The Role of the Planetary Diet in Managing Metabolic Syndrome and Cardiovascular Disease: A Narrative Review
Highlights
- Abdominal obesity, a major risk factor for a range of chronic diseases, can be effectively mitigated by adhering to plant-based dietary patterns, which have been shown to reduce waist circumference and improve overall cardiometabolic health.
- Adherence to planetary diet recommendations is associated with improved lipid profile and blood pressure, as well as a reduced risk for obesity, type 2 diabetes, and cardiovascular disease.
- Taking into account the metabolic benefits of planetary diet and the minimal risk of its negative impact on health, it seems justified to recommend this nutritional model for the prevention and treatment of metabolic disorders.
Abstract
:1. Introduction
2. Methods
3. Planetary Diet
4. Metabolic Syndrome
5. The Planetary Diet and Obesity
5.1. The Planetary Diet in the Prevention and Treatment of Obesity
5.2. The Impact of Individual Principles of the Planetary Diet on Obesity
6. The Planetary Diet and Carbohydrate Metabolism Disorders
6.1. The Planetary Diet in the Prevention and Treatment of Carbohydrate Metabolism Disorders
6.2. The Effects of the Individual Principles of the Planetary Diet on Carbohydrate Metabolism Disorders
7. The Planetary Diet and Dyslipidemia
7.1. The Planetary Diet in Prevention and Treatment of Dyslipidemia
7.2. The Impact of the Individual Principles of the Planetary Diet on Dyslipidemia
8. The Planetary Diet and Hypertension
8.1. The Planetary Diet in Prevention and Treatment of Hypertension
8.2. The Impact of Individual Principles of the Planetary Diet on Hypertension
9. The Planetary Diet and Overall Cardiovascular Disease Risk
10. The EAT–Lancet Planetary Health Diet: Clinical Perspective and Future Directions
11. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption among US adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.; Reedy, J.; Cudhea, F.; Zhang, J.; Shi, P.; Erndt-Marino, J.; Coates, J.; Micha, R.; Webb, P.; Mozaffarian, D.; et al. Global, regional, and national consumption of animal-source foods between 1990 and 2018: Findings from the Global Dietary Database. Lancet Planet. Health 2022, 6, e243–e256. [Google Scholar] [CrossRef] [PubMed]
- Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidence. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, Y.S.; Cho, S.; Hwang, I. A case study of CO2 emissions from beef and pork production in South Korea. J. Anim. Sci. Technol. 2023, 65, 427–440. [Google Scholar] [CrossRef]
- Jiang, X.Q.; Mei, X.D.; Feng, D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016, 8, E31. [Google Scholar] [CrossRef]
- Zhang, J.S.; Gui, Z.H.; Zou, Z.Y.; Yang, B.Y.; Ma, J.; Jing, J.; Wang, H.J.; Luo, J.Y.; Zhang, X.; Luo, C.Y.; et al. Long-term exposure to ambient air pollution and metabolic syndrome in children and adolescents: A national cross-sectional study in China. Environ. Int. 2021, 148, 106383. [Google Scholar] [CrossRef]
- Han, S.; Zhang, F.; Yu, H.; Wei, J.; Xue, L.; Duan, Z.; Niu, Z. Systemic inflammation accelerates the adverse effects of air pollution on metabolic syndrome: Findings from the China Health and Retirement Longitudinal Study (CHARLS). Environ. Res. 2022, 215, 114340. [Google Scholar] [CrossRef]
- Boudreau, D.M.; Malone, D.C.; Raebel, M.A.; Fishman, P.A.; Nichols, G.A.; Feldstein, A.C.; Boscoe, A.N.; Ben-Joseph, R.H.; Magid, D.J.; Okamoto, L.J. Health care utilization and costs by metabolic syndrome risk factors. Metab. Syndr. Relat. Disord. 2009, 7, 305–314. [Google Scholar] [CrossRef]
