Associations Between Dietary Patterns and the Occurrence of Hospitalization and Gastrointestinal Disorders—A Retrospective Study of COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Selection
2.2. Food Frequency Consumption and Dietary Patterns Identification
2.3. Gastric Scales: GSRS, PAC-SYM and FACT-G7
2.4. Statistical Analysis
3. Results
3.1. Baseline Sample Characteristics
3.2. Dietary Pattern Characteristics
3.3. Dietary Patterns and Hospitalization Among the COVID-19 Patients
3.4. Gastrointestinal Disorders and Dietary Patterns
4. Discussion
4.1. Dietary Patterns and Severity of COVID-19
4.2. Dietary Patterns and Gastrointestinal Disorders
4.3. Dietary Factors Contributing to Intestine Wall Maintenance
4.4. Strengths and Limitations
4.5. Clinical Impact and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 26 November 2023).
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet Lond. Engl. 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833.e3. [Google Scholar] [CrossRef]
- Gu, J.; Han, B.; Wang, J. COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral Transmission. Gastroenterology 2020, 158, 1518–1519. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Duan, C.; Zhang, S.; Spiegel, B.; Shi, H.; Wang, W.; Zhang, L.; Lin, R.; Liu, J.; Ding, Z.; et al. Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am. J. Gastroenterol. 2020, 115, 916–923. [Google Scholar] [CrossRef]
- Pan, L.; Mu, M.; Yang, P.; Sun, Y.; Wang, R.; Yan, J.; Li, P.; Hu, B.; Wang, J.; Hu, C.; et al. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. Am. J. Gastroenterol. 2020, 115, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Zhang, Y.; Liu, Y.; Liu, Y. Are Gastrointestinal Symptoms Associated with Higher Risk of Mortality in COVID-19 Patients? A Systematic Review and Meta-Analysis. BMC Gastroenterol. 2022, 22, 106. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet Lond. Engl. 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, J.C.; Jayarajah, U.; Riza, R.; Abeysuriya, V.; Seneviratne, S.L. Gastrointestinal Manifestations in COVID-19. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1362–1388. [Google Scholar] [CrossRef] [PubMed]
- Schloss, J.V. Nutritional Deficiencies That May Predispose to Long COVID. Inflammopharmacology 2023, 31, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Gracia Aznar, A.; Moreno Egea, F.; Gracia Banzo, R.; Gutierrez, R.; Rizo, J.M.; Rodriguez-Ledo, P.; Nerin, I.; Regidor, P.-A. Pro-Resolving Inflammatory Effects of a Marine Oil Enriched in Specialized Pro-Resolving Mediators (SPMs) Supplement and Its Implication in Patients with Post-COVID Syndrome (PCS). Biomedicines 2024, 12, 2221. [Google Scholar] [CrossRef] [PubMed]
- Balta, M.G.; Papathanasiou, E.; Christopoulos, P.F. Specialized Pro-Resolving Mediators as Potential Regulators of Inflammatory Macrophage Responses in COVID-19. Front. Immunol. 2021, 12, 632238. [Google Scholar] [CrossRef] [PubMed]
- Cagnina, R.E.; Duvall, M.G.; Nijmeh, J.; Levy, B.D. Specialized Pro-Resolving Mediators in Respiratory Diseases. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 67–74. [Google Scholar] [CrossRef]
- Taha, A.M.; Shaarawy, A.S.; Omar, M.M.; Abouelmagd, K.; Shalma, N.M.; Alhashemi, M.; Ahmed, H.M.; Allam, A.H.; Abd-ElGawad, M. Effect of Omega-3 Fatty Acids Supplementation on Serum Level of C-Reactive Protein in Patients with COVID-19: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Transl. Med. 2022, 20, 401. [Google Scholar] [CrossRef]
- Sedighiyan, M.; Abdollahi, H.; Karimi, E.; Badeli, M.; Erfanian, R.; Raeesi, S.; Hashemi, R.; Vahabi, Z.; Asanjarani, B.; Mansouri, F.; et al. Omega-3 Polyunsaturated Fatty Acids Supplementation Improve Clinical Symptoms in Patients with Covid-19: A Randomised Clinical Trial. Int. J. Clin. Pract. 2021, 75, e14854. [Google Scholar] [CrossRef] [PubMed]
- Toubal, A.; Kiaf, B.; Beaudoin, L.; Cagninacci, L.; Rhimi, M.; Fruchet, B.; da Silva, J.; Corbett, A.J.; Simoni, Y.; Lantz, O.; et al. Mucosal-Associated Invariant T Cells Promote Inflammation and Intestinal Dysbiosis Leading to Metabolic Dysfunction during Obesity. Nat. Commun. 2020, 11, 3755. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota–Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Mardi, A.; Kamran, A.; Pourfarzi, F.; Zare, M.; Hajipour, A.; Doaei, S.; Abediasl, N.; Hackett, D. Potential of Macronutrients and Probiotics to Boost Immunity in Patients with SARS-COV-2: A Narrative Review. Front. Nutr. 2023, 10, 1161894. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef] [PubMed]
- EUSurvey—Welcome. Available online: https://ec.europa.eu/eusurvey/home/welcome?language=en (accessed on 10 November 2024).
