Quail Egg-Based Supplements in Allergic Rhinitis: A Systematic Review of Clinical Studies
Highlights
- In patients with allergic rhinitis, quail egg-based supplements (QESs) combined with zinc can improve nasal airflow, mucociliary transport, and overall symptoms.
- This review of five clinical studies suggests that QESs may reduce the need for standard symptomatic medications in mild cases or complement them in severe cases, with only mild and rare side effects.
- QESs likely exert their therapeutic effects on allergic reactions by reducing mast cell activation, suppressing type 2 cytokines, attenuating eosinophilic responses, enhancing IL-10 levels, and alleviating allergy-induced inflammation.
Abstract
:1. Introduction
2. Methods
- P (Population): Atopic subjects with hypersensitivity to respiratory allergens and patients diagnosed with allergic rhinitis based on international clinical standards.
- I (Intervention): Quail egg-based dietary supplements, either alone or in combination with other nutraceuticals (e.g., vitamins and minerals).
- C (Comparator): Any type of comparator, including placebo, other treatments, or no control group.
- O (Outcomes): Clinical outcomes such as changes in disease symptoms, laboratory test results, radiological findings, and health-related quality of life.
- S (Study Design): Clinical studies with a focus on randomized controlled trials (RCTs). Other human studies, such as quasi-experimental, pre-post, and observational studies, were also included to provide a comprehensive overview of the evidence.
3. Results
4. Discussion
4.1. Critical Overview of the Available Evidence
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Douwes, J.; Brooks, C.; Pearce, N. Epidemiology of Respiratory Allergies and Asthma. In Handbook of Epidemiology; Springer: New York, NY, USA, 2024; pp. 1–66. ISBN 9781461466253. [Google Scholar]
- Skoner, D.P. Allergic Rhinitis: Definition, Epidemiology, Pathophysiology, Detection, and Diagnosis. J. Allergy Clin. Immunol. 2001, 108, S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Greiner, A.N.; Hellings, P.W.; Rotiroti, G.; Scadding, G.K. Allergic Rhinitis. Lancet 2011, 378, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Weinmayr, G.; Forastiere, F.; Weiland, S.K.; Rzehak, P.; Abramidze, T.; Annesi-Maesano, I.; Björkstén, B.; Brunekreef, B.; Büchele, G.; Cookson, W.O.C.; et al. International Variation in Prevalence of Rhinitis and Its Relationship with Sensitisation to Perennial and Seasonal Allergens. Eur. Respir. J. 2008, 32, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Skoner, D.P. Complications of Allergic Rhinitis. J. Allergy Clin. Immunol. 2000, 105, S605–S609. [Google Scholar] [CrossRef]
- Bergeron, C.; Hamid, Q. Relationship between Asthma and Rhinitis: Epidemiologic, Pathophysiologic, and Therapeutic Aspects. Allergy Asthma Clin. Immunol. 2005, 1, 81–87. [Google Scholar] [CrossRef]
- Seidman, M.D.; Gurgel, R.K.; Lin, S.Y.; Schwartz, S.R.; Baroody, F.M.; Bonner, J.R.; Dawson, D.E.; Dykewicz, M.S.; Hackell, J.M.; Han, J.K.; et al. Clinical Practice Guideline: Allergic Rhinitis. Otolaryngol. Head. Neck Surg. 2015, 152, S1–S43. [Google Scholar] [CrossRef]
- Walker, S.M.; Durham, S.R.; Till, S.J.; Roberts, G.; Corrigan, C.J.; Leech, S.C.; Krishna, M.T.; Rajakulasingham, R.K.; Williams, A.; Chantrell, J.; et al. Immunotherapy for Allergic Rhinitis. Clin. Exp. Allergy 2011, 41, 1177–1200. [Google Scholar] [CrossRef]
