Quantification of Naturally Occurring Prebiotics in Selected Foods
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104 (Suppl. S2), S1–S63. [Google Scholar] [CrossRef] [PubMed]
- Tandon, D.; Haque, M.M.; Gote, M.; Jain, M.; Bhaduri, A.; Dubey, A.K.; Mande, S.S. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Sci. Rep. 2019, 9, 5473. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.Y.; Li, H.B. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef] [PubMed]
- Vulevic, J.; Juric, A.; Tzortzis, G.; Gibson, G.R. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 2013, 143, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Carpi, R.Z.; Barbalho, S.M.; Sloan, K.P.; Laurindo, L.F.; Gonzaga, H.F.; Grippa, P.C.; Zutin, T.L.M.; Girio, R.J.S.; Repetti, C.S.F.; Detregiachi, C.R.P.; et al. The Effects of Probiotics, Prebiotics and Synbiotics in Non-Alcoholic Fat Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Systematic Review. Int. J. Mol. Sci. 2022, 23, 8805. [Google Scholar] [CrossRef]
- Shamasbi, S.G.; Ghanbari-Homayi, S.; Mirghafourvand, M. The effect of probiotics, prebiotics, and synbiotics on hormonal and inflammatory indices in women with polycystic ovary syndrome: A systematic review and meta-analysis. Eur. J. Nutr. 2020, 59, 433–450. [Google Scholar] [CrossRef] [PubMed]
- Rasaei, N.; Heidari, M.; Esmaeili, F.; Khosravi, S.; Baeeri, M.; Tabatabaei-Malazy, O.; Emamgholipour, S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: An umbrella review of the trials’ meta-analyses. Front. Endocrinol. 2024, 15, 1277921. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Adv. Nutr. 2022, 13, 492–529. [Google Scholar] [CrossRef] [PubMed]
- Armani, R.G.; Carvalho, A.B.; Ramos, C.I.; Hong, V.; Bortolotto, L.A.; Cassiolato, J.L.; Oliveira, N.F.; Cieslarova, Z.; do Lago, C.L.; Klassen, A.; et al. Effect of fructooligosaccharide on endothelial function in CKD patients: A randomized controlled trial. Nephrol. Dial. Transplant. 2021, 37, 85–91. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Godoy-Brewer, G.; Shah, N.D.; Maas, L.; White, J.; Parian, A.M.; Mullin, G.E. Prebiotics for Induction and Maintenance of Remission in Inflammatory Bowel Disease: Systematic Review and Meta-Analysis. Inflamm. Bowel Dis. 2024, izae115. [Google Scholar] [CrossRef]
- Pool-Zobel, B.; van Loo, J.; Rowland, I.; Roberfroid, M.B. Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br. J. Nutr. 2002, 87 (Suppl. S2), S273–S281. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Concina, F.; Rossi, M.; Fiori, F.; Parpinel, M.; Taborelli, M.; Giacosa, A.; Crispo, A.; Pagan, E.; Rosato, V.; et al. Association of prebiotic fiber intake with colorectal cancer risk: The PrebiotiCa study. Eur. J. Nutr. 2023, 62, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Concina, F.; Bertuccio, P.; Fiori, F.; Parpinel, M.; Taborelli, M.; Rosato, V.; Garavello, W.; Negri, E.; La Vecchia, C. Intake of prebiotic fibers and the risk of laryngeal cancer: The PrebiotiCa study. Eur. J. Nutr. 2023, 62, 977–985. [Google Scholar] [CrossRef]
- Turati, F.; Concina, F.; Bertuccio, P.; Fiori, F.; Parpinel, M.; Garavello, W.; Crispo, A.; Libra, M.; Negri, E.; Serraino, D.; et al. Prebiotics and the Risk of Upper Digestive Tract and Stomach Cancers: The PrebiotiCa Study. J. Acad. Nutr. Diet. 2023, 123, 1772–1780. [Google Scholar] [CrossRef] [PubMed]