- Niedzwiedzka, E.; Wadolowska, L.; Kowalkowska, J. Reproducibility of A Non-Quantitative Food Frequency Questionnaire (62-Item FFQ-6) and PCA-Driven Dietary Pattern Identification in 13–21-Year-Old Females. Nutrients 2019, 11, 2183. [Google Scholar] [CrossRef] [PubMed]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-70258-1. [Google Scholar]
- Svedlund, J.; Sjödin, I.; Dotevall, G. GSRS--a Clinical Rating Scale for Gastrointestinal Symptoms in Patients with Irritable Bowel Syndrome and Peptic Ulcer Disease. Dig. Dis. Sci. 1988, 33, 129–134. [Google Scholar] [CrossRef]
- Kulich, K.R.; Madisch, A.; Pacini, F.; Piqué, J.M.; Regula, J.; Van Rensburg, C.J.; Újszászy, L.; Carlsson, J.; Halling, K.; Wiklund, I.K. Reliability and Validity of the Gastrointestinal Symptom Rating Scale (GSRS) and Quality of Life in Reflux and Dyspepsia (QOLRAD) Questionnaire in Dyspepsia: A Six-Country Study. Health Qual. Life Outcomes 2008, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Yiannakou, Y.; Tack, J.; Piessevaux, H.; Dubois, D.; Quigley, E.M.M.; Ke, M.Y.; Silva, S.D.; Joseph, A.; Kerstens, R. The PAC-SYM Questionnaire for Chronic Constipation: Defining the Minimal Important Difference. Aliment. Pharmacol. Ther. 2017, 46, 1103. [Google Scholar] [CrossRef]
- Frank, L.; Kleinman, L.; Farup, C.; Taylor, L.; Miner, P. Psychometric Validation of a Constipation Symptom Assessment Questionnaire. Scand. J. Gastroenterol. 1999, 34, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Yanez, B.; Pearman, T.; Lis, C.G.; Beaumont, J.L.; Cella, D. The FACT-G7: A Rapid Version of the Functional Assessment of Cancer Therapy-General (FACT-G) for Monitoring Symptoms and Concerns in Oncology Practice and Research. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 1073–1078. [Google Scholar] [CrossRef]
- FACT-G7. Available online: https://www.facit.org/measures/fact-g7 (accessed on 11 November 2024).
- Trujillo-Mayol, I.; Guerra-Valle, M.; Casas-Forero, N.; Sobral, M.M.C.; Viegas, O.; Alarcón-Enos, J.; Ferreira, I.M.P.L.V.O.; Pinho, O. Western Dietary Pattern Antioxidant Intakes and Oxidative Stress: Importance During the SARS-CoV-2/COVID-19 Pandemic. Adv. Nutr. 2021, 12, 670–681. [Google Scholar] [CrossRef]
- da Silva Oliveira, E.K.; Vieira, T.d.S.; de Souza, O.F.; Noll, P.R.e.S.; Bezerra, I.M.P.; Cavalcanti, M.P.E.; de Abreu, L.C.; Riera, A.R.P. Consumption of Ultra-Processed Foods in the Brazilian Amazon during COVID-19. Nutrients 2024, 16, 2117. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- López-Taboada, I.; González-Pardo, H.; Conejo, N.M. Western Diet: Implications for Brain Function and Behavior. Front. Psychol. 2020, 11, 564413. [Google Scholar] [CrossRef] [PubMed]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The Role of Nutrition in Inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef] [PubMed]
- Mignogna, C.; Costanzo, S.; Ghulam, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M. Impact of Nationwide Lockdowns Resulting from the First Wave of the COVID-19 Pandemic on Food Intake, Eating Behaviors, and Diet Quality: A Systematic Review. Adv. Nutr. 2021, 13, 388–423. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Costanzo, S.; Ruggiero, E.; Persichillo, M.; Esposito, S.; Olivieri, M.; Di Castelnuovo, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Changes in ultra-processed food consumption during the first Italian lockdown following the COVID-19 pandemic and major correlates: Results from two population-based cohorts. Public Health Nutr. 2021, 24, 3905–3915. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Fatemi, R.; Yon, D.K.; Won Lee, S.; Koyanagi, A.; Il Shin, J.; Smith, L. The effect of adherence to high-quality dietary pattern on COVID-19 outcomes: A systematic review and meta-analysis. J. Med. Virol. 2022, 95, e28298. [Google Scholar] [CrossRef] [PubMed]