- Li, W.; Chen, D.; Peng, Y.; Lu, Z.; Kwan, M.P.; Tse, L.A. Association between metabolic syndrome and mortality: Prospective cohort study. JMIR Public Health Surveill. 2023, 9, e44073. [Google Scholar] [CrossRef]
- Beal, T.; Ortenzi, F.; Fanzo, J. Estimated micronutrient shortfalls of the EAT-Lancet planetary health diet. Lancet Planet. Health 2023, 7, e233–e237. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Fresán, U.; Sabaté, J. Vegetarian diets: Planetary health and its alignment with human health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef]
- Ojo, O.; Jiang, Y.; Ojo, O.O.; Wang, X. The association of planetary health diet with the risk of type 2 diabetes and related complications: A systematic review. Healthcare 2023, 11, 1120. [Google Scholar] [CrossRef]
- Klapp, A.L.; Wyma, N.; Alessandrini, R.; Ndinda, C.; Perez-Cueto, A.; Risius, A. Recommendations to address the shortfalls of the EAT-Lancet planetary health diet from a plant-forward perspective. Lancet Planet. Health 2025, 9, e23–e33. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkecke, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.-L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef]
- Hanson, R.L.; Imperatore, G.; Bennett, P.H.; Knowler, W.C. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes 2002, 51, 3120–3127. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, J.B.; Smith, M.L.; McNeal, C.J.; Ory, M.G. Quality of primary care processes for individuals with chronic diseases associated with the metabolic syndrome: A comparative study. Prim. Health Care Res. Dev. 2011, 12, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.M.; Shalaby, M.A.; El-Shiekh, R.A.; El-Banna, H.A.; Emam, S.R.; Bakr, A.F. Metabolic syndrome: Risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem. Adv. 2023, 3, 100335. [Google Scholar] [CrossRef]
- Dhawan, D.; Sharma, S. Abdominal obesity, adipokines and non-communicable diseases. J. Steroid Biochem. Mol. Biol. 2020, 203, 105737. [Google Scholar] [CrossRef]
- Bąk-Sosnowska, M.; Białkowska, M.; Bogdański, P.; Chomiuk, T.; Gałązka-Sobotka, M.; Holecki, M.; Jarosińska, A.; Jezierska, M.; Kamiński, P.; Kłoda, K.; et al. Zalecenia kliniczne dotyczące postępowania u chorych na otyłość 2022—Stanowisko Polskiego Towarzystwa Leczenia Otyłości. Med. Prakt. 2022, 1–87. [Google Scholar]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Kirwan, R.; Lamuela-Raventós, R.M.; Estruch, R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 262–296. [Google Scholar] [CrossRef]
- Reger, C.; Leitzmann, M.F.; Rohrmann, S.; Kühn, T.; Sedlmeier, A.M.; Jochem, C. Sustainable diets and risk of overweight and obesity: A systematic review and meta-analysis. Obes. Rev. 2024, 25, e13707. [Google Scholar] [CrossRef]
- Shojaei, S.; Dehnavi, Z.; Irankhah, K.; Fatemi, S.F.; Sobhani, S.R. Adherence to the planetary health diet index and metabolic syndrome: Cross-sectional results from the PERSIAN cohort study. BMC Public Health 2024, 24, 2988. [Google Scholar] [CrossRef]
- Cacau, L.T.; Benseñor, I.M.; Goulart, A.C.; Cardoso, L.O.; Lotufo, P.A.; Moreno, L.A.; Marchioni, D.M. Adherence to the Planetary Health Diet Index and Obesity Indicators in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2021, 13, 3691. [Google Scholar] [CrossRef]
- Ambroży, U.; Błaszczyk-Bębenek, E.; Ambroży, D.; Jagielski, P.; Rydzik, Ł.; Ambroży, T. Nutritional status, intentions and motivations towards adopting a planetary health diet—A cross-sectional study. Nutrients 2023, 15, 5102. [Google Scholar] [CrossRef] [PubMed]