- Fiori, F.; Concina, F.; Turati, F.; Meschiari, M.; Gaboardi, G.C.; Galli, F.; La Vecchia, C.; Parpinel, M. Quantification of naturally occurring prebiotic fiber in Italian foods. J. Food Compos. Anal. 2022, 112, 104678. [Google Scholar] [CrossRef]
- Decarli, A.; Franceschi, S.; Ferraroni, M.; Gnagnarella, P.; Parpinel, M.T.; La Vecchia, C.; Negri, E.; Salvini, S.; Falcini, F.; Giacosa, A. Validation of a food-frequency questionnaire to assess dietary intakes in cancer studies in Italy. Results for specific nutrients. Ann. Epidemiol. 1996, 6, 110–118. [Google Scholar] [CrossRef]
- Mutignani, M.; Penagini, R.; Gargari, G.; Guglielmetti, S.; Cintolo, M.; Airoldi, A.; Leone, P.; Carnevali, P.; Ciafardini, C.; Petrocelli, G.; et al. Blood Bacterial DNA Load and Profiling Differ in Colorectal Cancer Patients Compared to Tumor-Free Controls. Cancers 2021, 13, 6363. [Google Scholar] [CrossRef]
- Franceschi, S.; Negri, E.; Salvini, S.; Decarli, A.; Ferraroni, M.; Filiberti, R.; Giacosa, A.; Talamini, R.; Nanni, O.; Panarello, G.; et al. Reproducibility of an Italian food frequency questionnaire for cancer studies: Results for specific food items. Eur. J. Cancer 1993, 29A, 2298–2305. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Salvini, S.; Parpinel, M. Food Composition Database for Epidemiological Studies in Italy. Available online: https://bda.ieo.it/ (accessed on 20 December 2024).
- Carabetta, S.; Di Sanzo, R.; Campone, L.; Fuda, S.; Rastrelli, L.; Russo, M. High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC–PAD) and Chemometrics for Geographical and Floral Authentication of Honeys from Southern Italy (Calabria region). Foods 2020, 9, 1625. [Google Scholar] [CrossRef] [PubMed]
- Pöhnl, T.; Böttcher, C.; Schulz, H.; Stürtz, M.; Widder, S.; Carle, R.; Schweiggert, R.M. Comparison of high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and ultra-high performance liquid chromatography with evaporative light scattering (UHPLC-ELSD) for the analyses of fructooligosaccharides in onion (Allium cepa L.). J. Food Compos. Anal. 2017, 63, 148–156. [Google Scholar] [CrossRef]
- Corradini, C.; Cavazza, A.; Bignardi, C. High-Performance Anion-Exchange Chromatography Coupled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohydrates of Food Interest: Principles and Applications. Int. J. Carbohydr. Chem. 2012, 2012, 487564. [Google Scholar] [CrossRef]
- Gangola, M.P.; Jaiswal, S.; Khedikar, Y.P.; Chibbar, R.N. A reliable and rapid method for soluble sugars and RFO analysis in chickpea using HPAEC-PAD and its comparison with HPLC-RI. Food Chem. 2014, 154, 127–133. [Google Scholar] [CrossRef]
- Muir, J.G.; Rose, R.; Rosella, O.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R. Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2009, 57, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Bauer, L.L.; Fahey, G.C., Jr.; Hogarth, A.J.C.L.; Wolf, B.W.; Hunter, D.E. Selected Fructooligosaccharide (1-Kestose, Nystose, and 1F-β-Fructofuranosylnystose) Composition of Foods and Feeds. J. Agric. Food Chem. 1997, 45, 3076–3082. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Frías, J.; Vidal-Valverde, C. Raffinose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chem. 2005, 91, 645–649. [Google Scholar] [CrossRef]