- Perez-Araluce, R.; Martinez-Gonzalez, M.A.; Fernandez-Lazaro, C.I.; Bes-Rastrollo, M.; Gea, A.; Carlos, S. Mediterranean diet and the risk of COVID-19 in the ‘Seguimiento Universidad de Navarra’ cohort. Clin. Nutr. 2022, 41, 3061–3068. [Google Scholar] [CrossRef]
- Tassakos, A.; Kloppman, A.; Chun, J.; Louie, Y. The Impact of Diet Quality on COVID-19 Severity and Outcomes—A Scoping Review. Curr. Nutr. Rep. 2025, 14, 27. [Google Scholar] [CrossRef]
- Chen, J.; Lu, F.; Shen, B.; Xu, H.; Chen, Y.; Hu, Q.; Xu, A.; Tung, T.-H.; Hong, D. Associations between pre-infection serum vitamin D concentrations and Omicron COVID-19 incidence, severity and reoccurrence in elderly individuals. Public Health Nutr. 2024, 27, e197. [Google Scholar] [CrossRef]
- Damayanthi, H.D.W.T.; Prabani, K.I.P. Nutritional determinants and COVID-19 outcomes of older patients with COVID-19: A systematic review. Arch. Gerontol. Geriatr. 2021, 95, 104411. [Google Scholar] [CrossRef] [PubMed]
- Vogel-González, M.; Talló-Parra, M.; Herrera-Fernández, V.; Pérez-Vilaró, G.; Chillón, M.; Nogués, X.; Gómez-Zorrilla, S.; López-Montesinos, I.; Arnau-Barrés, I.; Sorli-Redó, M.L.; et al. Low Zinc Levels at Admission Associates with Poor Clinical Outcomes in SARS-CoV-2 Infection. Nutrients 2021, 13, 562. [Google Scholar] [CrossRef]
- Barrett, R.; Youssef, M.; Shah, I.; Ioana, J.; Lawati, A.A.; Bukhari, A.; Hegarty, S.; Cormican, L.J.; Judge, E.; Burke, C.M.; et al. Vitamin D Status and Mortality from SARS CoV-2: A Prospective Study of Unvaccinated Caucasian Adults. Nutrients 2022, 14, 3252. [Google Scholar] [CrossRef]
- Younesian, O.; Khodabakhshi, B.; Abdolahi, N.; Norouzi, A.; Behnampour, N.; Hosseinzadeh, S.; Alarzi, S.S.H.; Joshaghani, H. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol. Trace Elem. Res. 2022, 200, 1562–1567. [Google Scholar] [CrossRef] [PubMed]
- Cioboata, R.; Vasile, C.M.; Bălteanu, M.A.; Georgescu, D.E.; Toma, C.; Dracea, A.S.; Nicolosu, D. Evaluating Serum Calcium and Magnesium Levels as Predictive Biomarkers for Tuberculosis and COVID-19 Severity: A Romanian Prospective Study. Int. J. Mol. Sci. 2024, 25, 418. [Google Scholar] [CrossRef]
- Taraszewska, A. Risk Factors for Gastroesophageal Reflux Disease Symptoms Related to Lifestyle and Diet. Rocz. Panstw. Zakl. Hig. 2021, 72, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Bobin, F.; Mouawad, F.; Zelenik, K.; Calvo-Henriquez, C.; Chiesa-Estomba, C.M.; Enver, N.; Nacci, A.; Barillari, M.R.; Schindler, A.; et al. Development of Scores Assessing the Refluxogenic Potential of Diet of Patients with Laryngopharyngeal Reflux. Eur. Arch. Otorhinolaryngol. 2019, 276, 3389–3404. [Google Scholar] [CrossRef] [PubMed]
- Dağlı, Ü.; Kalkan, İ.H. The Role of Lifestyle Changes in Gastroesophageal Reflux Diseases Treatment. Turk. J. Gastroenterol. Off. J. Turk. Soc. Gastroenterol. 2017, 28, S33–S37. [Google Scholar] [CrossRef] [PubMed]
- Kamiński, M.; Łoniewski, I.; Misera, A.; Marlicz, W. Heartburn-Related Internet Searches and Trends of Interest across Six Western Countries: A Four-Year Retrospective Analysis Using Google Ads Keyword Planner. Int. J. Environ. Res. Public Health 2019, 16, 4591. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Carter, J.; Weiss, J.E.; Crowell, M.D. The Effects of Intraduodenal Nutrient Infusion on Serum CCK, LES Pressure, and Gastroesophageal Reflux. Neurogastroenterol. Motil. 2011, 23, 631-e256. [Google Scholar] [CrossRef] [PubMed]
- Baroni, L.; Bonetto, C.; Solinas, I.; Visaggi, P.; Galchenko, A.V.; Mariani, L.; Bottari, A.; Orazzini, M.; Guidi, G.; Lambiase, C.; et al. Diets Including Animal Food Are Associated with Gastroesophageal Reflux Disease. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 2736. [Google Scholar] [CrossRef]
- Zhang, M.; Hou, Z.-K.; Huang, Z.-B.; Chen, X.-L.; Liu, F.-B. Dietary and Lifestyle Factors Related to Gastroesophageal Reflux Disease: A Systematic Review. Ther. Clin. Risk Manag. 2021, 17, 305. [Google Scholar] [CrossRef]
