Association of Overnight Fasting Duration and Meal Frequency with Glucose and Lipid Metabolism During Pregnancy: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedures
2.3. Data Collection and Measurements
2.3.1. Overnight Fasting Duration and Meal Frequency
2.3.2. Biomarker Analyses
2.3.3. Dietary Assessment
2.3.4. Other Measurements
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Associations of Overnight Fasting Duration and Meal Frequency on Lipid and Glucose Metabolism
3.3. Association Between Overnight Fasting Duration, Meal Frequency, and Dietary Intake
4. Discussion
4.1. Characteristics of Study Participants Compared with Other Japanese Cohorts
4.2. Overnight Fasting Duration and Meal Frequency in Pregnant Japanese Women
4.3. Effect of Overnight Fasting Duration on GA
4.4. Effects of Meal Frequency and Overnight Fasting Duration on Lipid Metabolism
4.5. Effects of Overnight Fasting Duration and Meal Frequency on Dietary Intake
4.6. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; McIntyre, H.D.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 199–2002. [Google Scholar]
- Scholtens, D.M.; Kuang, A.; Lowe, L.P.; Hamilton, J.; Lawrence, J.M.; Lebenthal, Y.; Brickman, W.J.; Clayton, P.; Ma, R.C.; McCance, D.; et al. Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): Maternal glycemia and childhood glucose metabolism. Diabetes Care 2019, 42, 381–392. [Google Scholar] [CrossRef]
- Berggren, E.K.; Boggess, K.A.; Jonsson Funk, M. Population health: Modest glycaemic improvements in a pregnant cohort with mild glucose intolerance decreased adverse outcomes. Paediatr. Perinat. Epidemiol. 2014, 28, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Selen, D.J.; Edelson, P.K.; James, K.; Corelli, K.; Hivert, M.F.; Meigs, J.B.; Thadhani, R.; Ecker, J.; Powe, C.E. Physiological subtypes of gestational glucose intolerance and risk of adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 2022, 226, 241.e1–241.e14. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.-Y.; Lin, S.-L.; Hou, R.-L.; Chen, X.-Y.; Han, T.; Jin, Y.; Tang, L.; Zhu, Z.-W.; Zhao, Z.-Y. Associations between maternal lipid profile and pregnancy complications and perinatal outcomes: A population-based study from China. BMC Pregnancy Childbirth 2016, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, L.; Huang, L.; Lei, Y.; Chen, L.; Liang, Z.; Zhou, M.; Xu, H.; Zhou, Y.; Wang, F.; et al. Second-trimester maternal lipid profiles predict pregnancy complications in an age-dependent manner. Arch. Gynecol. Obstet. 2019, 299, 1253–1260. [Google Scholar] [CrossRef]
- Vrijkotte, T.G.; Krukziener, N.; Hutten, B.A.; Vollebregt, K.C.; van Eijsden, M.; Twickler, M.B. Maternal lipid profile during early pregnancy and pregnancy complications and outcomes: The ABCD study. J. Clin. Endocrinol. Metab. 2012, 97, 3917–3925. [Google Scholar] [CrossRef] [PubMed]
- Stenvers, D.J.; Jonkers, C.F.; Fliers, E.; Bisschop, P.H.; Kalsbeek, A. Nutrition and the circadian timing system. Prog. Brain Res. 2012, 199, 359–376. [Google Scholar]
- Potter, G.D.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Nutrition and the circadian system. Br. J. Nutr. 2016, 116, 434–442. [Google Scholar] [CrossRef]
- Yoshizaki, T.; Tada, Y.; Hida, A.; Sunami, A.; Yokoyama, Y.; Yasuda, J.; Nakai, A.; Togo, F.; Kawano, Y. Effects of feeding schedule changes on the circadian phase of the cardiac autonomic nervous system and serum lipid levels. Eur. J. Appl. Physiol. 2013, 113, 2603–2611. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Alessandrelli, E.; Notarangelo, S.; Stuppia, L.; Vitacolonna, E. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int. J. Mol. Sci. 2023, 24, 2571. [Google Scholar] [CrossRef] [PubMed]