- Wang, Q.; Ke, L.; Yang, D.; Bao, B.; Jiang, J.; Ying, T. Change in oligosaccharides during processing of soybean sheet. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. S1), 89–94. [Google Scholar]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Zabaras, D.; Frank, D.; Arcot, J. Effect of Germination and Fermentation on Carbohydrate Composition of Australian Sweet Lupin and Soybean Seeds and Flours. J. Agric. Food Chem. 2017, 65, 10064–10073. [Google Scholar] [CrossRef]
- Hogarth, A.J.; Hunter, D.E.; Jacobs, W.A.; Garleb, K.A.; Wolf, B.W. Ion chromatographic determination of three fructooligosaccharide oligomers in prepared and preserved foods. J. Agric. Food Chem. 2000, 48, 5326–5330. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.H.; Pehrsson, P.R. Sugar Content of Selected Foods: Individual and Total Sugar; United States Department of Agriculture: Washington, DC, USA, 1987. [Google Scholar]
- Ahluwalia, N.; Herrick, K.A.; Terry, A.L.; Hughes, J.P. Contribution of Whole Grains to Total Grains Intake Among Adults Aged 20 and Over: United States, 2013–2016; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2019; pp. 1–8. [Google Scholar]
- Haddad, E.H.; Tanzman, J.S. What do vegetarians in the United States eat? Am. J. Clin. Nutr. 2003, 78, 626S–632S. [Google Scholar] [CrossRef] [PubMed]
- Makinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Alcorta, A.; Porta, A.; Tarrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- European Food Safety Authority. Food Consumption Statistics for FoodEx2: Level 3. Available online: https://www.efsa.europa.eu/en/microstrategy/foodex2-level-3 (accessed on 8 October 2024).
- Mu, Y.; Kou, T.; Wei, B.; Lu, X.; Liu, J.; Tian, H.; Zhang, W.; Liu, B.; Li, H.; Cui, W.; et al. Soy Products Ameliorate Obesity-Related Anthropometric Indicators in Overweight or Obese Asian and Non-Menopausal Women: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 2790. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ding, K.; Xie, X.; Zhou, J.; Liu, P.; Wang, S.; Fang, T.; Xu, G.; Tang, C.; Hong, H. Soy Product Consumption and the Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2024, 16, 986. [Google Scholar] [CrossRef]
- Zuo, X.; Zhao, R.; Wu, M.; Wan, Q.; Li, T. Soy Consumption and the Risk of Type 2 Diabetes and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1358. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.Y.; Zhang, W.S.; Jiang, C.Q.; Jin, Y.L.; Au Yeung, S.L.; Cheng, K.K.; Lam, T.H.; Xu, L. Associations of soy product intake with all-cause, cardiovascular disease and cancer mortality: Guangzhou Biobank Cohort Study and updated meta-analyses. Eur. J. Nutr. 2024, 63, 1731–1745. [Google Scholar] [CrossRef]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef]
- Patel, L.; La Vecchia, C.; Negri, E.; Mignozzi, S.; Augustin, L.S.A.; Levi, F.; Serraino, D.; Giacosa, A.; Alicandro, G. Legume intake and cancer risk in a network of case-control studies. Eur. J. Clin. Nutr. 2024, 78, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Tomas, N.; Diaz-Lopez, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Fito, M.; Serra-Majem, L.; Aros, F.; et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 2018, 37, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Rawal, V.N.D.K. The Global Economy of Pulses; FAO: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Food and Agricolture Organization of the United States. Information on Post-Harvest Operations (INPhO). Available online: https://www.fao.org/in-action/inpho/crop-compendium/cereals-grains/en/ (accessed on 3 February 2025).