- Mitsou, E.K.; Kakali, A.; Antonopoulou, S.; Mountzouris, K.C.; Yannakoulia, M.; Panagiotakos, D.B.; Kyriacou, A. Adherence to the Mediterranean Diet Is Associated with the Gut Microbiota Pattern and Gastrointestinal Characteristics in an Adult Population. Br. J. Nutr. 2017, 117, 1645–1655. [Google Scholar] [CrossRef]
- Barber, C.; Mego, M.; Sabater, C.; Vallejo, F.; Bendezu, R.A.; Masihy, M.; Guarner, F.; Espín, J.C.; Margolles, A.; Azpiroz, F. Differential Effects of Western and Mediterranean-Type Diets on Gut Microbiota: A Metagenomics and Metabolomics Approach. Nutrients 2021, 13, 2638. [Google Scholar] [CrossRef]
- Barberio, B.; Judge, C.; Savarino, E.V.; Ford, A.C. Global Prevalence of Functional Constipation According to the Rome Criteria: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 638–648. [Google Scholar] [CrossRef]
- Nag, A.; Martin, S.A.; Mladsi, D.; Olayinka-Amao, O.; Purser, M.; Vekaria, R.M. The Humanistic and Economic Burden of Chronic Idiopathic Constipation in the USA: A Systematic Literature Review. Clin. Exp. Gastroenterol. 2020, 13, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Vriesman, M.H.; Koppen, I.J.N.; Camilleri, M.; Di Lorenzo, C.; Benninga, M.A. Management of Functional Constipation in Children and Adults. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 21–39. [Google Scholar] [CrossRef]
- Lai, H.; Li, Y.; He, Y.; Chen, F.; Mi, B.; Li, J.; Xie, J.; Ma, G.; Yang, J.; Xu, K.; et al. Effects of Dietary Fibers or Probiotics on Functional Constipation Symptoms and Roles of Gut Microbiota: A Double-Blinded Randomized Placebo Trial. Gut Microbes 2023, 15, 2197837. [Google Scholar] [CrossRef]
- Chey, S.W.; Chey, W.D.; Jackson, K.; Eswaran, S. Exploratory Comparative Effectiveness Trial of Green Kiwifruit, Psyllium, or Prunes in US Patients with Chronic Constipation. Am. J. Gastroenterol. 2021, 116, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Khavandegar, A.; Heidarzadeh, A.; Angoorani, P.; Hasani-Ranjbar, S.; Ejtahed, H.-S.; Larijani, B.; Qorbani, M. Adherence to the Mediterranean Diet Can Beneficially Affect the Gut Microbiota Composition: A Systematic Review. BMC Med. Genom. 2024, 17, 91. [Google Scholar] [CrossRef]
- Duncanson, K.; Williams, G.; Hoedt, E.C.; Collins, C.E.; Keely, S.; Talley, N.J. Diet-Microbiota Associations in Gastrointestinal Research: A Systematic Review. Gut Microbes 2024, 16, 2350785. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Zhang, Q.A.; Magkos, F.; Ng, M.; Michael, N.; Wu, X.; Volchanskaya, V.S.B.; Lai, X.; Wanjaya, E.R.; Elejalde, U.; et al. Effect of an Asian-Adapted Mediterranean Diet and Pentadecanoic Acid on Fatty Liver Disease: The TANGO Randomized Controlled Trial. Am. J. Clin. Nutr. 2024, 119, 788–799. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, J.; Wang, Y.; Wang, D. The Relationship Between Plant-Based Diet and Risk of Digestive System Cancers: A Meta-Analysis Based on 3,059,009 Subjects. Front. Public Health 2022, 10, 892153. [Google Scholar] [CrossRef] [PubMed]
- Losno, E.A.; Sieferle, K.; Perez-Cueto, F.J.A.; Ritz, C. Vegan Diet and the Gut Microbiota Composition in Healthy Adults. Nutrients 2021, 13, 2402. [Google Scholar] [CrossRef]
- Del Bo’, C.; Bernardi, S.; Cherubini, A.; Porrini, M.; Gargari, G.; Hidalgo-Liberona, N.; González-Domínguez, R.; Zamora-Ros, R.; Peron, G.; Marino, M.; et al. A Polyphenol-Rich Dietary Pattern Improves Intestinal Permeability, Evaluated as Serum Zonulin Levels, in Older Subjects: The MaPLE Randomised Controlled Trial. Clin. Nutr. Edinb. Scotl. 2021, 40, 3006–3018. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H. Complex Regulatory Effects of Gut Microbial Short-Chain Fatty Acids on Immune Tolerance and Autoimmunity. Cell. Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Pugliese, G.; Barrea, L.; Savastano, S.; Colao, A. Commentary: Obesity: The “Achilles Heel” for COVID-19? Metabolism 2020, 108, 154251. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Roso, M.B.; Knott-Torcal, C.; Matilla-Escalante, D.C.; Garcimartín, A.; Sampedro-Nuñez, M.A.; Dávalos, A.; Marazuela, M. COVID-19 Lockdown and Changes of the Dietary Pattern and Physical Activity Habits in a Cohort of Patients with Type 2 Diabetes Mellitus. Nutrients 2020, 12, 2327. [Google Scholar] [CrossRef]