- Asher, G.; Sassone-Corsi, P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161, 84–92. [Google Scholar] [CrossRef]
- Speksnijder, E.M.; Bisschop, P.H.; Siegelaar, S.E.; Stenvers, D.J.; Kalsbeek, A. Circadian desynchrony and glucose metabolism. J. Pineal Res. 2024, 76, e12956. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Aragon, A.A.; Krieger, J.W. Effects of meal frequency on weight loss and body composition: A meta-analysis. Nutr. Rev. 2015, 73, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The influence of meal frequency and timing on health in humans: The role of fasting. Nutrients 2019, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Schoenaker, D.A.; Mishra, G.D.; Callaway, L.K.; Soedamah-Muthu, S.S. The role of energy, nutrients, foods, and dietary patterns in the development of gestational diabetes mellitus: A systematic review of observational studies. Diabetes Care. 2016, 39, 16–23. [Google Scholar] [CrossRef]
- Loy, S.L.; Chan, J.K.; Wee, P.H.; Colega, M.T.; Cheung, Y.B.; Godfrey, K.M.; Kwek, K.; Saw, S.M.; Chong, Y.S.; Natarajan, P.; et al. Maternal circadian eating time and frequency are associated with blood glucose concentrations during pregnancy. J. Nutr. 2017, 147, 70–77. [Google Scholar] [CrossRef]
- Japan, Pregnancy, Eating, and Activity, Cohort Study (J-Peach Study). Available online: https://j-peach.jpn.org (accessed on 17 December 2024).
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social. behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, Y.; Shimizu, I.; Omori, Y.; Nakabayashi, M. Determination of reference intervals of glycated albumin and hemoglobin A1c in healthy pregnant Japanese women and analysis of their time courses and influencing factors during pregnancy. Endocr. J. 2012, 59, 145–151. [Google Scholar] [CrossRef]
- Gibney, M.J.; Wolever, T.M. Periodicity of eating and human health: Present perspective and future directions. Br. J. Nutr. 1997, 77 (Suppl. S1), S3–S5. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, C.A.; Cabral, B.B.M.; Balieiro, L.C.T.; Teixeira, G.P.; Fahmy, W.M.; Maia, Y.C.d.P.; Crispim, C.A. Time-related eating patterns and chronotype are associated with diet quality in pregnant women. Chronobiol. Int. 2019, 36, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Characterizing eating patterns: A comparison of eating occasion definitions. Am. J. Clin. Nutr. 2015, 102, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Osugi, T.; Noguchi, S.; Morimoto, Y.; Wasada, K.; Imai, S.; Waguri, M.; Toyoda, R.; Fujita, T.; Kasayama, S.; et al. A1C but not serum glycated albumin is elevated because of iron deficiency in late pregnancy in diabetic women. Diabetes Care 2010, 33, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Hiramatsu, Y.; Omori, Y.; Nakabayashi, M.; The JGA (Japan Glycated Albumin) Study Group. Comparison of HbA1c and glycated albumin as a control marker for newborn complications in diabetic women in a multicentre study in Japan (Japan glycated albumin study group: Study 2). Ann. Clin. Biochem. 2018, 55, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, D.; Sato, H.; Ichihashi, K.; Nagai, K.; Kawano, A. Glycated albumin level during late pregnancy as a predictive factor for neonatal outcomes of women with diabetes. J. Matern. Fetal Neonatal Med. 2018, 31, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef]
