screen Time, Age and Sunshine Duration Rather Than Outdoor Activity Time Are Related to Nutritional Vitamin D Status in Children with ASD. Front. Pediatr. 2021, 9, 806981. [Google Scholar] [CrossRef]
- Prono, F.; Bernardi, K.; Ferri, R.; Bruni, O. The Role of Vitamin D in Sleep Disorders of Children and Adolescents: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 1430. [Google Scholar] [CrossRef]
- Salmón-Gómez, L.; Catalán, V.; Frühbeck, G.; Gómez-Ambrosi, J. Relevance of body composition in phenotyping the obesities. Rev. Endocr. Metab. Disord. 2023, 24, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Iacobini, C.; Pugliese, G.; Blasetti Fantauzzi, C.; Federici, M.; Menini, S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2019, 92, 51–60. [Google Scholar] [CrossRef]
Variables | Non-General Obesity (N = 4193) | General Obesity (N = 432) | p-Value | Non-MUO (N = 4329) | MUO (N = 296) | p-Value |
---|---|---|---|---|---|---|
Age (years) | 11.94 [9.13, 14.73] | 11.54 [9.21, 14.12] | 0.222 | 11.83 [9.07, 14.68] | 12.79 [10.13, 15.07] | <0.001 |
Sex | <0.001 | <0.001 | ||||
Boys | 2251 (53.68) | 294 (68.06) | 2322 (53.64) | 223 (75.34) | ||
Girls | 1942 (46.32) | 138 (31.94) | 2007 (46.36) | 73 (24.66) | ||
Puberty status | 0.101 | <0.001 | ||||
Pre-puberty | 1334 (31.81) | 127 (29.40) | 1397 (32.27) | 64 (21.62) | ||
Mid-puberty | 910 (21.70) | 113 (26.16) | 954 (22.04) | 69 (23.31) | ||
Post-puberty | 1949 (46.48) | 192 (44.44) | 1978 (45.69) | 163 (55.07) | ||
Maternal education | 0.704 | 0.893 | ||||
Junior college or below | 3127 (74.58) | 318 (73.61) | 3226 (74.52) | 219 (73.99) | ||
College or above | 1066 (25.42) | 114 (26.39) | 1103 (25.48) | 77 (26.01) | ||
Paternal education | 0.063 | 0.32 | ||||
Junior college or below | 2868 (68.40) | 276 (63.89) | 2951 (68.17) | 193 (65.20) | ||
College or above | 1325 (31.60) | 156 (36.11) | 1378 (31.83) | 103 (34.80) | ||
Parental obesity | <0.001 | <0.001 | ||||
Yes | 416 (9.92) | 95 (21.99) | 449 (10.37) | 62 (20.95) | ||
No | 3777 (90.08) | 337 (78.01) | 3880 (89.63) | 234 (79.05) | ||
Parental history of metabolic disorders | 0.001 | 0.011 | ||||
Yes | 519 (12.38) | 79 (18.29) | 545 (12.59) | 53 (17.91) | ||
No | 3674 (87.62) | 353 (81.71) | 3784 (87.41) | 243 (82.09) | ||
Family income | 0.087 | 0.123 | ||||
<50,000 CNY | 297 (7.08) | 32 (7.41) | 306 (7.07) | 23 (7.77) | ||
~250,000 CNY | 2287 (54.54) | 212 (49.07) | 2356 (54.42) | 143 (48.31) | ||
≥250,000 CNY | 1609 (38.37) | 188 (43.52) | 1667 (38.51) | 130 (43.92) | ||
Tobacco exposure | 0.477 | 0.128 | ||||
Yes | 611 (14.57) | 69 (15.97) | 627 (14.48) | 53 (17.91) | ||
No | 3582 (85.43) | 363 (84.03) | 3702 (85.52) | 243 (82.09) | ||
Blood sampling season | 0.031 | 0.021 | ||||
Autumn | 2910 (69.40) | 322 (74.54) | 3007 (69.46) | 225 (76.01) | ||
Winter | 1283 (30.60) | 110 (25.46) | 1322 (30.54) | 71 (23.99) | ||
Vitamin D (ng/mL) | 21.39 [17.30, 26.01] | 21.73 [17.98, 26.06] | 0.378 | 21.45 [17.36, 26.10] | 21.12 [17.41, 24.80] | 0.186 |
Number of guidelines met | 0.198 | 0.099 | ||||
Meeting 0–1 | 1743 (41.57) | 194 (44.91) | 1799 (41.56) | 138 (46.62) | ||
Meeting 2–3 | 2450 (58.43) | 238 (55.09) | 2530 (58.44) | 158 (53.38) |
Crude | Model 1 | Model 2 | |
---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
General obesity | |||
Vitamin D | |||