- Johnson, A.N.; Clockston, R.L.M.; Fremling, L.; Clark, E.; Lundeberg, P.; Mueller, M.; Graham, D.J. Changes in Adults’ Eating Behaviors During the Initial Months of the COVID-19 Pandemic: A Narrative Review. J. Acad. Nutr. Diet. 2023, 123, 144–194.e30. [Google Scholar] [CrossRef] [PubMed]
- Rashidah, N.H.; Lim, S.M.; Neoh, C.F.; Majeed, A.B.A.; Tan, M.P.; Khor, H.M.; Tan, A.H.; Rehiman, S.H.; Ramasamy, K. Differential Gut Microbiota and Intestinal Permeability between Frail and Healthy Older Adults: A Systematic Review. Ageing Res. Rev. 2022, 82, 101744. [Google Scholar] [CrossRef]
- Thompson, F.E.; Subar, A.F. Assessment Methods for Research and Practice. Nutrition in the Prevention and Treatment of Disease. In Dietary Assessment Methodology; Elsevier Inc.: Amsterdam, The Netherlands, 2017. Available online: https://epi.grants.cancer.gov (accessed on 16 February 2025). [CrossRef]
- FAO. Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; Food & Agriculture Org.: Rome, Italy, 2018. [Google Scholar]
Variables | Total Sample | Hospitalization | p-Value | |
---|---|---|---|---|
No | Yes | |||
Sample size (n) | 550 | 468 | 82 | |
Gender | ||||
men | 10.2 | 4.5 | 42.7 | <0.0001 |
women | 89.8 | 95.5 | 57.3 | |
Age (years #) | 41.2 ± 11.4 | 38.8 ± 9.4 | 54.5 ±12.8 | <0.0001 |
18.0–29.9 | 14.2 | 16.5 | 1.2 | |
30.0–39.9 | 34.9 | 39.1 | 11.0 | |
40.0–49.9 | 31.8 | 33.1 | 24.4 | <0.0001 |
50.0–59.9 | 10.5 | 8.5 | 22.0 | |
≥60.0 | 8.5 | 2.8 | 41.5 | |
Place of residence | ||||
village | 14.3 | 14.5 | 13.4 | |
town < 50,000 inhabitants | 16.7 | 16.8 | 15.9 | <0.0001 |
city (50,000–200,000 inhabitants) | 28.4 | 21.2 | 69.5 | |
city (>200,000 inhabitants) | 40.6 | 47.5 | 1.2 | |
Educational level | ||||
primary | 1.1 | 0.2 | 6.3 | |
basic vocational | 3.3 | 1.5 | 13.8 | <0.0001 |
secondary | 18.6 | 14.3 | 43.8 | |
higher | 77.0 | 84.0 | 36.3 | |
Chronic diseases | 46.4 | 42.3 | 70.4 | <0.0001 |
Taking medication | 41.3 | 37.4 | 63.4 | <0.0001 |
Ever smoker | ||||
no | 48.5 | 50.0 | 40.0 | |
yes | 33.2 | 30.3 | 50.0 | 0.0015 |
occasionally | 18.3 | 19.7 | 10.0 | |
Current smoker | 8.2 | 8.8 | 4.9 | 0.2432 |
Vitamin/mineral supplements use | 90.4 | 92.3 | 79.3 | <0.0001 |
vitamin supplements | 43.4 | 42.3 | 50.0 | 0.1931 |
folic acids supplements | 36.2 | 37.4 | 29.6 | 0.1796 |
iron supplements | 32.1 | 33.9 | 22.5 | 0.0452 |
zinc supplements | 49.7 | 51.8 | 37.7 | 0.0221 |
vitamin C supplements | 64.0 | 64.7 | 59.5 | 0.3698 |
Dietary habits | ||||
Number of meals | ||||
1–2 | 4.0 | 4.2 | 2.4 | |
3 | 33.5 | 33.1 | 35.4 | 0.7326 |
4 | 50.0 | 50.6 | 46.3 | |
≥5 | 12.5 | 12.0 | 15.9 | |
Regular meal times | ||||
no | 17.8 | 15.8 | 29.3 | |
rather yes | 60.9 | 61.3 | 58.5 | 0.0043 |
definitely yes | 21.3 | 22.9 | 12.2 | |
Special diet or intake restrictions | 58.5 | 60.7 | 46.3 | 0.0150 |
Overall decrease in food consumption | 38.5 | 38.9 | 36.6 | 0.6926 |
Food Groups | PCA-Derived Dietary Patterns | |
---|---|---|
‘Processed High Fat, Sugar, Salt, Meat, Dairy, and Potatoes’ | ‘Semi-Vegetarian’ | |
Refined grains | 0.66 | 0.03 |
Animal fats | 0.62 | 0.01 |
Processed meats | 0.62 | −0.07 |
Sugar, honey and sweets | 0.60 | −0.18 |
Cheese | 0.59 | 0.12 |
Potatoes | 0.47 | 0.25 |
Other fats (margarine, mayonnaise, dressings) | 0.46 | −0.04 |
Sweetened milk drinks and flavored cheese | 0.34 | 0.07 |
White meat | 0.33 | 0.27 |
Milk, fermented milk drinks and cheese curd | 0.33 | 0.48 |
Salty snacks | 0.30 | −0.17 |
Vegetables | −0.13 | 0.67 |
Fruits | −0.02 | 0.64 |
Nuts and seeds | −0.25 | 0.62 |
Whole grains | 0.05 | 0.60 |
Legumes | −0.06 | 0.57 |
Eggs | 0.17 | 0.45 |