- Shiraishi, M.; Haruna, M.; Matsuzaki, M.; Murayama, R.; Sasaki, S. Availability of two self-administered diet history questionnaires for pregnant Japanese women: A validation study using 24-hour urinary markers. J. Epidemiol. 2017, 27, 172–179. [Google Scholar] [CrossRef]
- Takei, H.; Shiraishi, M.; Matsuzaki, M.; Haruna, M. Factors related to vegetable intake among pregnant Japanese women: A cross-sectional study. Appetite 2019, 132, 175–181. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and managing the global epidemic. In Report of a WHO Consultation; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Lacasse, A.; Rey, E.; Ferreira, E.; Morin, C.; Berard, A. Validity of a modified pregnancy-unique quantification of emesis and nausea (PUQE) scoring index to assess severity of nausea and vomiting of pregnancy. Obstet. Gynecol. 2008, 198, 71.e1–71.e7. [Google Scholar]
- Hada, A.; Minatani, M.; Wakamatsu, M.; Koren, G.; Kitamura, T. The Pregnancy-Unique Quantification of Emesis and Nausea (PUQE-24): Configural, Measurement, and Structural Invariance between Nulliparas and Multiparas and across Two Measurement Time Points. Healthcare 2021, 9, 1553. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, M.; Haruna, M.; Ota, E.; Yeo, S.; Murayama, R.; Murashima, S. Translation and cross-cultural adaptation of the Pregnancy Physical Activity Questionnaire (PPAQ) to Japanese. Biosci. Trends. 2010, 4, 170–177. [Google Scholar] [PubMed]
- Matsuzaki, M.; Haruna, M.; Nakayama, K.; Shiraishi, M.; Ota, E.; Murayama, R.; Murashima, S.; Yeo, S. Adapting the pregnancy physical activity questionnaire for Japanese pregnant women. JOGN Nurs. 2014, 43, 107–116. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice. Physical activity and exercise during pregnancy and the postpartum period: ACOG committee opinion, Number 804. Obstet. Gynecol. 2020, 135, e178–e188. [Google Scholar] [CrossRef] [PubMed]
- Rooney, M.R.; Zhang, S.; Fang, M.; Minhas, A.S.; Wallace, A.S.; Grams, M.E.; Echouffo-Tcheugui, J.B.; Christenson, R.H.; Selvin, E. Performance of glycated albumin as a biomarker of hyperglycemia in pregnancy: Results from the National Health and Nutrition Examination Survey 1999–2004. Clin. Biochem. 2023, 112, 67–70. [Google Scholar] [CrossRef]
- Bellia, C.; Zaninotto, M.; Cosma, C.; Agnello, L.; Sasso, B.L.; Bivona, G.; Plebani, M.; Ciaccio, M. Definition of the upper reference limit of glycated albumin in blood donors from Italy. Clin. Chem. Lab. Med. 2017, 56, 120–125. [Google Scholar] [CrossRef]
- Sasaki, H.; Arata, N.; Tomotaki, A.; Yamamoto-Hanada, K.; Mezawa, H.; Konishi, M.; Ishitsuka, K.; Saito-Abe, M.; Sato, M.; Nishizato, M.; et al. Time course of metabolic status in pregnant women: The Japan environment and children’s study. J. Diabetes Investig. 2020, 11, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Michikawa, T.; Nitta, H.; Nakayama, S.F.; Ono, M.; Yonemoto, J.; Tamura, K.; Suda, E.; Ito, H.; Takeuchi, A.; Kawamoto, T. The Japan environment and children’s study (JECS): A preliminary report on selected characteristics of approximately 10 000 pregnant women recruited during the first year of the study. J. Epidemiol. 2015, 25, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labor and Welfare. The National Health and Nutrition Survey in Japan. 2019. Available online: https://www.mhlw.go.jp/content/001066903.pdf (accessed on 25 February 2025).
- Statistics Bureau, Ministry of Internal Affairs and Communications. Survey on Time Use and Leisure Activities. 2016. Available online: https://www.e-stat.go.jp/stat-search/files?stat_infid=000031617830 (accessed on 17 December 2024).