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet score and major health outcomes: The EPIC-Oxford study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef] [PubMed]
- Klapp, R.; Laxamana, J.A.; Shvetsov, Y.B.; Park, S.Y.; Kanehara, R.; Setiawan, V.W.; Danquah, I.; Le Marchand, L.; Maskarinec, G. The EAT-Lancet diet index is associated with lower obesity and incidence of type 2 diabetes in the multiethnic cohort. J. Nutr. 2024, 11, 3407–3415. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Bui, L.; Hodge, R.A.; Zimmer, M.; Pham, T.; Rose, D.; Willits-Smith, A.; Willett, W.C. Planetary health diet index trends and associations with dietary greenhouse gas emissions, disease biomarkers, obesity, and mortality in the United States (2005–2018). Am. J. Clin. Nutr. 2025. epub ahead of print. [Google Scholar] [CrossRef]
- Langmann, F.; Ibsen, D.B.; Tjønneland, A.; Olsen, A.; Overvad, K.; Dahm, C.C. Adherence to the EAT-Lancet diet in midlife and development in weight or waist circumference after five years in a Danish cohort. Dialogues Health 2023, 3, 100151. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of vegetarian diets on blood lipids: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2015, 4, e002408. [Google Scholar] [CrossRef]
- Huang, R.Y.; Huang, C.C.; Hu, F.B.; Chavarro, J.E. Vegetarian diets and weight reduction: A meta-analysis of randomized controlled trials. J. Gen. Intern. Med. 2016, 31, 109–116. [Google Scholar] [CrossRef]
- Suikki, T.; Maukonen, M.; Kaartinen, N.E.; Harald, K.; Bäck, S.; Sares-Jäske, L.; Härkänen, T.; Koskinen, S.; Jousilahti, P.; Pajari, A.M.; et al. Associations of EAT-Lancet planetary health diet or Finnish nutrition recommendations with changes in obesity measures: A follow-up study in adults. Food Nutr. Res. 2023, 67, 9107. [Google Scholar] [CrossRef]
- Konieczna, J.; Romaguera, D.; Pereira, V.; Fiol, M.; Razquin, C.; Estruch, R.; Asensio, E.M.; Babio, N.; Fitó, M.; Gómez-Gracia, E.; et al. Longitudinal association of changes in diet with changes in body weight and waist circumference in subjects at high cardiovascular risk: The PREDIMED trial. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 139. [Google Scholar] [CrossRef]
- Gonzalez-Palacios, S.; Oncina-Canovas, A.; García-de-la-Hera, M.; Martínez-Gonzalez, M.Á.; Salas-Salvadó, J.; Corella, D.; Schroder, H.; Martínez, J.A.; Alonso-Gomez, Á.M.; Warnberg, J.; et al. Increased ultra-processed food consumption is associated with worsening of cardiometabolic risk factors in adults with metabolic syndrome: Longitudinal analysis from a randomized trial. Atherosclerosis 2023, 377, 12–23. [Google Scholar] [CrossRef]
- Lenighan, Y.M.; McNulty, B.A.; Roche, H.M. Dietary fat composition: Replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. Proc. Nutr. Soc. 2019, 78, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Ravaut, G.; Légiot, A.; Bergeron, K.F.; Mounier, C. Monounsaturated fatty acids in obesity-related inflammation. Int. J. Mol. Sci. 2021, 22, 330. [Google Scholar] [CrossRef] [PubMed]
- Jovanovski, E.; Mazhar, N.; Komishon, A.; Khayyat, R.; Li, D.; Blanco Mejia, S.; Khan, T.; Jenkins, A.L.; Smircic-Duvnjak, L.; Sievenpiper, J.L.; et al. Can dietary viscous fiber affect body weight independently of an energy-restrictive diet? A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2020, 111, 471–485. [Google Scholar] [CrossRef]
- Kaippert, V.C.; Lopes, M.C.O.S.; de Carvalho, P.D.; Rosado, E.L. Effects of unsaturated fatty acids on weight loss, body composition, and obesity-related biomarkers. Diabetol. Metab. Syndr. 2015, 7 (Suppl. S1), A139. [Google Scholar] [CrossRef]
- Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A.; Johansson, L.; Ahlström, H.; Arner, P.; Dahlman, I.; et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 2014, 63, 2356–2368. [Google Scholar] [CrossRef]
- Khan, R.M.M.; Chua, Z.J.Y.; Tan, J.C.; Yang, Y.; Liao, Z.; Zhao, Y. From pre-diabetes to diabetes: Diagnosis, treatments, and translational research. Medicina 2019, 55, 546. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Perreault, L.; Ji, L.; Dagogo-Jack, S. Diagnosis and management of prediabetes: A review. JAMA 2023, 329, 1206–1216. [Google Scholar] [CrossRef]
- Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Al Suwaidi, J.; Abi Khalil, C. Macrovascular complications in patients with diabetes and prediabetes. BioMed Res. Int. 2017, 2017, 7839101. [Google Scholar] [CrossRef]
- Lin, X.; Wang, S.; Huang, J. The association between the EAT–Lancet diet and diabetes: A systematic review. Nutrients 2023, 15, 4462. [Google Scholar] [CrossRef]
- Selvik, H.A.; Fullilove, R.E. From global thinking to local action: The planetary diet as chronic disease prevention. Public Health Rep. 2020, 135, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Langmann, F.; Ibsen, D.B.; Tjønneland, A.; Olsen, A.; Overvad, K.; Dahm, C.C. Adherence to the EAT-Lancet diet is associated with a lower risk of type 2 diabetes: The Danish Diet, Cancer and Health cohort. Eur. J. Nutr. 2023, 62, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- López, G.E.; Batis, C.; González, C.; Chávez, M.; Cortés-Valencia, A.; López-Ridaura, R.; Lajous, M.; Stern, D. EAT-Lancet Healthy Reference Diet score and diabetes incidence in a cohort of Mexican women. Eur. J. Clin. Nutr. 2023, 77, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Unger, A.L.; Cifelli, C.J.; Brown, K. Comment on methodological shortcomings of an analysis evaluating the EAT-Lancet Healthy Reference Diet and type 2 diabetes incidence by López et al. Eur. J. Clin. Nutr. 2024, 78, 548–549. [Google Scholar] [CrossRef]
- Xu, C.; Cao, Z.; Yang, H.; Hou, Y.; Wang, X.; Wang, Y. Association between the EAT-Lancet diet pattern and risk of type 2 diabetes: A prospective cohort study. Front. Nutr. 2022, 8, 784018. [Google Scholar] [CrossRef]
- Zhang, S.; Stubbendorff, A.; Olsson, K.; Ericson, U.; Niu, K.; Qi, L.; Borné, Y.; Sonestedt, E. Adherence to the EAT-Lancet diet, genetic susceptibility, and risk of type 2 diabetes in Swedish adults. Metabolism 2023, 141, 155401. [Google Scholar] [CrossRef]
- McMacken, M.; Shah, S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol. 2017, 14, 342–354. [Google Scholar] [CrossRef]
- Barnard, N.D.; Cohen, J.; Jenkins, D.J.A.; Turner-McGrievy, G.; Gloede, L.; Jaster, B.; Seidl, K.; Green, A.A.; Talpers, S. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care 2006, 29, 1777–1783. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Barnard, N.D.; Levin, S.M.; Watanabe, M. Vegetarian diets and glycemic control in diabetes: A systematic review and meta-analysis. Cardiovasc. Diagn. Ther. 2014, 4, 373–382. [Google Scholar] [CrossRef]
- Fang, H.S.A.; Gao, Q.; Tan, W.Y.; Lee, M.L.; Hsu, W.; Tan, N.C. The effect of oral diabetes medications on glycated hemoglobin (HbA1c) in Asians in primary care: A retrospective cohort real-world data study. BMC Med. 2022, 20, 22. [Google Scholar] [CrossRef]