Fish | 0.04 | 0.31 |
Share in explaining the variance (%) | 16.2 | 14.7 |
Variables | Total Sample | Hospitalization | p-Value | |
---|---|---|---|---|
No | Yes | |||
Sample size | 550 | 468 | 82 | |
PCA-derived dietary patterns | ||||
‘Processed high fat, sugar, salt, meat, dairy, and potatoes’ | ||||
terciles | ||||
bottom | 33.5 | 36.5 | 15.9 | |
middle | 33.3 | 34.0 | 29.3 | <0.0001 |
upper | 33.3 | 29.5 | 54.9 | |
‘Semi-vegetarian’ | ||||
terciles | ||||
bottom | 33.3 | 31.0 | 46.3 | |
middle | 33.5 | 33.1 | 35.4 | 0.0031 |
upper | 33.3 | 35.9 | 18.3 |
Dietary Patterns | Terciles | Hospitalization | |||
---|---|---|---|---|---|
Yes (Ref. No) | |||||
ORcrude | 95% CI | ORadj | 95% CI | ||
‘Processed high fat, sugar, salt, meat, dairy, and potatoes’ | bottom (ref.) | 1.00 | 1.00 | ||
middle | 1.99 | 0.98; 4.04 | 1.90 | 0.65; 5.61 | |
upper | 4.29 *** | 2.22; 8.29 | 4.40 ** | 1.78; 10.88 | |
score (1-point increase) | 1.78 *** | 1.43; 2.22 | 1.93 ** | 1.38; 2.71 | |
‘Semi-vegetarian’ | bottom (ref.) | 1.00 | 1.00 | ||
middle | 0.71 | 0.42; 1.22 | 0.64 | 0.30; 1.39 | |
upper | 0.34 *** | 0.18; 0.65 | 0.57 | 0.22; 1.44 | |
score (1-point increase) | 0.67 ** | 0.51; 0.87 | 0.85 | 0.57; 1.27 |
Variable | Total Sample | Dietary Patterns (Terciles/Levels) | |||||||
---|---|---|---|---|---|---|---|---|---|
‘Processed High Fat, Sugar, Salt, Meat, Dairy, and Potatoes’ | ‘Semi-Vegetarian’ | ||||||||
Bottom | Middle | Upper | p-Value | Bottom | Middle | Upper | p-Value | ||
Sample size (n) | 550 | 184 | 183 | 183 | 183 | 184 | 183 | ||
GSRS_sum of points # | 30.1 ± 11.7 | 27.4 ± 9.8 | 31.1 ± 11.9 | 32.0 ± 12.8 | 0.0011 | 31.9 ± 12.0 | 30.4 ± 12.2 | 28.1 ± 10.7 | 0.0064 |
terciles | |||||||||
bottom | 37.3 | 44.0 | 33.3 | 34.4 | 31.7 | 38.6 | 41.5 | ||
middle | 28.7 | 31.0 | 30.1 | 25.1 | 0.0202 | 26.2 | 26.6 | 33.3 | 0.0152 |
upper | 34.0 | 25.0 | 36.6 | 40.4 | 42.1 | 34.8 | 25.1 | ||
GSRS_Components (points) # | |||||||||
pain or discomfort in your upper abdomen or the pit of your stomach | 2.3 ± 1.4 | 2.2 ± 1.3 | 2.4 ± 1.5 | 2.4 ± 1.5 | 0.2788 | 2.5 ± 1.5 | 2.3 ± 1.5 | 2.2 ± 1.2 | 0.0916 |
heartburn | 1.5 ± 1.1 | 1.4 ± 1.0 | 1.4 ± 0.9 | 1.7 ± 1.3 | 0.0020 | 1.6 ± 1.1 | 1.6 ± 1.1 | 1.4 ± 0.9 | 0.5689 |
acid reflux | 1.6 ± 1.1 | 1.5 ± 1.0 | 1.5 ± 1.0 | 1.7 ± 1.3 | 0.2272 | 1.7 ± 1.3 | 1.6 ± 1.1 | 1.5 ± 0.9 | 0.6380 |
hunger pains | 2.0 ± 1.2 | 1.7 ± 1.0 | 2.0 ± 1.2 | 2.4 ± 1.4 | <0.0001 | 2.2 ± 1.3 | 2.0 ± 1.2 | 1.9 ± 1.1 | 0.0294 |
nausea | 1.5 ± 1.1 | 1.5 ± 1.0 | 1.6 ± 1.1 | 1.6 ± 1.2 | 0.6144 | 1.6 ± 1.2 | 1.5 ± 1.1 | 1.4 ± 1.0 | 0.3054 |
rumbling | 2.2 ± 1.3 | 2.0 ± 1.1 | 2.3 ± 1.3 | 2.3 ± 1.3 | 0.0179 | 2.3 ± 1.3 | 2.3 ± 1.3 | 2.1 ± 1.1 | 0.3691 |
bloated stomach | 2.7 ± 1.6 | 2.4 ± 1.4 | 2.9 ± 1.6 | 2.7 ± 1.7 | 0.0277 | 2.9 ± 1.6 | 2.6 ± 1.6 | 2.5 ± 1.4 | 0.0588 |
breaking wind | 3.0 ± 1.5 | 2.7 ± 1.3 | 3.1 ± 1.6 | 3.1 ± 1.5 | 0.0109 | 3.2 ± 1.5 | 3.0 ± 1.6 | 2.8 ± 1.4 | 0.0691 |
constipation | 1.9 ± 1.5 | 1.8 ± 1.4 | 2.0 ± 1.5 | 2.0 ± 1.5 | 0.0653 | 2.1 ± 1.6 | 2.0 ± 1.5 | 1.7 ± 1.3 | 0.0294 |
diarrhoea | 1.5 ± 1.1 | 1.4 ± 0.9 | 1.6 ± 1.2 | 1.5 ± 1.1 | 0.2012 | 1.5 ± 1.1 | 1.5 ± 1.1 | 1.4 ± 0.9 | 0.4283 |
hard stools | 2.0 ± 1.4 | 1.7 ± 1.2 | 2.1 ± 1.5 | 2.2 ± 1.6 | 0.0367 | 2.2 ± 1.6 | 2.0 ± 1.4 | 1.8 ± 1.3 | 0.0415 |
loose stools | 1.7 ± 1.2 | 1.6 ± 1.0 | 1.8 ± 1.3 | 1.8 ± 1.2 | 0.0969 | 1.7 ± 1.2 | 1.7 ± 1.2 | 1.7 ± 1.1 | 0.9703 |
urgent need to have a bowel movement | 1.6 ± 1.1 | 1.5 ± 1.0 | 1.7 ± 1.2 | 1.7 ± 1.2 | 0.1063 | 1.6 ± 1.1 | 1.7 ± 1.2 | 1.5 ± 1.0 | 0.0258 |
sensation of not completely emptying the bowels | 2.0 ± 1.4 | 1.8 ± 1.3 | 2.0 ± 1.4 | 2.1 ± 1.4 | 0.1851 | 2.1 ± 1.5 | 1.9 ± 1.3 | 1.9 ± 1.4 | 0.3391 |
belching | 2.6 ± 1.6 | 2.4 ± 1.5 | 2.7 ± 1.6 | 2.7 ± 1.6 | 0.1033 | 2.8 ± 1.7 | 2.5 ± 1.6 | 2.4 ± 1.5 | 0.2777 |
PAC-SYM_sum of points # | 7.5 ± 7.8 | 6.2 ± 7.0 | 7.6 ± 7.5 | 8.8 ± 8.5 | 0.0140 | 8.6 ± 8.0 | 7.3 ± 7.5 | 6.6 ± 7.6 | 0.0085 |
terciles | |||||||||
