Gut Microbiota Profile and Functional Gastrointestinal Disorders in Infants: A Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
- Sample Collection: Fecal samples are collected during clinical evaluations and delivered to the laboratory within two hours to preserve their integrity.
- Culturing Techniques: The samples are cultured on specific growth media designed to identify various bacterial groups, such as the following:
- Putrefactive bacteria (Escherichia coli, Proteus species, Klebsiella species, Enterobacter species, Hafnia alveii, Serratia species, Providencia species, Morganella morganii, Kluyvera species, Citrobacter species, Pseudomonas species, and Clostridium species);
- Acidifying flora (Bacteroides species, Bifidobacterium species, Lactobacillus species, and Enterococcus species);
- Fungal strains (Candida albicans, Candida species, and Geotrichum species).
- (i)
- Fecal Sample Collection and Preservation: Fecal samples were collected from infants and immediately stored in anaerobic transport media at 4 °C to prevent bacterial overgrowth and preserve microbial diversity.
- (ii)
- Selective Media and Culturing Conditions: To isolate specific bacterial groups, we used selective and differential agar plates, including the following:
- MacConkey agar for Gram-negative bacteria;
- Chromogenic agar for specific species such as Escherichia coli and Klebsiella;
- Bifidobacterium agar for anaerobic bacteria like Bifidobacterium species;
- MRS (de Man, Rogosa, and Sharpe) agar for Lactobacillus species;
- Reinforced Clostridial Medium (RCM) for Clostridium species.
- (iii)
- Incubation: Plates were incubated under appropriate conditions (e.g., anaerobic atmosphere for anaerobes like Bacteroides and Bifidobacterium or aerobic conditions for other bacterial species) for 24–48 h at 37 °C with subsequent colony enumeration.
- (iv)
- Biochemical Identification: Colonies from selective media were subjected to biochemical tests to identify and confirm the bacterial species. VITEK systems were used for more precise species identification in certain cases.
- (v)
- Quantification: The number of CFUs (colony-forming units) per gram of feces was determined for each bacterial group. This involved counting the colonies on each agar plate and calculating the microbial load for each identified species.
- (vi)
- Fungal Culture: For fungal species identification (e.g., Candida and Geotrichum), Sabouraud dextrose agar was used, and the cultures were incubated under specific conditions to promote fungal growth.
- Quantitative and Qualitative Analysis: The bacterial colonies were counted to determine their abundance (colony-forming units, CFUs) and classified based on morphology, biochemical properties, and other specific tests.
- Flora Index Calculation: A “flora index” was calculated to express the severity of dysbiosis [25], with mild (index 1–5), intermediate (index 6–12), and pronounced (index > 12).
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, Y.; Cai, X.; Ye, Y.; Wang, F.; Chen, F.; Zheng, C. The role of microbiota in infant health: From early life to adulthood. Front. Immunol. 2021, 12, 708472. [Google Scholar] [CrossRef] [PubMed]