Adequacy | 1.000 (reference) | 1.000 (reference) | 1.000 (reference) |
Inadequacy | 1.334 (0.944, 1.886) | 1.541 (1.080, 2.199) | 1.551 (1.080, 2.226) |
p-value | 0.103 | 0.017 | 0.017 |
MUO | |||
Vitamin D | |||
Adequacy | 1.000 (reference) | 1.000 (reference) | 1.000 (reference) |
Inadequacy | 2.138 (1.299, 3.520) | 2.134 (1.283, 3.549) | 2.205 (1.319, 3.686) |
p-value | 0.003 | 0.003 | 0.003 |
Crude | Model 1 | Model 2 | |
---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
General obesity | |||
Number of guidelines met | |||
Meeting 0–1 | 1.000 (reference) | 1.000 (reference) | 1.000 (reference) |
Meeting 2–3 | 0.873 (0.715, 1.065) | 0.772 (0.623, 0.957) | 0.777 (0.626, 0.965) |
p-value | 0.181 | 0.018 | 0.023 |
MUO | |||
Number of guidelines met | |||
Meeting 0–1 | 1.000 (reference) | 1.000 (reference) | 1.000 (reference) |
Meeting 2–3 | 0.814 (0.643, 1.031) | 0.873 (0.675, 1.128) | 0.876 (0.677, 1.134) |
p-value | 0.088 | 0.299 | 0.316 |
Crude | Model 1 | Model 2 | PAF a | |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | (%) | |
General obesity | ||||
VitD adequacy/Meeting 2–3 | 1.000 (reference) | 1.000 (reference) | 1.000 (reference) | 28.4 (2.5, 54.4) |
VitD adequacy/Meeting 0–1 | 0.954 (0.461, 1.976) | 0.995 (0.479, 2.065) | 0.925 (0.442, 1.933) | |
VitD inadequacy/Meeting 2–3 | 1.238 (0.816, 1.878) | 1.410 (0.925, 2.150) | 1.377 (0.896, 2.115) | |
VitD inadequacy/Meeting 0–1 | 1.419 (0.932, 2.162) | 1.879 (1.206, 2.927) | 1.826 (1.167, 2.857) | |
P-trend | 0.043 | 0.001 | 0.001 | |
MUO | ||||
VitD adequacy/Meeting 2–3 | 1.000 (reference) | 1.000 (reference) | 1.000 (reference) | 42.3 (11.5, 73.1) |
VitD adequacy/Meeting 0–1 | 0.716 (0.230, 2.231) | 0.693 (0.222, 2.168) | 0.643 (0.205, 2.019) | |
VitD inadequacy/Meeting 2–3 | 1.785 (1.001, 3.183) | 1.832 (1.021, 3.286) | 1.840 (1.019, 3.325) | |
VitD inadequacy/Meeting 0–1 | 2.182 (1.220, 3.900) | 2.162 (1.179, 3.966) | 2.160 (1.175, 3.972) | |
P-trend | 0.001 | 0.003 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Li, Y.; Liang, C.; Kong, B.; Zhang, Q.; Yin, X.; Wu, B.; Xiong, J.; Yao, P.; Tang, Y.; et al. The Associations of Vitamin D Status and Lifestyle Behaviors with General Obesity and Metabolically Unhealthy Obesity in Chinese Children and Adolescents. Nutrients 2025, 17, 666. https://doi.org/10.3390/nu17040666
Liu F, Li Y, Liang C, Kong B, Zhang Q, Yin X, Wu B, Xiong J, Yao P, Tang Y, et al. The Associations of Vitamin D Status and Lifestyle Behaviors with General Obesity and Metabolically Unhealthy Obesity in Chinese Children and Adolescents. Nutrients. 2025; 17(4):666. https://doi.org/10.3390/nu17040666
Chicago/Turabian StyleLiu, Fangqu, Yan Li, Chanhua Liang, Bingxuan Kong, Qian Zhang, Xingzhu Yin, Bangfu Wu, Jingfan Xiong, Ping Yao, Yuhan Tang, and et al. 2025. "The Associations of Vitamin D Status and Lifestyle Behaviors with General Obesity and Metabolically Unhealthy Obesity in Chinese Children and Adolescents" Nutrients 17, no. 4: 666. https://doi.org/10.3390/nu17040666
APA StyleLiu, F., Li, Y., Liang, C., Kong, B., Zhang, Q., Yin, X., Wu, B., Xiong, J., Yao, P., Tang, Y., & Li, Y. (2025). The Associations of Vitamin D Status and Lifestyle Behaviors with General Obesity and Metabolically Unhealthy Obesity in Chinese Children and Adolescents. Nutrients, 17(4), 666. https://doi.org/10.3390/nu17040666