- Drazdauskaitė, G.; Layhadi, J.A.; Shamji, M.H. Mechanisms of Allergen Immunotherapy in Allergic Rhinitis. Curr. Allergy Asthma Rep. 2020, 21, 2. [Google Scholar] [CrossRef]
- Dhami, S.; Nurmatov, U.; Arasi, S.; Khan, T.; Asaria, M.; Zaman, H.; Agarwal, A.; Netuveli, G.; Roberts, G.; Pfaar, O.; et al. Allergen Immunotherapy for Allergic Rhinoconjunctivitis: A Systematic Review and Meta-Analysis. Allergy 2017, 72, 1597–1631. [Google Scholar] [CrossRef]
- Scadding, G.K. Corticosteroids in the Treatment of Pediatric Allergic Rhinitis. J. Allergy Clin. Immunol. 2001, 108, S59–S64. [Google Scholar] [CrossRef]
- Trangsrud, A.J.; Whitaker, A.L.; Small, R.E. Intranasal Corticosteroids for Allergic Rhinitis. Pharmacotherapy 2002, 22, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Kawauchi, H.; Yanai, K.; Wang, D.-Y.; Itahashi, K.; Okubo, K. Antihistamines for Allergic Rhinitis Treatment from the Viewpoint of Nonsedative Properties. Int. J. Mol. Sci. 2019, 20, 213. [Google Scholar] [CrossRef] [PubMed]
- Casale, T.B.; Blaiss, M.S.; Gelfand, E.; Gilmore, T.; Harvey, P.D.; Hindmarch, I.; Simons, F.E.R.; Spangler, D.L.; Szefler, S.J.; Terndrup, T.E.; et al. First Do No Harm: Managing Antihistamine Impairment in Patients with Allergic Rhinitis. J. Allergy Clin. Immunol. 2003, 111, S835–S842. [Google Scholar] [CrossRef] [PubMed]
- Resnick, E.S.; Bielory, B.P.; Bielory, L. Complementary Therapy in Allergic Rhinitis. Curr. Allergy Asthma Rep. 2008, 8, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Khazaei, H.; Tarlan, M.; Jasemi, S.V.; Joshi, T.; Aneva, I.Y.; Farzaei, M.H.; Echeverría, J. Natural Products for the Treatment of Allergic Rhinitis: Focus on Cellular Signaling Pathways and Pharmacological Targets. Front. Pharmacol. 2024, 15, 1447097. [Google Scholar] [CrossRef]
- Lim, S.; Jeong, I.; Cho, J.; Shin, C.; Kim, K.-I.; Shim, B.-S.; Ko, S.-G.; Kim, B. The Natural Products Targeting on Allergic Rhinitis: From Traditional Medicine to Modern Drug Discovery. Antioxidants 2021, 10, 1524. [Google Scholar] [CrossRef]
- Arthur, J.; Bejaei, M. Quail Eggs. In Egg Innovations and Strategies for Improvements; Elsevier: Amsterdam, The Netherlands, 2017; pp. 13–21. ISBN 9780128008799. [Google Scholar]
- Lianto, P.; Han, S.; Li, X.; Ogutu, F.O.; Zhang, Y.; Fan, Z.; Che, H. Quail Egg Homogenate Alleviates Food Allergy Induced Eosinophilic Esophagitis like Disease through Modulating PAR-2 Transduction Pathway in Peanut Sensitized Mice. Sci. Rep. 2018, 8, 1049. [Google Scholar] [CrossRef]
- Bruttmann, G. 322 Clinical effects of a extract of quail eggs coming from B. mina strain in some respiratory allergic diseases. Jpn. J. Allergol. 1995, 44, 979. [Google Scholar] [CrossRef]
- Northcutt, J.K.; Buyukyavuz, A.; Dawson, P.L. Quality of Japanese Quail (Coturnix coturnix japonica) Eggs after Extended Refrigerated Storage. J. Appl. Poult. Res. 2022, 31, 100280. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Bruttmann, G. Quail Egg Homogenate: A Clinical Evaluation. Med. Biol. 1995, 2, 25–29. [Google Scholar]
- Benichou, A.-C.; Armanet, M.; Bussière, A.; Chevreau, N.; Cardot, J.-M.; Tétard, J. A Proprietary Blend of Quail Egg for the Attenuation of Nasal Provocation with a Standardized Allergenic Challenge: A Randomized, Double-Blind, Placebo-Controlled Study. Food Sci. Nutr. 2014, 2, 655–663. [Google Scholar] [CrossRef]