- Nakahara, K.; Michikawa, T.; Morokuma, S.; Ogawa, M.; Kato, K.; Sanefuji, M.; Shibata, E.; Tsuji, M.; Shimono, M.; Kawamoto, T.; et al. Association of maternal sleep before and during pregnancy with preterm birth and early infant sleep and temperament. Sci. Rep. 2020, 10, 11084. [Google Scholar] [CrossRef] [PubMed]
- Japan Diabetes Society (Ed.) Diabetes Practice Guidelines 2019; Nankodo: Tokyo, Japan, 2019. (In Japanese) [Google Scholar]
- Mendes, N.; Alves, M.; Andrade, R.; Ribeiro, R.T.; Papoila, A.L.; Serrano, F. Association between glycated albumin, fructosamine, and HbA1c with neonatal outcomes in a prospective cohort of women with gestational diabetes mellitus. Int. J. Gynaecol. Obstet. 2019, 146, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014, 20, 991. [Google Scholar] [CrossRef] [PubMed]
- Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obstet. Gynaecol. 2007, 50, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Hadden, D.R.; Mclaughlin, C. Normal and abnormal maternal metabolism during pregnancy. Semin. Fetal Neonat. Med. 2009, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Skarstad, H.M.; Haganes, K.L.; Sujan, A.J.; Gellein, T.M.; Johansen, M.K.; Salvesen, K.Å.; Hawley, J.A.; Moholdt, T. A randomized feasibility trial of time-restricted eating during pregnancy in people with increased risk of gestational diabetes. Sci. Rep. 2024, 14, 22476. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.E.; Ravnikar, V.; Vileisis, R.A.; Freinkel, N. “Accelerated starvation” and the skipped breakfast in late normal pregnancy. Lancet 1982, 1, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Surampudi, P.; Rosharavan, B.; Chondronikola, M. Intermittent fasting as a nutrition approach against obesity and metabolic disease. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Schuppelius, B.; Peters, B.; Ottawa, A.; Pivovarova-Ramich, O. Time Restricted Eating: A Dietary Strategy to Prevent and Treat Metabolic Disturbances. Front. Endocrinol. 2021, 12, 683140. [Google Scholar] [CrossRef]
- Murakami, K.; Sasaki, S.; Uenishi, K.; Japan Dietetic Students’ Study for Nutrition and Biomarkers Group. The degree of misreporting of the energy-adjusted intake of protein, potassium, and sodium does not differ among under-, acceptable, and over-reporters of energy intake. Nutr. Res. 2012, 32, 741–750. [Google Scholar] [CrossRef] [PubMed]
All | Overnight Fasting Duration | Meal Frequency | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | (n = 144) | Tertile 1 9.00–11.49 h (n = 48) | Tertile 2 11.50–12.49 h (n = 48) | Tertile 3 12.50–17.00 h (n = 48) | p | Group 1 2–3 Times/Day (n = 56) | Group 2 4 Times/Day (n = 53) | Group 3 5–7 Times/Day (n = 33) | p | ||