bottom | 42.5 | 48.4 | 42.6 | 36.6 | 33.3 | 42.9 | 51.4 | ||
middle | 23.8 | 26.6 | 23.0 | 21.9 | 0.0220 | 25.7 | 25.0 | 20.8 | 0.0114 |
upper | 33.6 | 25.0 | 34.4 | 41.5 | 41.0 | 32.1 | 27.9 | ||
PAC-SYM_Components (points) # | |||||||||
discomfort in your abdomen | 0.8 ± 0.9 | 0.6 ± 0.8 | 0.8 ± 1.0 | 0.8 ± 1.0 | 0.0449 | 0.9 ± 1.0 | 0.7 ± 1.0 | 0.7 ± 0.8 | 0.0578 |
pain in your abdomen | 0.5 ± 0.8 | 0.4 ± 0.7 | 0.5 ± 0.9 | 0.7 ± 0.9 | 0.0235 | 0.6 ± 0.9 | 0.5 ± 0.8 | 0.5 ± 0.8 | 0.1713 |
bloating in your abdomen | 1.2 ± 1.1 | 1.0 ± 1.0 | 1.3 ± 1.1 | 1.2 ± 1.1 | 0.1124 | 1.3 ± 1.1 | 1.1 ± 1.0 | 1.1 ± 1.0 | 0.2734 |
stomach cramps | 0.5 ± 0.8 | 0.3 ± 0.7 | 0.5 ± 0.8 | 0.6 ± 0.9 | 0.0010 | 0.5 ± 0.8 | 0.5 ± 0.8 | 0.4 ± 0.8 | 0.2521 |
painful bowel movements | 0.4 ± 0.9 | 0.3 ± 0.8 | 0.4 ± 0.9 | 0.6 ± 1.0 | 0.0170 | 0.6 ± 1.0 | 0.4 ± 0.8 | 0.3 ± 0.8 | 0.0047 |
rectal burning during or after a bowel movement | 0.5 ± 0.9 | 0.4 ± 0.7 | 0.4 ± 0.8 | 0.7 ± 1.1 | 0.0025 | 0.5 ± 0.8 | 0.5 ± 0.9 | 0.5 ± 0.9 | 0.2021 |
rectal bleeding during or after a bowel movement | 0.3 ± 0.8 | 0.3 ± 0.7 | 0.3 ± 0.7 | 0.4 ± 0.9 | 0.1541 | 0.4 ± 0.9 | 0.3 ± 0.7 | 0.3 ± 0.8 | 0.0660 |
incomplete bowel movement, like you did not “finish” | 0.7 ± 0.9 | 0.6 ± 0.9 | 0.7 ± 0.9 | 0.9 ± 1.0 | 0.1152 | 0.8 ± 1.0 | 0.7 ± 0.9 | 0.7 ± 1.0 | 0.2363 |
bowel movements that were too hard | 0.7 ± 1.0 | 0.6 ± 0.9 | 0.7 ± 1.0 | 0.8 ± 1.1 | 0.7807 | 0.8 ± 1.1 | 0.7 ± 1.0 | 0.6 ± 0.9 | 0.1420 |
bowel movements that were too small | 0.5 ± 0.9 | 0.5 ± 0.9 | 0.5 ± 0.9 | 0.6 ± 1.0 | 0.5200 | 0.6 ± 0.9 | 0.5 ± 0.9 | 0.5 ± 0.8 | 0.0793 |
straining or squeezing to try to pass bowel movements | 0.8 ± 1.1 | 0.7 ± 0.9 | 0.9 ± 1.1 | 0.9 ± 1.1 | 0.1599 | 1.0 ± 1.1 | 0.9 ± 1.1 | 0.6 ± 1.0 | 0.0017 |
feeling like you have to pass a bowel movement but you could not (false alarm) | 0.5 ± 0.9 | 0.5 ± 0.9 | 0.5 ± 0.9 | 0.6 ± 1.0 | 0.4203 | 0.6 ± 1.0 | 0.5 ± 0.8 | 0.5 ± 0.9 | 0.2299 |
FACT-G7_sum of points # | 9.2 ± 5.3 | 7.7 ± 5.0 | 9.3 ± 4.8 | 10.7 ± 5.5 | <0.0001 | 10.2 ± 5.3 | 9.3 ± 5.4 | 8.2 ± 4.9 | 0.0023 |
terciles | |||||||||
bottom | 35.5 | 47.3 | 33.9 | 25.1 | 28.4 | 35.9 | 42.1 | ||
middle | 30.5 | 28.3 | 31.7 | 31.7 | 0.0001 | 30.6 | 28.8 | 32.2 | 0.0203 |
upper | 34.0 | 24.5 | 34.4 | 43.2 | 41.0 | 35.3 | 25.7 | ||
FACT-G7_Components (points) # | |||||||||
I have a lack of energy | 1.9 ± 1.2 | 1.7 ± 1.2 | 2.0 ± 1.1 | 2.1 ± 1.2 | 0.0057 | 2.1 ± 1.2 | 1.8 ± 1.2 | 1.8 ± 1.2 | 0.0192 |
I have pain | 1.0 ± 1.1 | 0.7 ± 1.0 | 0.9 ± 1.0 | 1.3 ± 1.3 | <0.0001 | 1.1 ± 1.1 | 0.9 ± 1.2 | 0.9 ± 1.1 | 0.0671 |
I have nausea | 0.4 ± 0.8 | 0.3 ± 0.7 | 0.4 ± 0.7 | 0.5 ± 0.9 | 0.1735 | 0.4 ± 0.8 | 0.4 ± 0.9 | 0.3 ± 0.7 | 0.9127 |
I worry that my condition will get worse | 1.1 ± 1.2 | 0.9 ± 1.0 | 1.2 ± 1.2 | 1.3 ± 1.3 | 0.0200 | 1.3 ± 1.2 | 1.2 ± 1.3 | 0.9 ± 1.1 | 0.0072 |
I am not sleeping well | 1.7 ± 1.3 | 1.4 ± 1.3 | 1.7 ± 1.3 | 1.9 ± 1.4 | 0.0002 | 1.8 ± 1.3 | 1.6 ± 1.3 | 1.6 ± 1.4 | 0.1022 |
I am not able to enjoy life | 1.5 ± 1.2 | 1.3 ± 1.1 | 1.5 ± 1.1 | 1.8 ± 1.3 | 0.0006 | 1.6 ± 1.3 | 1.6 ± 1.2 | 1.3 ± 1.1 | 0.0100 |
I am not content with the quality of my life right now | 1.7 ± 1.2 | 1.5 ± 1.2 | 1.7 ± 1.2 | 1.9 ± 1.3 | 0.0078 | 1.9 ± 1.3 | 1.7 ± 1.2 | 1.4 ± 1.1 | 0.0028 |
Dietary Patterns | Terciles/ Levels | GSRS | |||||||
---|---|---|---|---|---|---|---|---|---|
Terciles | |||||||||
Middle (Ref. Bottom) | Upper (Ref. Bottom) | ||||||||
ORcrude | 95% CI | ORadj | 95% CI | ORcrude | 95% CI | ORadj | 95% CI | ||
‘Processed high fat, sugar, salt, meat, dairy, and potatoes’ | bottom (ref.) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
middle | 1.28 | 0.78; 2.11 | 1.23 | 0.72; 2.11 | 1.93 ** | 1.17; 3.20 | 2.21 ** | 1.28; 3.83 | |
upper | 1.04 | 0.62; 1.73 | 1.40 | 0.78; 2.52 | 2.07 ** | 1.26; 3.40 | 3.12 *** | 1.74; 5.63 | |
score (1-point increase) | 1.00 | 0.79; 1.28 | 1.17 | 0.92; 1.49 | 1.26 * | 1.03; 1.55 | 1.47 ** | 1.16; 1.86 | |