- Andaloro, C.; Saibene, A.M.; La Mantia, I. Quail Egg Homogenate with Zinc as Adjunctive Therapy in Seasonal Allergic Rhinitis: A Randomized Controlled Trial. J. Laryngol. Otol. 2022, 137, 432–437. [Google Scholar] [CrossRef]
- Syrigou, E.; Psarros, F.; Makris, M.; Grapsa, D.; Syrigos, K. Efficacy of a Quail Eggs-Based Dietary Supplement for Allergic Rhinitis: Results of a Single-Arm Trial. J. Diet. Suppl. 2021, 18, 17–30. [Google Scholar] [CrossRef]
- Passali, D.; Motta, G.; Passali, F.M.; Nunziata, M.; Ciprandi, G. Oral Quail Egg Homogenate in the Treatment of Allergic Rhinitis: A First Experience in Clinical Practice. J. Biol. Regul. Homeost. Agents 2020, 34, 1593–1596. [Google Scholar] [CrossRef]
- Abadoglu, O.; Cakmak, E.; Kuzucu Demir, S. The View of Patients with Asthma or Chronic Obstructive Pulmonary Disease (COPD) on Complementary and Alternative Medicine. Allergol. Immunopathol. 2008, 36, 21–25. [Google Scholar] [CrossRef]
- Babayigit, A.H. High Usage of Complementary and Alternative Medicine among Turkish Asthmatic Children. Iran. J. Allergy Asthma Immunol. 2015, 14, 410–415. [Google Scholar]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Bantz, S.K.; Zhu, Z.; Zheng, T. The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma. J. Clin. Cell Immunol. 2014, 5, 202. [Google Scholar] [CrossRef]
- Ker, J.; Hartert, T.V. The Atopic March: What’s the Evidence? Ann. Allergy Asthma Immunol. 2009, 103, 282–289. [Google Scholar] [CrossRef]
- Bousquet, J.; Melén, E.; Haahtela, T.; Koppelman, G.H.; Togias, A.; Valenta, R.; Akdis, C.A.; Czarlewski, W.; Rothenberg, M.; Valiulis, A.; et al. Rhinitis Associated with Asthma Is Distinct from Rhinitis Alone: The ARIA-MeDALL Hypothesis. Allergy 2023, 78, 1169–1203. [Google Scholar] [CrossRef]
- Zhang, P. The Role of Diet and Nutrition in Allergic Diseases. Nutrients 2023, 15, 3683. [Google Scholar] [CrossRef]
- Vassilopoulou, E.; Venter, C.; Roth-Walter, F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J. Clin. Med. 2024, 13, 4713. [Google Scholar] [CrossRef]
- Yokokawa, H.; Morita, Y.; Hamada, I.; Ohta, Y.; Fukui, N.; Makino, N.; Ohata, E.; Naito, T. Demographic and Clinical Characteristics of Patients with Zinc Deficiency: Analysis of a Nationwide Japanese Medical Claims Database. Sci. Rep. 2024, 14, 2791. [Google Scholar] [CrossRef]
- Maywald, M.; Rink, L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024, 14, 863. [Google Scholar] [CrossRef]
- Peroni, D.G.; Hufnagl, K.; Comberiati, P.; Roth-Walter, F. Lack of Iron, Zinc, and Vitamins as a Contributor to the Etiology of Atopic Diseases. Front. Nutr. 2022, 9, 1032481. [Google Scholar] [CrossRef]
- Lianto, P.; Ogutu, F.O.; Zhang, Y.; He, F.; Che, H. Inhibitory Effects of Quail Egg on Mast Cells Degranulation by Suppressing PAR2-Mediated MAPK and NF-kB Activation. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef]
- Acevedo, N.; Alashkar Alhamwe, B.; Caraballo, L.; Ding, M.; Ferrante, A.; Garn, H.; Garssen, J.; Hii, C.S.; Irvine, J.; Llinás-Caballero, K.; et al. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021, 13, 724. [Google Scholar] [CrossRef]
- Caro Contreras, F.J.; Giner Muñoz, M.T.; Martin Mateos, M.A.; Plaza Martin, A.M.; Sierra Martinez, J.I.; Lombardero, M. Allergy to Quail’s Egg without Allergy to Chicken’s Egg. Case Report. Allergol. Immunopathol. 2008, 36, 234–237. [Google Scholar] [CrossRef]