Age, years | 35.3 ± 4.3 | 35.8 ± 4.4 | 36.1 ± 4.2 | 34.2 ± 4.2 | 0.079 | a | 35.4 ± 4.6 | 35.3 ± 4.3 | 35.3 ± 3.7 | 0.993 | a |
Gestational age, weeks | 19.3 ± 1.1 | 19.1 ± 1.2 | 19.4 ± 1.2 | 19.4 ± 1.2 | 0.348 | a | 19.3 ± 1.1 | 19.3 ± 1.1 | 19.2 ± 13 | 0.847 | a |
Married | 141 (97.9) | 47 (97.9) | 47 (97.9) | 47 (97.9) | 1.000 | c | 55 (98.2) | 51 (96.2) | 33 (100.0) | 0.616 | c |
Primipara | 95 (66.0) | 35 (72.9) | 25 (52.1) | 35(72.9) | 0.048 | *,b | 38 (67.9) | 35 (66.0) | 22 (66.7) | 1.000 | b |
Pre-pregnancy BMI, kg/m2 | |||||||||||
<18.5 | 21 (14.6) | 8 (16.7) | 5 (10.4) | 8 (16.7) | 0.899 | b | 10 (17.9) | 4 (7.5) | 7 (21.2) | 0.208 | c |
≥18.5, and <25 | 105 (72.9) | 35 (72.9) | 36 (75.0) | 34 (70.8) | 37 (66.1) | 43 (83.1) | 24 (72.7) | ||||
≥25 | 18 (12.5) | 5 (10.4) | 7 (14.6) | 6 (12.5) | 9 (16.1) | 6 (11.3) | 2 (6.1) | ||||
Education | |||||||||||
Junior High School/High school | 5 (3.5) | 2 (4.2) | 1 (2.1) | 2 (4.2) | 0.268 | c | 1 (1.8) | 3 (5.7) | 1 (3.0) | 0.355 | c |
Vocational School/Junior College | 26 (18.1) | 8 (16.7) | 10 (20.8) | 8 (16.7) | 7 (12.5) | 11 (20.8) | 8 (24.2) | ||||
University | 81 (56.3) | 22 (45.8) | 27 (56.3) | 32 (66.7) | 37 (66.1) | 28 (52.8) | 14 (42.4) | ||||
Graduate School | 32 (22.2) | 16 (33.3) | 10 (20.8) | 6 (12.5) | 11 (19.6) | 11 (20.8) | 10 (30.3) | ||||
Annual household income | |||||||||||
<7 million Japanese yen | 37 (25.7) | 13 (27.1) | 12 (25.0) | 12 (25.0) | 1.000 | b | 11 (19.6) | 17 (32.1) | 8 (24.2) | 0.353 | b |
≥7 million Japanese yen | 107 (74.3) | 35 (72.9) | 36 (75.0) | 36 (75.0) | 45 (80.4) | 36 (67.9) | 25 (75.8) | ||||
Work (Yes) | 103 (71.5) | 41 (85.4) | 36 (75.0) | 26 (54.2) | 0.002 | *,b | 40 (71.4) | 38 (71.7) | 25 (75.8) | 0.915 | b |
Night shift (Yes) | 1 (0.7) | 1 (2.1) | 0 (0.0) | 0 (0.0) | 1.000 | c | 1 (1.8) | 0 (0.0) | 0 (0.0) | 1.000 | c |
Nausea and vomiting (modified PUQE) | |||||||||||
Mild | 115 (79.9) | 40 (83.3) | 41 (85.4) | 34 (70.8) | 0.183 | b | 42 (75.0) | 46 (86.8) | 25 (75.8) | 0.255 | b |
Moderate | 29 (20.1) | 8 (16.7) | 7 (14.6) | 14 (29.2) | 14 (25.0) | 7 (13.2) | 8 (24.2) | ||||
Physical activity (PPAQ-J 2020) | |||||||||||
Inactive (<7.5METs-hours/week) | 77 (53.5) | 23 (47.9) | 20 (41.7) | 34 (70.8) | 0.012 | *,b | 34 (60.7) | 28 (52.8) | 15 (45.5) | 0.371 | b |
Active (≥7.5METs-hours/week) | 67 (46.5) | 25 (52.1) | 28 (58.3) | 14 (29.2) | 22 (39.3) | 25 (47.2) | 18 (54.5) | ||||