- Wang, F.; Glenn, A.J.; Tessier, A.J.; Mei, Z.; Haslam, D.E.; Guasch-Ferré, M.; Tobias, D.K.; Eliassen, A.H.; Manson, J.E.; Clish, C.; et al. Integration of epidemiological and blood biomarker analysis links haem iron intake to increased type 2 diabetes risk. Nat. Metab. 2024, 6, 1807–1818. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.; Zhang, S.; Bai, M.; Chen, Z.; Gao, S.; Li, S.; Zhang, J. Effect of Dietary Approaches on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review with Network Meta-Analysis of Randomized Trials. Nutrients 2023, 15, 3156. [Google Scholar] [CrossRef] [PubMed]
- Åberg, S.; Mann, J.; Neumann, S.; Ross, A.B.; Reynolds, A.N. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes Care 2020, 43, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Neuenschwander, M.; Stadelmaier, J.; Eble, J.; Grummich, K.; Szczerba, E.; Kiesswetter, E.; Schlesinger, S.; Schwingshackl, L. Substitution of animal-based with plant-based foods on cardiometabolic health and all-cause mortality: A systematic review and meta-analysis of prospective studies. BMC Med. 2023, 21, 404. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Stewart, S.E.; Jayalath, V.H.; Ng, A.P.; Mirrahimi, A.; de Souza, R.J.; Hanley, A.J.; Bazinet, R.P.; Blanco Mejia, S.; Leiter, L.A.; et al. Effect of Replacing Animal Protein with Plant Protein on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2015, 7, 9804–9824. [Google Scholar] [CrossRef]
- Dybiec, J.; Baran, W.; Dąbek, B.; Fularski, P.; Młynarska, E.; Radzioch, E.; Rysz, J.; Franczyk, B. Advances in Treatment of Dyslipidemia. Int. J. Mol. Sci. 2023, 24, 13288. [Google Scholar] [CrossRef]
- Jacobsen, A.P.; Whelton, S.P.; Blumenthal, R.S.; Mcevoy, J.W. Dyslipidemia. In Hypertension: A Companion to Braunwald’s Heart Disease; Elsevier: Amsterdam, The Netherlands, 2024; pp. 476–488. [Google Scholar] [CrossRef]
- Cacau, L.T.; Benseñor, I.M.; Goulart, A.C.; Cardoso, L.O.; Santos, I.S.; Lotufo, P.A.; Moreno, L.A.; Marchioni, D.M. Adherence to the EAT-Lancet sustainable reference diet and cardiometabolic risk profile: Cross-sectional results from the ELSA-Brasil cohort study. Eur. J. Nutr. 2023, 62, 807–817. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Varady, K.A. Veganism Is a Viable Alternative to Conventional Diet Therapy for Improving Blood Lipids and Glycemic Control. Crit. Rev. Food Sci. Nutr. 2015, 55, 2004–2013. [Google Scholar] [CrossRef]
- Koch, C.A.; Kjeldsen, E.W.; Frikke-Schmidt, R. Vegetarian or vegan diets and blood lipids: A meta-analysis of randomized trials. Eur. Heart J. 2023, 44, 2609–2622. [Google Scholar] [CrossRef]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Eilander, A.; Harika, R.K.; Zock, P.L. Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations? Eur. J. Lipid Sci. Technol. 2015, 117, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Bogensberger, B.; Benčič, A.; Knüppel, S.; Boeing, H.; Hoffmann, G. Effects of oils and solid fats on blood lipids: A systematic review and network meta-analysis. J. Lipid Res. 2018, 59, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Hartley, L.; May, M.D.; Loveman, E.; Colquitt, J.L.; Rees, K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2016, 2016, CD011472. [Google Scholar] [CrossRef]
- Trautwein, E.A.; Vermeer, M.A.; Hiemstra, H.; Ras, R.T. LDL-Cholesterol Lowering of Plant Sterols and Stanols—Which Factors Influence Their Efficacy? Nutrients 2018, 10, 1262. [Google Scholar] [CrossRef]
- Gylling, H.; Simonen, P. Phytosterols, Phytostanols, and Lipoprotein Metabolism. Nutrients 2015, 7, 7965–7977. [Google Scholar] [CrossRef]
- Ras, R.T.; van der Schouw, Y.T.; Trautwein, E.A.; Sioen, I.; Dalmeijer, G.W.; Zock, P.L.; Beulens, J.W.J. Intake of phytosterols from natural sources and risk of cardiovascular disease in the European Prospective Investigation into Cancer and Nutrition-the Netherlands (EPIC-NL) population. Eur. J. Prev. Cardiol. 2015, 22, 1067–1075. [Google Scholar] [CrossRef]