- Yamashita, K.; Okada, Y.; Honda, A.; Kunigami, C.; Maeda, M.; Nakamura, T.; Kamiya, T.; Imai, T. Clinical Features of Quail Egg Ingestion in Patients with Acquired Tolerance to Hen Eggs: A Case Series Study. Int. Arch. Allergy Immunol. 2024, 185, 152–157. [Google Scholar] [CrossRef]
- Takei, M.; Mitomori, M.; Saito, A.; Tada, K.; Yanagida, N.; Sato, S.; Ebisawa, M. In Vitro Cross-Reactivity between Hen’s Egg and Quail’s Egg in Children with Hen’s Egg Allergy. Allergol. Int. 2025, 74, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Kimura, T.; Ohira, J.; Inotani, M.; Sakane, T.; Iwase, M.; Yamashita, S.; Araki, T. New-Onset Egg Allergy in an Adult: A Case Report. Front. Allergy 2024, 5, 1395807. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.H.; Matsui, E.C.; Skripak, J.M.; Wood, R.A. The Natural History of Egg Allergy. J. Allergy Clin. Immunol. 2007, 120, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Caffarelli, C.; Giannetti, A.; Rossi, A.; Ricci, G. Egg Allergy in Children and Weaning Diet. Nutrients 2022, 14, 1540. [Google Scholar] [CrossRef]
Nutritional Content | Values for 100 g of Eggs | ||||
---|---|---|---|---|---|
Quail | Chicken | Duck | Goose | ||
Energy | 158 kcal | 143 kcal | 185 kcal | 185 kcal | |
Water | 74.4 g | 76.2 g | 70.8 g | 70.4 g | |
Macronutrients | Protein | 13 g | 12.6 g | 12.8 g | 13.9 g |
Total sugars | 0.4 g | 0.4 g | 0.93 g | 0.9 g | |
Total lipid (fat) | 11.10 g | 9.51 g | 13.80 g | 13.30 g | |
Lipid content | Fatty acids, total saturated | 3.56 g | 3.13 g | 3.68 g | 3.60 g |
Fatty acids, total monounsaturated | 4.32 g | 3.66 g | 6.52 g | 5.75 g | |
Fatty acids, total polyunsaturated | 1.32 g | 1.91 g | 1.22 g | 1.67 g | |
Cholesterol | 844 mg | 372 mg | 884 mg | 852 mg | |
Relevant micronutrients | Calcium | 64 mg | 56 mg | 64 mg | 60 mg |
Iron | 3.65 mg | 1.75 mg | 3.85 mg | 3.64 mg | |
Magnesium | 13 mg | 12 mg | 17 mg | 16 mg | |
Phosphorus | 226 mg | 198 mg | 220 mg | 208 mg | |
Zinc | 1.47 mg | 1.29 mg | 1.41 mg | 1.33 mg | |
Selenium | 32.0 µg | 30.7 µg | 36.4 µg | 36.9 µg | |
Vitamin A | 156 µg | 160 µg | 194 µg | 187 µg | |
Vitamin D | 55 IU | 82 IU | 69 IU | 66 IU | |
Vitamin E | 1.08 mg | 1.05 mg | 1.34 mg | 1.29 mg | |
Lutein + zeaxanthin | 369 µg | 503 µg | 459 µg | 442 µg |
Population | Intervention (n) | Comparison (n) | Outcomes (Mean ± SD) | Study Design | Citation |
---|---|---|---|---|---|
690 patients (ITT) with respiratory allergies and IgE levels of at least 300 UI/mL Mean age: ? Gender ratio: ? Study 1 (n = 180—PP): pediatric patients with asthma Studies 2–4 (n = 435—PP: 95/180/160): patients with seasonal AR Study 5 (n = 41—PP): patients with perennial AR and hypersensitivity to indoor allergens | QE + zinc—Ovix® (n = 296) in adjunct to standard therapy Studies 1–4: 1 tablet a day for 75–450 days Study 5: 2 tablets a day for 42 days | Placebo tablets in adjunct to standard therapy (n = 394) | Study 1: 77.7% reduction in asthmatic crises and a 58.6% decrease in the use of rescue medications (*) Studies 2–4: significant reduction in rhinitis severity, improvement in mucosal condition, and decrease in medicinal drug consumption (*) Physician’s evaluation of efficacy: positive outcomes in 76% of pediatric patients and 61% of adult patients (int) vs. 12% of pediatric patients and 13% of adult patients (con) (*) Study 5: Physician’s evaluation of efficacy: positive outcomes in 63% (int) vs. 27% (con) of patients (*) | 5 RCTs | [23] |