- Greenfield, H.; Southgate, D.A.T. Food Composition Data; Charrondiere, B.A.B.a.U.R., Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Costabile, A.; Klinder, A.; Fava, F.; Napolitano, A.; Fogliano, V.; Leonard, C.; Gibson, G.R.; Tuohy, K.M. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br. J. Nutr. 2008, 99, 110–120. [Google Scholar] [CrossRef]
- Hand, T.W.; Vujkovic-Cvijin, I.; Ridaura, V.K.; Belkaid, Y. Linking the Microbiota, Chronic Disease, and the Immune System. Trends Endocrinol. Metab. 2016, 27, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gunathilake, M.; Yeo, H.Y.; Oh, J.H.; Kim, B.C.; Han, N.; Kim, B.; Pyun, H.; Lim, M.Y.; Nam, Y.D.; et al. Fecal Microbial Dysbiosis Is Associated with Colorectal Cancer Risk in a Korean Population. Cancer Res. Treat. 2025, 57, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, W.; Wang, N.; Han, M.; Ban, M.; Dai, J.; Dong, Y.; Sun, T.; Xu, J. The role of microbiota in the development and treatment of gastric cancer. Front. Oncol. 2023, 13, 1224669. [Google Scholar] [CrossRef] [PubMed]
- Speciani, M.C.; Gargari, G.; Penagini, R.; Mutignani, M.; Ferraroni, M.; Natale, A.; Katsoulis, M.; Cintolo, M.; Leone, P.; Airoldi, A.; et al. Garlic consumption in relation to colorectal cancer risk and to alterations of blood bacterial DNA. Eur. J. Nutr. 2023, 62, 2279–2292. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Kim, H.; Lee, D.H.; Lee, A.; Giovannucci, E.L.; Kang, S.S.; Keum, N. Different dietary fibre sources and risks of colorectal cancer and adenoma: A dose-response meta-analysis of prospective studies. Br. J. Nutr. 2019, 122, 605–615. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; et al. Food groups and risk of colorectal cancer. Int. J. Cancer 2018, 142, 1748–1758. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Salas-Salvado, J.; Estruch, R.; Corella, D.; Fito, M.; Ros, E.; Predimed, I. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
FOSs | GOSs | ||||
---|---|---|---|---|---|
Common Name | Kestose | Nystose | 1 F-β-FFnystose | Raffinose | Stachyose |
Fruits and nuts | |||||
Blueberries | <LOQ a | 0.0106 | <LOQ a | <LOQ b | <LOQ b |
Chestnut, steamed | 0.0152 | <LOQ a | <LOQ c | 0.1190 | 0.1100 |
Raisins | <LOQ b | <LOQ d | <LOQ d | 0.0545 | <LOQ b |
Raspberries | 0.0159 | <LOQ a | <LOQ c | <LOQ a | <LOQ c |
Walnuts, shelled, dried | <LOQ a | <LOQ a | <LOQ a | 0.0870 | 0.0470 |
Legume products | |||||
Adzuki beans, red, dried | <LOQ e | <LOQ e | <LOQ e | 0.1240 | 2.7000 |
Broad beans, dried, shelled | <LOQ a | <LOQ c | <LOQ a | 0.1710 | 0.5880 |
Broad beans, fresh | <LOQ b | <LOQ b | <LOQ b | <LOQ b | <LOQ b |
Chickpeas flour | <LOQ b | <LOQ b | <LOQ a | 0.4730 | 1.6400 |
Lupin beans, fresh | <LOQ a | <LOQ a | <LOQ a | <LOQ a | <LOQ a |
Mung beans, green, dried | <LOQ a | <LOQ a | <LOQ a | 0.3280 | 1.5500 |
Soybeans, toasted | 0.0031 | <LOQ b | <LOQ b | 0.7010 | 3.0700 |
Soybeans, dried | <LOQ d | <LOQ a | <LOQ a | 0.5130 | 2.8100 |
Soy flour | <LOQ e | <LOQ e | <LOQ a | 0.6770 | 3.2200 |