- Rasquin, A.; Di Lorenzo, C.; Forbes, D.; Guiraldes, E.; Hyams, J.S.; Staiano, A.; Walker, L.S. Childhood functional gastrointestinal disorders: Child/adolescent. Gastroenterology 2006, 130, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.M.; Bercik, P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009, 136, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Singh, R.; Ro, S.; Ghoshal, U.C. Gut microbiota dysbiosis in functional gastrointestinal disorders: Underpinning the symptoms and pathophysiology. JGH Open 2021, 5, 976–987. [Google Scholar] [CrossRef]
- Mandarino, F.V.; Sinagra, E.; Raimondo, D.; Danese, S. The role of microbiota in upper and lower gastrointestinal functional disorders. Microorganisms 2023, 11, 980. [Google Scholar] [CrossRef]
- Boronat, A.C.; Ferreira-Maia, A.P.; Matijasevich, A.; Wang, Y.P. Epidemiology of functional gastrointestinal disorders in children and adolescents: A systematic review. World J. Gastroenterol. 2017, 23, 3915–3927. [Google Scholar] [CrossRef] [PubMed]
- Shelby, G.D.; Shirkey, K.C.; Sherman, A.L.; Beck, J.E.; Haman, K.; Shears, A.R.; Horst, S.N.; Smith, C.A.; Garber, J.; Walker, L.S. Functional abdominal pain in childhood and long-term vulnerability to anxiety disorders. Pediatrics 2013, 132, 475. [Google Scholar] [CrossRef] [PubMed]
- Zeevenhooven, J.; Koppen, I.J.N.; Benninga, M.A. The new Rome IV criteria for functional gastrointestinal disorders in infants and toddlers. Pediatr. Gastroenterol. Hepatol. Nutr. 2017, 20, 1–13. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Hauser, B.; Salvatore, S. Functional gastrointestinal disorders in infancy: Impact on the health of the infant and family. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 207–216. [Google Scholar] [CrossRef]
- Capozza, M.; Laforgia, N.; Rizzo, V.; Salvatore, S.; Guandalini, S.; Baldassarre, M. Probiotics and functional gastrointestinal disorders in pediatric age: A narrative review. Front. Pediatr. 2022, 10, 805466. [Google Scholar] [CrossRef] [PubMed]
- Bellaiche, M.; Oozeer, R.; Gerardi-Temporel, G.; Faure, C.; Vandenplas, Y. Multiple functional gastrointestinal disorders are frequent in formula-fed infants and decrease their quality of life. Acta Paediatr. Int. J. Paediatr. 2018, 107, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Ouald Chaib, A.; Levy, I.E.; Ouald Chaib, M.; Vandenplas, Y. The influence of the gastrointestinal microbiome on infant colic. J. Pediatr. Gastroenterol. Nutr. 2020, 69, 919–932. [Google Scholar] [CrossRef]
- Suárez-Martínez, C.; Santaella-Pascual, M.; Yagüe-Guirao, G.; García-Marcos, L.; Ros, G.; Martínez-Graciá, C. The Early Appearance of Asthma and Its Relationship with Gut Microbiota: A Narrative Review. Microorganisms 2024, 12, 1471. [Google Scholar] [CrossRef]
- Halichidis, S.; Balasa, A.L.; Ionescu, E.V.; Iliescu, M.G.; Cambrea, S.C.; Petcu, L.C.; Mihai, C.M. Evolution of salmonellosis in Constanta area in correlation with environmental factors. J. Environ. Prot. Ecol. 2019, 20, 1496–1504. [Google Scholar]
- Cambrea, S.C.; Petcu, L.C.; Mihai, C.M.; Hangan, T.L.; Iliescu, D.M. Influence of environmental factors about evolution of Shigellosis in Constanta County of Romania. J. Environ. Prot. Ecol. 2019, 20, 986–994. [Google Scholar]