Sleep duration, hours | 8.0 ± 1.2 | 7.1 ± 0.9 | 8.0 ± 0.9 | 8.8 ± 1.1 | <0.001 | *,a | 8.0 ± 1.2 | 7.9 ± 1.1 | 8.0 ± 1.2 | 0.917 | a |
Bedtime, 24 h system | 23:25 ±1:13 | 23:35 ± 0:59 | 23:00 ± 0:54 | 23:40 ± 1:33 | 0.013 | *,a | 23:28 ± 1:16 | 23:35 ± 1:12 | 23:07 ± 1:02 | 0.213 | a |
Overnight fasting duration, hours | 12.1 ± 1.5 | 10.6 ± 0.7 | 11.9 ± 0.3 | 13.7 ± 1.2 | <0.001 | *,a | 12.2 ± 1.7 | 11.8 ± 1.5 | 12.1 ± 1.2 | 0.366 | a |
Meal Frequency, per day (n = 142) | 3.8 ± 0.9 | 3.9 ± 1.0 | 3.9 ± 0.9 | 3.7 ± 1.0 | 0.519 | a | 2.9 ± 0.3 | 4.0 ± 0.0 | 5.2 ± 0.5 | <0.001 | *,a |
All | Overnight Fasting Duration | Meal Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | (n = 144) | Tertile 1 9.00–11.49 h (n = 48) | Tertile 2 11.50–12.49 h (n = 48) | Tertile 3 12.50–17.00 h (n = 48) | p | Group 1 2–3 Times/Day (n = 56) | Group 2 4 Times/Day (n = 53) | Group 3 5–7 Times/Day (n = 33) | p |
TC, mg/dL | 228.6 ± 33.2 | 222.8 ± 30.4 | 235.3 ± 36.4 | 227.6 ± 32.2 | 0.178 | 233.9 ± 36.5 | 228.2 ± 32.5 | 219.2 ± 27.7 | 0.132 |
TG, mg/dL | 162.5 ± 63.0 | 156.6 ± 70.5 | 165.9 ± 59.0 | 165.1 ± 59.8 | 0.729 | 170.9 ± 68.4 | 150.1 ± 55.2 | 166.8 ± 64.0 | 0.202 |
HDL-C, mg/dL | 81.9 ± 13.5 | 80.8 ± 12.9 | 80.9 ± 12.9 | 84.2 ± 14.5 | 0.375 | 81.5 ± 13.5 | 84.9 ± 14.0 | 77.9 ± 11.7 | 0.064 |
LDL-C, mg/dL | 123.2 ± 27.8 | 120.1 ± 26.4 | 129.8 ± 29.1 | 119.6 ± 27.1 | 0.127 | 128.3 ± 29.4 | 120.7 ± 26.9 | 117.8 ± 25.3 | 0.172 |
GA, % | 13.3 ± 1.0 | 13.5 ± 1.1 | 13.3 ± 0.9 | 13.1 ± 0.9 | 0.128 | 13.1 ± 0.9 | 13.3 ± 1.0 | 13.6 ± 1.1 | 0.076 |
Variables | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1. GA | ||||
2. Overnight fasting duration | −0.185 * | |||
3. Meal frequency | 0.196 * | −0.116 | ||
4. Pre-pregnancy BMI | −0.450 ** | 0.017 | −0.104 | |
5. Maternal age | −0.019 | −0.235 * | 0.017 | 0.086 |
Crude | Model a | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unstandardized Coefficients | Standardized Coefficients | 95% CI for B | Unstandardized Coefficients | Standardized Coefficients | 95% CI for B | |||||||||
B | SE | β | t | p | LB | UB | B | SE | β | t | p | LB | UB | |
Overnight fasting duration | −0.135 | 0.054 | −0.206 | −2.506 | 0.013 * | −0.241 | −0.028 | −0.109 | 0.050 | −0.167 | −2.188 | 0.030 * | −0.207 | −0.010 |
Meal frequency | 0.210 | 0.089 | 0.196 | 2.366 | 0.019 * | 0.035 | 0.385 | 0.142 | 0.080 | 0.132 | 1.768 | 0.079 | −0.017 | 0.300 |
ALL | Overnight Fasting Duration | Meal Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
(n = 112) | Tertile 1 9.00–11.49 h (n = 37) | Tertile 2 11.50–12.49 h (n = 39) | Tertile 3 12.50–17.00 h (n = 36) | p | Group 1 2–3 Times/Day (n = 37) | Group 2 4 Times/Day (n = 45) | Group 3 5–7 Times/Day (n = 29) | p | |