- Jaceldo-Siegl, K.; Lütjohann, D.; Sirirat, R.; Mashchak, A.; Fraser, G.E.; Haddad, E. Variations in dietary intake and plasma concentrations of plant sterols across plant-based diets among North American adults. Mol. Nutr. Food Res. 2017, 61, 1600828. [Google Scholar] [CrossRef]
- Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr. 2014, 112, 214–219. [Google Scholar] [CrossRef]
- Ghaedi, E.; Kord-Varkaneh, H.; Mohammadi, H.; Askarpour, M.; Miraghajani, M. Phytosterol Supplementation Could Improve Atherogenic and Anti-Atherogenic Apolipoproteins: A Systematic Review and Dose–Response Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Nutr. 2020, 39, 82–92. [Google Scholar] [CrossRef]
- Samadian, F.; Dalili, N.; Jamalian, A. Lifestyle Modifications to Prevent and Control Hypertension. Iran. J. Kidney Dis. 2016, 10, 237–263. [Google Scholar] [PubMed]
- Altawili, A.A.; Altawili, M.; Alwadai, A.M.; Alahmadi, A.S.; Alshehri, A.M.A.; Muyini, B.H.; Alshwwaf, A.R.; Almarzooq, A.M.; Alqarni, A.H.A.; Alruwili, Z.A.L.; et al. An Exploration of Dietary Strategies for Hypertension Management: A Narrative Review. Cureus 2023, 15, e50130. [Google Scholar] [CrossRef] [PubMed]
- Fantin, F.; Macchi, F.; Giani, A.; Bissoli, L. The importance of nutrition in hypertension. Nutrients 2019, 11, 2542. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Loh, H.C.; Ching, S.M.; Devaraj, N.K.; Hoo, F.K. Effects of Vegetarian Diets on Blood Pressure Lowering: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Nutrients 2020, 12, 1604. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., 3rd; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Lei, L.; Qin, H.; Chen, Y.; Sun, Y.; Yin, W.; Tong, S. Association Between Adherence to EAT-Lancet Diet and Risk of Hypertension: An 18-Year National Cohort Study in China. J. Am. Nutr. Assoc. 2025, 44, 40–49. [Google Scholar] [CrossRef]
- Cacau, L.T.; Hanley-Cook, G.T.; Vandevijvere, S.; Leclercq, C.; De Henauw, S.; Santaliestra-Pasias, A.; Manios, Y.; Mourouti, N.; Díaz, E.; González-Gross, M.; et al. Association between adherence to the EAT-Lancet sustainable reference diet and cardiovascular health among European adolescents: The HELENA study. Eur. J. Clin. Nutr. 2024, 78, 202–208. [Google Scholar] [CrossRef]
- Filippou, C.; Tatakis, F.; Polyzos, D.; Manta, E.; Thomopoulos, C.; Nihoyannopoulos, P.; Tousoulis, D.; Tsioufis, K. Overview of salt restriction in the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet for blood pressure reduction. Rev. Cardiovasc. Med. 2022, 23, 36. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Veronesi, M.; Fogacci, F. Dietary Intervention to Improve Blood Pressure Control: Beyond Salt Restriction. High Blood Press. Cardiovasc. Prev. 2021, 28, 547–553. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; Woodward, M.; Sacks, F.M.; Carey, V.J.; Miller, E.R.; Appel, L.J. Time Course of Change in Blood Pressure from Sodium Reduction and the DASH Diet. Hypertension 2017, 70, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Lewis, C.E.; Varady, K.A.; Su, Y.R.; Madhur, M.S.; Lackland, D.T.; Reis, J.P.; Wang, T.J.; Lloyd-Jones, D.M.; Allen, N.B. Effect of Dietary Sodium on Blood Pressure: A Crossover Trial. JAMA 2023, 330, 2258–2266. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012; ISBN 13: 978-924-150483-6. Available online: https://www.who.int/publications/i/item/9789241504836 (accessed on 13 January 2025).