- Staicovici, S.; Sârbu, V.; Gheorghe, E.; Deacu, S.; Vlase, I.; Ispas, S.; Chirila, S.; Nelson-Twakor, A. Effectiveness of continuing post-surgery antibiotic prophylaxis in reducing nosocomial infections: A literature review. Chirurgia (Bucur) 2023, 118, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Indrio, F.; Di Mauro, A.; Riezzo, G.; Cavallo, L.; Francavilla, R. Infantile colic, regurgitation, and constipation: An early traumatic insult in the development of functional gastrointestinal disorders in children? Eur. J. Pediatr. 2015, 174, 841–842. [Google Scholar] [CrossRef]
- Simon, E.; Călinoiu, L.F.; Mitrea, L.; Vodnar, D.C. Probiotics, prebiotics, and synbiotics: Implications and beneficial effects against irritable bowel syndrome. Nutrients 2021, 13, 2112. [Google Scholar] [CrossRef]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, V.M.R.; Wei, G.; Baird, B.C.; Murtaugh, M.; Chonchol, M.B.; Raphael, K.L.; Greene, T.; Beddhu, S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012, 81, 300–306. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Verna, E.C.; Lucak, S. Use of probiotics in gastrointestinal disorders: What to recommend? Ther. Adv. Gastroenterol. 2010, 3, 307. [Google Scholar] [CrossRef] [PubMed]
- Suniega, E.A.; Frasca, D.J. Probiotics to prevent antibiotic-associated diarrhea in children. Am. Fam. Physician 2020, 101. [Google Scholar]
- Garczyk, A.; Kaliciak, I.; Drogowski, K.; Horwat, P.; Kopeć, S.; Staręga, Z.; Bogdański, P.; Stelmach-Mardas, M.; Mardas, M. Influence of probiotics in prevention and treatment of patients who undergo chemotherapy or/and radiotherapy and suffer from mucositis, diarrhea, constipation, nausea, and vomiting. J. Clin. Med. 2022, 11, 3412. [Google Scholar] [CrossRef]
- Wei, S.; Bahl, M.I.; Baunwall, S.M.D.; Hvas, C.L.; Licht, T.R. Determining Gut Microbial Dysbiosis: A Review of Applied Indexes for Assessment of Intestinal Microbiota Imbalances. Appl. Environ. Microbiol. 2021, 87, e00395-21. [Google Scholar] [CrossRef]
- Saeed, N.K.; Al-Beltagi, M.; Bediwy, A.S.; El-Sawaf, Y.; Toema, O. Gut microbiota in various childhood disorders: Implication and indications. World J. Gastroenterol. 2022, 28, 1875–1901. [Google Scholar] [CrossRef]
- Seekatz, A.M.; Young, V.B. Clostridium difficile and the microbiota. J. Clin. Investig. 2014, 124, 4182–4189. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saier, M.H., Jr. Gut Bacteroides species in health and disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef] [PubMed]
- Stolfi, C.; Maresca, C.; Monteleone, G.; Laudisi, F. Implication of intestinal barrier dysfunction in gut dysbiosis and diseases. Biomedicines 2022, 10, 289. [Google Scholar] [CrossRef]
- Suárez-Martínez, C.; Santaella-Pascual, M.; Yagüe-Guirao, G.; Martínez-Graciá, C. Infant gut microbiota colonization: Influence of prenatal and postnatal factors, focusing on diet. Front. Microbiol. 2023, 14, 1236254. [Google Scholar] [CrossRef]