Energy and nutrients | |||||||||
Energy (kcal/day) | 1536 (1333–1803) | 1585 (1409–1825) | 1515 (1427–1833) | 1510 (1268–1650) | 0.317 | 1533 (1356–1798) | 1566 (1354–1832) | 1544 (1329–1728) | 0.891 |
Protein (% of energy) | 14.4 (13.2–16.3) | 14.5 (12.9–16.1) | 14.6 (13.3–16.5) | 14.2 (13.1–16.1) | 0.521 | 14.7 (13.2–16.8) | 14.6 (13.3–16.5) | 13.9 (12.8–15.3) | 0.076 |
Fat (% of energy) | 28.9 (26.1–33.1) | 28.9 (26.5–33.2) | 28.6 (25.4–32.6) | 30.2 (26.1–33.9) | 0.807 | 29.0 (25.3–32.2) | 29.6 (26.3–34.2) | 28.5 (25.5–33.1) | 0.583 |
Carbohydrate (% of energy) | 55.1 (50.9–58.9) | 56.1 (48.4–59.2) | 55.2 (51.6–58.6) | 54.8 (50.5–59.0) | 0.996 | 54.9 (50.7–58.4) | 52.7 (47.6–58.7) | 56.5 (52.1–60.5) | 0.252 |
Dietary fiber (g/1000 kcal) | 6.6 (5.7–7.7) | 6.6 (5.7–7.3) | 6.6 (5.4–7.8) | 6.7 (5.8–7.8) | 0.906 | 6.8 (5.9–8.6) | 6.6 (5.8–7.7) | 6.2 (5.3–7.1) | 0.140 |
Food group (g/1000 kcal) | |||||||||
Cereals | 221 (175–276) | 234 (181–276) | 218 (179–282) | 221 (159–276) | 0.815 | 236 (180–287) | 219 (175–263) | 208 (174–279) | 0.572 |
Potatoes | 20.7 (11.8–32.6) | 24.3 (12.2–31.9) | 16.7 (10.9–32.9) | 20.1 (11.4–34.2) | 0.925 | 19.1 (11.5–37.5) | 23.4 (11.4–32.5) | 19.2 (12.5–30.4) | 0.943 |
Soy products | 27.3 (13.4–41.2) | 20.6 (12.0–33.6) | 34.6 (17.5–50.7) | 26.2 (10.7–38.9) | 0.052 | 35.0 (17.5–54.6) | 28.7 (11.2–42.1) | 21.0 (12.4–28.6) | 0.032 * |
Sugar | 1.76 (1.29–2.64) | 1.60 (1.25–2.35) | 1.87 (1.56–2.83) | 1.56 (1.01–2.93) | 0.224 | 1.57 (1.22–2.61) | 1.85 (1.27–2.82) | 1.74 (1.41–2.59) | 0.711 |
Confectioneries | 28.0 (17.3–40.6) | 28.3 (17.8–39.5) | 26.2 (14.4–39.7) | 31.2 (16.4–43.9) | 0.907 | 26.8 (12.8–37.7) | 26.9 (17.4–38.1) | 34.6 (19.0–48.8) | 0.155 |
Oils and fats | 6.5 (5.1–8.7) | 7.3 (5.8–9.4) | 5.9 (4.7–7.3) | 6.8 (4.6–8.4) | 0.016 * | 6.8 (5.0–8.1) | 6.4 (5.3–9.5) | 6.5 (5.0–9.1) | 0.719 |
Seasonings | 10.7 (8.5–12.7) | 11.0 (8.5–12.6) | 10.7 (8.8–12.8) | 9.4 (7.3–13.2) | 0.744 | 11.1 (9.2–14.1) | 10.7 (8.6–12.7) | 9.1 (6.5–12.4) | 0.053 |
Fruits | 55.2 (38.4–82.5) | 62.0 (43.9–84.9) | 45.4 (21.1–70.0) | 68.3 (45.0–94.6) | 0.025 * | 46.8 (30.9–75.3) | 50.8 (37.1–83.7) | 56.6 (39.5–78.7) | 0.101 |
Green and yellow vegetables | 59.3 (39.9–84.5) | 59.8 (41.2–82.8) | 47.1 (36.7–88.3) | 65.2 (47.1–88.2) | 0.566 | 69.7 (45.0–86.5) | 50.8 (44.8–87.8) | 58.4 (38.4–82.0) | 0.317 |
Other vegetables | 64.1 (45.2–87.3) | 61.4 (44.4–70.6) | 58.9 (38.9–97.9) | 74.5 (45.6–103.6) | 0.246 | 65.4 (39.3–95.1) | 68.0 (50.6–89.9) | 54.8 (39.9–74.3) | 0.157 |