Soy milk | <LOQ a | <LOQ a | <LOQ a | 0.0389 | 0.2300 |
Soy sprouts, fresh | <LOQ a | <LOQ a | <LOQ a | <LOQ c | <LOQ a |
Soy TVP-based steak, dried | <LOQ b | <LOQ b | <LOQ b | 1.1700 | 3.6400 |
Soy yogurt | <LOQ a | <LOQ b | <LOQ a | 0.0263 | 0.1120 |
Tempeh | <LOQ b | <LOQ b | <LOQ b | <LOQ b | 0.0349 |
Tofu | <LOQ b | <LOQ b | <LOQ a | 0.0263 | 0.1140 |
Cereal products | |||||
Amaranth (grains) | 0.0279 | <LOQ a | <LOQ a | 0.6880 | 0.2120 |
Buckwheat flour | 0.0032 | <LOQ a | <LOQ a | 0.0023 | <LOQ a |
Bulgur | 0.2740 | 0.0197 | <LOQ e | 0.3190 | <LOQ e |
Coarse-ground corn flour | <LOQ a | <LOQ a | <LOQ a | 0.0060 | <LOQ a |
Millet, shelled (grains) | 0.0040 | <LOQ a | <LOQ a | 0.0535 | 0.0107 |
Oat flour | 0.0038 | <LOQ c | <LOQ a | 0.1010 | 0.1640 |
Quinoa (grains) | <LOQ c | <LOQ b | <LOQ b | 0.0569 | 0.0464 |
Rice, Basmati (grains) | <LOQ a | <LOQ a | <LOQ a | 0.0090 | <LOQ a |
Rice, red (grains) | 0.0023 | <LOQ a | <LOQ a | 0.0486 | <LOQ a |
Rice, Venere (grains) | <LOQ a | <LOQ a | <LOQ a | 0.0862 | <LOQ a |
Rye flour, whole-meal | 0.5010 | 0.1650 | 0.1080 | 0.3070 | <LOQ b |
Semolina | 0.1950 | <LOQ d | <LOQ d | 0.2370 | <LOQ d |
Spelt (grains) | 0.3710 | 0.0194 | <LOQ e | 0.4090 | <LOQ f |
Teff (grains) | <LOQ a | <LOQ a | <LOQ a | 0.1410 | <LOQ a |
Wheat bran | 0.7300 | 0.0234 | <LOQ e | 1.2100 | 0.0213 |
Mean | SD | Median (25th–75th) | |
---|---|---|---|
Total FOSs | 0.236 | 0.100 | 0.217 (0.168–0.278) |
Kestose | 0.209 | 0.095 | 0.190 (0.142–0.247) |
Nystose | 0.019 | 0.010 | 0.017 (0.013–0.023) |
1 F-β-FFnystose | 0.007 | 0.006 | 0.009 (0.001–0.011) |
Total GOSs | 0.371 | 0.218 | 0.339 (0.227–0.481) |
Raffinose | 0.128 | 0.053 | 0.119 (0.091–0.161) |
Stachyose | 0.242 | 0.186 | 0.202 (0.099–0.340) |
FOSs | GOSs | |||
---|---|---|---|---|
Kestose | Nystose | Raffinose | Stachyose | |
Raspberries (%) | 0.28 | 0.00 | 0.00 | 0.00 |
Chestnuts, walnuts and raisins (%) | 0.17 | 0.00 | 4.34 | 1.37 |
Soy milk and soy yoghurt (%) | 0.00 | 0.00 | 2.26 | 6.59 |
Tofu and tempeh (%) | 0.00 | 0.00 | 0.09 | 0.26 |
Wheat bran (%) | 3.45 | 1.21 | 8.77 | 0.08 |
Total (%) | 3.90 | 1.21 | 15.46 | 8.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natale, A.; Fiori, F.; Turati, F.; La Vecchia, C.; Parpinel, M.; Rossi, M. Quantification of Naturally Occurring Prebiotics in Selected Foods. Nutrients 2025, 17, 683. https://doi.org/10.3390/nu17040683
Natale A, Fiori F, Turati F, La Vecchia C, Parpinel M, Rossi M. Quantification of Naturally Occurring Prebiotics in Selected Foods. Nutrients. 2025; 17(4):683. https://doi.org/10.3390/nu17040683
Chicago/Turabian StyleNatale, Arianna, Federica Fiori, Federica Turati, Carlo La Vecchia, Maria Parpinel, and Marta Rossi. 2025. "Quantification of Naturally Occurring Prebiotics in Selected Foods" Nutrients 17, no. 4: 683. https://doi.org/10.3390/nu17040683
APA StyleNatale, A., Fiori, F., Turati, F., La Vecchia, C., Parpinel, M., & Rossi, M. (2025). Quantification of Naturally Occurring Prebiotics in Selected Foods. Nutrients, 17(4), 683. https://doi.org/10.3390/nu17040683