- Di Profio, E.; Magenes, V.C.; Fiore, G.; Agostinelli, M.; La Mendola, A.; Acunzo, M.; Francavilla, R.; Indrio, F.; Bosetti, A.; D’Auria, E.; et al. Special diets in infants and children and impact on gut microbiome. Nutrients 2022, 14, 3198. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Inchingolo, A.D.; Palumbo, I.; Trilli, I.; Guglielmo, M.; Mancini, A.; Palermo, A.; Inchingolo, A.M.; Dipalma, G. The impact of cesarean section delivery on intestinal microbiota: Mechanisms, consequences, and perspectives—A systematic review. Int. J. Mol. Sci. 2024, 25, 1055. [Google Scholar] [CrossRef] [PubMed]
- Dubois, N.E.; Gregory, K.E. Characterizing the intestinal microbiome in infantile colic: Findings based on an integrative review of the literature. Biol. Res. Nurs. 2016, 18, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Garro, M.; Montanari, P.; Galliano, I.; Bergallo, M. Crying time and ROR/FOXP3 expression in Lactobacillus reuteri DSM17938-treated infants with colic: A randomized trial. J. Pediatr. 2018, 192, 171–177.e1. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, J.M.; Collins, J.; Fatheree, N.Y.; Hashmi, S.S.; Taylor, C.M.; Luo, M.; Hoang, T.K.; Gleason, W.A.; Van Arsdall, M.R.; Navarro, F.; et al. Infant colic represents gut inflammation and dysbiosis. J. Pediatr. 2018, 203, 55–61.e3. [Google Scholar] [CrossRef] [PubMed]
- De Weerth, C.; Fuentes, S.; Puylaert, P.; De Vos, W.M. Intestinal microbiota of infants with colic: Development and specific signatures. Pediatrics 2013, 131, e550–e558. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Shen, X.; Shi, X.; Sakandar, H.A.; Quan, K.; Li, Y.; Jin, H.; Kwok, L.; Zhang, H.; Sun, Z. Targeting gut microbiota and metabolism as the major probiotic mechanism—An evidence-based review. Trends Food Sci. Technol. 2023, 138, 178–198. [Google Scholar] [CrossRef]
- García-Santos, J.A.; Nieto-Ruiz, A.; García-Ricobaraza, M.; Cerdó, T.; Campoy, C. Impact of Probiotics on the Prevention and Treatment of Gastrointestinal Diseases in the Pediatric Population. Int. J. Mol. Sci. 2023, 24, 9427. [Google Scholar] [CrossRef]
- Aparicio, M.; Alba, C.; Cam Public Health Area, P.S.G.O.; Rodríguez, J.M.; Fernández, L. Microbiological and immunological markers in milk and infant feces for common gastrointestinal disorders: A pilot study. Nutrients 2020, 12, 634. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, J.G.; Motta, M.E.F.; Beltrão, M.F.; Salviano, T.L.; da Silva, G.A.P. Fecal microbiota and diet of children with chronic constipation. Int. J. Pediatr. 2016, 2016, 6787269. [Google Scholar] [CrossRef]
- Korpela, K.; Renko, M.; Paalanne, N.; Vänni, P.; Salo, J.; Tejesvi, M.; Koivusaari, P.; Pokka, T.; Kaukola, T.; Pirttilä, A.M.; et al. Microbiome of the first stool after birth and infantile colic. Pediatr. Res. 2020, 87, 836–842. [Google Scholar] [CrossRef] [PubMed]
Characteristic | FGID Group (n = 82) | Non-FGID Group (n = 52) |
---|---|---|
Male, N (%) | 47 (57.3) | 27 (51.9) |
Female, N (%) | 35 (42.7) | 25 (48.1) |
Age months, mean (SD) | 5.37 (1.2) | 6.43 (1.4) |
Mode of delivery | ||
Vaginal delivery, N (%) | 30 (36.6) | 23 (44.2) |
Cesarean section, N (%) | 52 (63.4) | 29 (55.8) |
Type of feeding | ||
Breastfeeding, N (%) | 21 (25.6) | 28 (53.8) |
Formula feeding, N (%) | 49 (59.8) | 16 (30.8) |