‘Semi-vegetarian’ | bottom (ref.) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
middle | 0.83 | 0.36; 1.91 | 0.75 | 0.42; 1.34 | 0.68 | 0.42; 1.10 | 0.57 * | 0.33; 0.97 | |
upper | 0.97 | 0.58; 1.61 | 0.85 | 0.48; 1.50 | 0.46 ** | 0.28; 0.75 | 0.31 *** | 0.17; 0.56 | |
score (1-point increase) | 0.98 | 0.80; 1.21 | 0.94 | 0.76; 1.18 | 0.70 *** | 0.56; 0.86 | 0.62 *** | 0.49; 0.79 |
Dietary Patterns | Terciles/ Levels | PAC-SYM | |||||||
---|---|---|---|---|---|---|---|---|---|
Terciles | |||||||||
Middle (Ref. Bottom) | Upper (Ref. Bottom) | ||||||||
ORcrude | 95% CI | ORadj | 95% CI | ORcrude | 95% CI | ORadj | 95% CI | ||
‘Processed high fat, sugar, salt, meat, dairy, and potatoes’ | bottom (ref.) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
middle | 0.98 | 0.58; 1.65 | 0.93 | 0.54; 1.61 | 1.56 | 0.96; 2.55 | 1.56 | 0.92; 2.64 | |
upper | 1.08 | 0.64; 1.84 | 1.38 | 0.76; 2.54 | 2.19 ** | 1.35; 3.57 | 3.11 *** | 1.76; 5.48 | |
score (1-point increase) | 0.98 | 0.78; 1.23 | 1.05 | 0.81; 1.35 | 1.32 ** | 1.09; 1.60 | 1.50 *** | 1.20; 1.87 | |
‘Semi-vegetarian’ | bottom (ref.) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
middle | 0.76 | 0.43; 1.31 | 0.66 | 0.37; 1.17 | 0.61 * | 0.38; 0.98 | 0.52 * | 0.31; 0.88 | |
upper | 0.52 * | 0.31; 0.90 | 0.47 * | 0.26; 0.84 | 0.44 *** | 0.27; 0.71 | 0.35 *** | 0.20; 0.60 | |
score (1-point increase) | 0.80 * | 0.64; 0.99 | 0.78 * | 0.61; 0.98 | 0.70 *** | 0.57; 0.86 | 0.64 *** | 0.51; 0.81 |
Dietary Patterns | Terciles/ Levels | FACT-G7 | |||||||
---|---|---|---|---|---|---|---|---|---|
Terciles | |||||||||
Middle (Ref. Bottom) | Upper (Ref. Bottom) | ||||||||
ORcrude | 95% CI | ORadj | 95% CI | ORcrude | 95% CI | ORadj | 95% CI | ||
‘Processed high fat, sugar, salt, meat, dairy, and potatoes’ | bottom (ref.) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
middle | 1.57 | 0.95; 2.58 | 1.72 * | 1.01; 2.95 | 1.96 ** | 1.19; 3.25 | 2.22 ** | 1.27; 3.89 | |
upper | 2.11 ** | 1.25; 3.55 | 2.33 ** | 1.26; 4.32 | 3.32 *** | 1.99; 5.55 | 4.55 *** | 2.43; 8.50 | |
score (1-point increase) | 1.28 * | 1.04; 1.60 | 1.33 * | 1.04; 1.71 | 1.51 *** | 1.22; 1.87 | 1.54 *** | 1.21; 1.97 | |
‘Semi-vegetarian’ | bottom (ref.) | 1.00 | 1.00 | 1.00 | 1.00 | ||||
middle | 0.75 | 0.44; 1.26 | 0.74 | 0.42; 1.29 | 0.68 | 0.42; 1.12 | 0.70 | 0.41; 1.22 | |
upper | 0.71 | 0.43; 1.19 | 0.80 | 0.46; 1.40 | 0.42 *** | 0.25; 0.70 | 0.45 ** | 0.25; 0.78 | |
score (1-point increase) | 0.88 | 0.72; 1.08 | 0.91 | 0.74; 1.14 | 0.68 *** | 0.54; 0.85 | 0.70 ** | 0.55; 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawryłkowicz, V.; Stasiewicz, B.; Korus, S.; Krauze, W.; Rachubińska, K.; Grochans, E.; Stachowska, E. Associations Between Dietary Patterns and the Occurrence of Hospitalization and Gastrointestinal Disorders—A Retrospective Study of COVID-19 Patients. Nutrients 2025, 17, 800. https://doi.org/10.3390/nu17050800
Hawryłkowicz V, Stasiewicz B, Korus S, Krauze W, Rachubińska K, Grochans E, Stachowska E. Associations Between Dietary Patterns and the Occurrence of Hospitalization and Gastrointestinal Disorders—A Retrospective Study of COVID-19 Patients. Nutrients. 2025; 17(5):800. https://doi.org/10.3390/nu17050800
Chicago/Turabian StyleHawryłkowicz, Viktoria, Beata Stasiewicz, Sebastian Korus, Wiktoria Krauze, Kamila Rachubińska, Elżbieta Grochans, and Ewa Stachowska. 2025. "Associations Between Dietary Patterns and the Occurrence of Hospitalization and Gastrointestinal Disorders—A Retrospective Study of COVID-19 Patients" Nutrients 17, no. 5: 800. https://doi.org/10.3390/nu17050800
APA StyleHawryłkowicz, V., Stasiewicz, B., Korus, S., Krauze, W., Rachubińska, K., Grochans, E., & Stachowska, E. (2025). Associations Between Dietary Patterns and the Occurrence of Hospitalization and Gastrointestinal Disorders—A Retrospective Study of COVID-19 Patients. Nutrients, 17(5), 800. https://doi.org/10.3390/nu17050800