Mushrooms | 6.1 (3.3–8.2) | 5.8 (2.7–8.6) | 6.5 (3.4–8.6) | 6.1 (3.2–7.6) | 0.769 | 5.8 (2.8–7.6) | 6.7 (3.8–9.5) | 5.7 (3.4–7.3) | 0.280 |
Seaweeds | 2.9 (1.5–7.1) | 3.5 (1.6–7.5) | 2.9 (1.5–7.5) | 2.0 (1.3–4.1) | 0.148 | 2.9 (1.6–7.2) | 3.7 (1.4–7.9) | 1.7 (1.3–5.1) | 0.275 |
Non-alcoholic beverages | 75.8 (20.7–134.3) | 56.5 (25.8–127.0) | 114.1 (21.2–147.9) | 60.2 (13.6–124.0) | 0.215 | 66.8 (14.1–117.9) | 78.2 (21.9–136.8) | 76.4 (36.3–147.8) | 0.338 |
Fish and shellfish | 26.1 (17.8–41.6) | 26.2 (18.3–40.9) | 27.7 (21.1–49.0) | 21.8 (13.2–37.5) | 0.059 | 26.5 (15.5–46.5) | 27.5 (19.6–48.4) | 21.1 (15.0–29.8) | 0.109 |
Meat | 42.1 (33.2–52.0) | 41.1 (32.1–54.2) | 39.5 (31.8–52.0) | 43.4 (35.4–53.1) | 0.464 | 39.7 (29.2–51.3) | 43.1 (36.6–58.2) | 41.4 (31.5–51.0) | 0.345 |
Eggs | 16.2 (11.9–26.9) | 17.9 (11.9–30.7) | 15.8 (12.3–25.3) | 17.5 (9.3–28.5) | 0.958 | 17.7 (12.0–28.2) | 15.1 (11.3–22.7) | 18.1 (11.7–28.7) | 0.606 |
Daily products | 98.6 (63.4–129.9) | 96.7 (46.0–150.0) | 97.3 (69.1–126.5) | 109.3 (64.1–131.8) | 0.845 | 92.3 (55.8–124.3) | 102.4 (70.5–132.9) | 96.9 (63.1–161.5) | 0.590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, K.; Tanaka, M.; Nishihara, N.; Usui, Y.; Yonezawa, K.; Hikita, N.; Tahara-Sasagawa, E.; Sasaki, S.; Nagamatsu, T.; Haruna, M.; et al. Association of Overnight Fasting Duration and Meal Frequency with Glucose and Lipid Metabolism During Pregnancy: A Cross-Sectional Study. Nutrients 2025, 17, 807. https://doi.org/10.3390/nu17050807
Nakano K, Tanaka M, Nishihara N, Usui Y, Yonezawa K, Hikita N, Tahara-Sasagawa E, Sasaki S, Nagamatsu T, Haruna M, et al. Association of Overnight Fasting Duration and Meal Frequency with Glucose and Lipid Metabolism During Pregnancy: A Cross-Sectional Study. Nutrients. 2025; 17(5):807. https://doi.org/10.3390/nu17050807
Chicago/Turabian StyleNakano, Keiko, Moeko Tanaka, Nao Nishihara, Yuriko Usui, Kaori Yonezawa, Naoko Hikita, Emi Tahara-Sasagawa, Satoshi Sasaki, Takeshi Nagamatsu, Megumi Haruna, and et al. 2025. "Association of Overnight Fasting Duration and Meal Frequency with Glucose and Lipid Metabolism During Pregnancy: A Cross-Sectional Study" Nutrients 17, no. 5: 807. https://doi.org/10.3390/nu17050807
APA StyleNakano, K., Tanaka, M., Nishihara, N., Usui, Y., Yonezawa, K., Hikita, N., Tahara-Sasagawa, E., Sasaki, S., Nagamatsu, T., Haruna, M., & Tokyo Area Members of the J-PEACH Study Group as of 2019–2022. (2025). Association of Overnight Fasting Duration and Meal Frequency with Glucose and Lipid Metabolism During Pregnancy: A Cross-Sectional Study. Nutrients, 17(5), 807. https://doi.org/10.3390/nu17050807