Mixed feeding (infant formula and breastfeeding), N (%) | 12 (14.6) | 8 (15.4) |
Gestational age | - | |
Under 37 weeks | 15 (18.3) | 9 (17.3) |
37–42 weeks | 62 (75.6) | 41 (78.9) |
Over 42 weeks | 5 (6.09) | 2 (3.8) |
Birth weight | ||
Under 2500 g | 11 (13.4) | 5 (9.6) |
2500–4000 g | 69 (84.1) | 43 (82.7) |
Over 4000 g | 2 (2.5) | 4 (7.7) |
Microorganisms (CFU/g) | Group Ia (Infantile Colic, n = 23) | Group Ib (Functional Constipation, n = 21) | Group Ic (Gastroesophageal Reflux, n = 20) | Group Id (Functional Diarrhea, n = 18) | Group II (Non-FGIDs, n = 52) |
---|---|---|---|---|---|
Escherichia coli (×107) | 9.81 ± 0.62 (p = 0.021) | 10.04 ± 1.02 (p = 0.019) | 9.84 ± 0.73 (p = 0.044) | 9.96 ± 0.68 (p = 0.035) | 1.2 ± 0.41 |
Proteus species (×104) | 0.81 ± 0.08 (p = 0.722) | 0.89 ± 0.03 (p = 0.842) | 0.86 ± 0.06 (p = 0.125) | 0.82 ± 0.04 (p = 0.613) | 0.94 ± 0.03 |
Klebsiella species (×104) | 2.06 ± 1.04 (p = 0.028) | 6.86 ± 1.32 (p = 0.038) | 2.76 ± 1.22 (p = 0.012) | 4.72 ± 1.08 (p = 0.026) | 0.87 ± 0.06 |
Enterobacter species (×104) | 0.89 ± 0.04 (p = 0.621) | 0.84 ± 0.14 (p = 0.613) | 0.81 ± 0.12 (p = 0.380) | 3.11 ± 0.86 (p = 0.042) | 0.81 ± 0.08 |
Hafnia alveii (×104) | 0.93 ± 0.05 (p = 0.726) | 0.91 ± 0.04 (p = 0.632) | 0.93 ± 0.05 (p = 0.913) | 0.91 ± 0.02 (p = 0.515) | 0.89 ± 0.05 |
Serratia species (×104) | 0.96 ± 0.03 (p = 0.724) | 0.93 ± 0.05 (p = 0.813) | 0.86 ± 0.11 (p = 0.558) | 0.88 ± 0.07 (p = 0.656) | 0.91 ± 0.02 |
Providencia species (×104) | 0.89 ± 0.06 (p = 0.851) | 0.90 ± 0.03 (p = 0.747) | 0.87 ± 0.09 (p = 0.766) | 0.87 ± 0.11 (p = 0.632) | 0.86 ± 0.03 |
Morganella morganii (×104) | 0.87 ± 0.04 (p = 0.788) | 0.89 ± 0.08 (p = 0.932) | 0.91 ± 0.05 (p = 0.308) | 0.88 ± 0.11 (p = 0.521) | 0.87 ± 0.05 |
Kluyvera species (×104) | 0.90 ± 0.05 (p = 0.964) | 0.94 ± 0.03 (p = 0.614) | 0.85 ± 0.13 (p = 0.601) | 0.92 ± 0.06 (p = 0.813) | 0.92 ± 0.04 |
Citrobacter species (×104) | 0.82 ± 0.11 (p = 0.821) | 0.84 ± 0.12 (p = 0.775) | 0.88 ± 0.09 (p = 0.142) | 0.95 ± 0.03 (p = 0.543) | 0.93 ± 0.05 |
Pseudomonas species (×104) | 0.91 ± 0.04 (p = 0.910) | 0.89 ± 0.10 (p = 0.711) | 0.89 ± 0.08 (p = 0.114) | 0.91 ± 0.07 (p = 0.562) | 0.91 ± 0.03 |
Clostridium species (×105) | 0.96 ± 0.03 (p = 0.714) | 0.91 ± 0.06 (p = 0.819) | 0.96 ± 0.03 (p = 0.637) | 0.94 ± 0.03 (p = 0.628) | 0.90 ± 0.04 |
Bacteroides species (×108) | 0.82 ± 0.08 (p = 0.038) | 0.87 ± 0.05 (p = 0.024) | 0.74 ± 0.05 (p = 0.031) | 0.76 ± 0.04 (p = 0.046) | 1.43 ± 0.32 |
Bifidobacterium species (×108) | 0.85 ± 0.06 (p = 0.031) | 1.46 ± 0.35 (p = 0.736) | 1.18 ± 0.16 (p = 0.681) | 0.95 ± 0.03 (p = 0.814) | 1.36 ± 0.21 |
Lactobacillus species (×105) | 0.72 ± 0.09 (p = 0.014) | 0.73 ± 0.12 (p = 0.028) | 0.78 ± 0.06 (p = 0.023) | 0.71 ± 0.4 (p = 0.031) | 1.74 ± 0.23 |
Enterococcus species (×106) | 0.76 ± 0.06 (p = 0.002) | 0.79 ± 0.19 (p = 0.036) | 11.03 ± 1.14 (p = 0.035) | 0,81 ± 0.05 (p = 0.039) | 1.81 ± 0.28 |
Candida albicans (×103) | 0.94 ± 0.04 (p = 0.931) | 0.86 ± 0.04 (p = 0.530) | 0.92 ± 0.05 (p = 0.561) | 0.95 ± 0.03 (p = 0.986) | 0.96 ± 0.02 |
Geotrichum species (×103) | 0.95 ± 0.02 (p = 0.645) | 0.96 ± 0.02 (p = 0.862) | 0.89 ± 0.03 (p = 0.611) | 0.89 ± 0.06 (p = 0.935) | 0.90 ± 0.04 |