43 atopic subjects Mean age: 32.0 [20; 58] M: 52%; F: 48% | QES + zinc (2 tablets after the allergenic challenge)—SniZtop® (n = 43) | Placebo tablets (n = 43) | 15 min after the challenge: PNIF (L/min): −12.79 ± 17.19 vs. −18.75 ± 13.02 (*) VAS (nasal obstruction): 17.07 ± 16.18 vs. 20.78 ± 19.61 (*) Total IgE (IU/mL): 224.68 ± 464.643 vs. 307.14 ± 490.131 (ns) | Crossover RCT (WP: 1 week) | [24] |
40 patients with mild-to-severe AR Mean age: 38.5 [19; 51] M: 60%; F: 40% | QES + zinc (1 tablet twice a day for 4 weeks)—Narivent® in adjunct to MNS (n = 20) | MNS every day for 4 weeks (n = 20) | TNSS: 2.95 ± 1.73 (con) vs. 4.5 ± 2.44 (int) (*) Pre-post changes in RCAT (median and IQR): +2 [0; +3.5] (con) vs. +5 [+1.5; +7] (int) (*) Pre-post changes in total IgE (IU/mL): No significant difference between groups | RCT | [25] |
77 patients with mild AR Mean age: 41.4 [18; 63] M: 57%; F: 43% | QES + zinc (2 tablets when needed, up to 6 tablets/day for 7 days)—SniZtop® (n = 77) | None (n = 0) | 1 day (0–120 min): PNIF (L/min): from 83.0 ± 32.7 to 94.8 ± 32.9 (*) VAS (rhinorrhea): from 18.6 [14.0; 24.6] to 6.9 [4.8; 9.9] 1 week (0–120 min): PNIF (L/min): from 97.0 ± 30.7 to 105.1 ± 32.7 (*) VAS (rhinorrhea): ? (*) | Pre-post study | [26] |
45 patients with moderate-to-severe AR Mean age: 32.5 [18; 60] M: 47%; F: 53% | QES + zinc (1 tablet twice a day for 30 days)—Narivent® (n = 45) | None (n = 0) | 30 days: SNOT-20: from 38.14 [12; 72] to 26.14 [8; 44] (*) MTT (min): from 24 [19; 40] to 12 [?; ?] (*) | Pre-post study | [27] |
First Author (Date) | Design | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Citation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bruttmann (1995) | RCT | Y | ? | Y | Y | ? | Y | Y | Y | Y | ? | Y | N | ? | ? | [23] |
Benichou (2014) | Y | Y | Y | Y | Y | Y | Y | Y | Y | ? | Y | Y | Y | Y | [24] | |
Andaloro (2022) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | [25] | |
Syrigou (2021) | Pre-post study | Y | Y | Y | ? | Y | Y | Y | N | Y | Y | Y | Y | / | / | [26] |
Passali (2020) | Y | Y | Y | ? | ? | Y | Y | N | Y | Y | N | Y | / | / | [27] |
First Author (Date) | Adverse Effects Reported in Each Study | Citation |
---|---|---|
Bruttmann (1995) | No clinically relevant adverse effects | [23] |
Benichou (2014) | No adverse effects | [24] |
Andaloro (2022) | Adverse effects were reported in two patients (10%) for each group: in the intervention group, two patients had nasal dryness; in the control group, one patient developed nasal dryness and another one had epistaxis | [25] |
Syrigou (2021) | Two patients (2.6%) reported muscle strain and cough | [26] |
Passali (2020) | No clinically relevant adverse effects | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonelli, M.; Mazzoleni, E.; Donelli, D. Quail Egg-Based Supplements in Allergic Rhinitis: A Systematic Review of Clinical Studies. Nutrients 2025, 17, 712. https://doi.org/10.3390/nu17040712
Antonelli M, Mazzoleni E, Donelli D. Quail Egg-Based Supplements in Allergic Rhinitis: A Systematic Review of Clinical Studies. Nutrients. 2025; 17(4):712. https://doi.org/10.3390/nu17040712
Chicago/Turabian StyleAntonelli, Michele, Elena Mazzoleni, and Davide Donelli. 2025. "Quail Egg-Based Supplements in Allergic Rhinitis: A Systematic Review of Clinical Studies" Nutrients 17, no. 4: 712. https://doi.org/10.3390/nu17040712
APA StyleAntonelli, M., Mazzoleni, E., & Donelli, D. (2025). Quail Egg-Based Supplements in Allergic Rhinitis: A Systematic Review of Clinical Studies. Nutrients, 17(4), 712. https://doi.org/10.3390/nu17040712