Limitation | Description |
---|---|
Small Sample Size | The relatively small number of participants constrains the generalizability of the findings. Future studies with larger cohorts are needed to confirm these results. |
Lack of Pre-FGID Stool Samples | Stool samples were not collected before the onset of FGIDs, limiting the capacity to establish a temporal relationship between gut microbiota changes and the development of FGIDs. |
Inter-Individual Variability | Gut microbiota composition varies among individuals, and while efforts were made to control for confounding factors, genetic and environmental influences were not exhaustively analyzed. |
Developmental Changes in Gut Microbiota | The dynamic characteristics of the gut microbiota during infancy means that findings may not be fully representative of long-term microbial patterns. |
Homogeneous Population | The study population was relatively homogeneous, which may limit the applicability of findings to wider populations. |
Culture-Based Methodology Bias | The use of traditional culture-based techniques may result in biases, as certain anaerobic and less common bacterial species are difficult to culture, thus causing underrepresentation. |
Limited Analysis of External Influencing Factors | Factors such as maternal diet were not comprehensively evaluated, which could have influenced gut microbiota composition. |
Statistical Sensitivity Constraints | Given the sample size, the statistical power to detect subtle differences in microbiota composition may be limited. Larger datasets would improve sensitivity and accuracy. |
Future Research Directions | Future research should integrate high-throughput sequencing, larger cohorts, and a broader range of influencing factors to enhance the understanding of gut microbiota dynamics in FGIDs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantazi, A.C.; Mihai, C.M.; Lupu, A.; Balasa, A.L.; Chisnoiu, T.; Mihai, L.; Frecus, C.E.; Ungureanu, A.; Chirila, S.I.; Nori, W.; et al. Gut Microbiota Profile and Functional Gastrointestinal Disorders in Infants: A Longitudinal Study. Nutrients 2025, 17, 701. https://doi.org/10.3390/nu17040701
Pantazi AC, Mihai CM, Lupu A, Balasa AL, Chisnoiu T, Mihai L, Frecus CE, Ungureanu A, Chirila SI, Nori W, et al. Gut Microbiota Profile and Functional Gastrointestinal Disorders in Infants: A Longitudinal Study. Nutrients. 2025; 17(4):701. https://doi.org/10.3390/nu17040701
Chicago/Turabian StylePantazi, Alexandru Cosmin, Cristina Maria Mihai, Ancuta Lupu, Adriana Luminita Balasa, Tatiana Chisnoiu, Larisia Mihai, Corina Elena Frecus, Adina Ungureanu, Sergiu Ioachim Chirila, Wassan Nori, and et al. 2025. "Gut Microbiota Profile and Functional Gastrointestinal Disorders in Infants: A Longitudinal Study" Nutrients 17, no. 4: 701. https://doi.org/10.3390/nu17040701
APA StylePantazi, A. C., Mihai, C. M., Lupu, A., Balasa, A. L., Chisnoiu, T., Mihai, L., Frecus, C. E., Ungureanu, A., Chirila, S. I., Nori, W., Lupu, V. V., Stoicescu, R. M., Baciu, G., & Cambrea, S. C. (2025). Gut Microbiota Profile and Functional Gastrointestinal Disorders in Infants: A Longitudinal Study. Nutrients, 17(4), 701. https://doi.org/10.3390/nu17040701