- Wang, M.; Du, X.; Huang, W.; Xu, Y. Ultra-processed Foods Consumption Increases the Risk of Hypertension in Adults: A Systematic Review and Meta-analysis. Am. J. Hypertens. 2022, 35, 892–901. [Google Scholar] [CrossRef]
- Cai, H.; Talsma, E.F.; Chang, Z.; Wen, X.; Fan, S.; Van’t Veer, P.; Biesbroek, S. Health outcomes, environmental impacts, and diet costs of adherence to the EAT-Lancet Diet in China in 1997–2015: A health and nutrition survey. Lancet Planet Health 2024, 8, e1030–e1042. [Google Scholar] [CrossRef]
- Frank, S.M.; Jaacks, L.M.; Adair, L.S.; Avery, C.L.; Meyer, K.; Rose, D.; Taillie, L.S. Adherence to the Planetary Health Diet Index and correlation with nutrients of public health concern: An analysis of NHANES 2003–2018. Am. J. Clin. Nutr. 2024, 119, 384–392. [Google Scholar] [CrossRef]
- Carey, R.M.; Muntner, P.; Bosworth, H.B.; Whelton, P.K. Prevention and Control of Hypertension: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1278–1293. [Google Scholar] [CrossRef]
- Sriperumbuduri, S.; Welling, P.; Ruzicka, M.; Hundemer, G.L.; Hiremath, S. Potassium and Hypertension: A State-of-the-Art Review. Am. J. Hypertens. 2024, 37, 91–100. [Google Scholar] [CrossRef]
- de Oliveira Neta, R.S.; Lima, S.C.V.C.; Medeiros, M.F.A.; Araújo, D.B.M.; Bernardi, N.; de Araújo, A.A.N.G.; Jacob, M.C.M.; Neta, A.D.C.P.A.; Marchioni, D.M.L.; Lyra, C.O.; et al. The EAT-Lancet Diet Associated Cardiovascular Health Parameters: Evidence from a Brazilian Study. Nutr. J. 2024, 23, 116. [Google Scholar] [CrossRef]
- Frank, S.M.; Jaacks, L.M.; Avery, C.L.; Adair, L.S.; Meyer, K.; Rose, D.; Taillie, L.S. Dietary Quality and Cardiometabolic Indicators in the USA: A Comparison of the Planetary Health Diet Index, Healthy Eating Index-2015, and Dietary Approaches to Stop Hypertension. PLoS ONE 2024, 19, e0296069. [Google Scholar] [CrossRef]
- Oncina-Cánovas, A.; Vioque, J.; González-Palacios, S.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Zomeño, D.; Martínez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. Pro-Vegetarian Food Patterns and Cardiometabolic Risk in the PREDIMED-Plus Study: A Cross-Sectional Baseline Analysis. Eur. J. Nutr. 2022, 61, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, C.M.; Ramesh, G.; Bui, L.; Nair, N.K.; Hu, F.B.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Bhupathiraju, S.N. Planetary Health Diet and Cardiovascular Disease: Results from Three Large Prospective Cohort Studies in the USA. Lancet Planet. Health 2024, 8, e666–e674. [Google Scholar] [CrossRef] [PubMed]
- Bui, L.P.; Pham, T.T.; Wang, F.; Chai, B.; Sun, Q.; Hu, F.B.; Lee, K.H.; Guasch-Ferre, M.; Willett, W.C. Planetary Health Diet Index and Risk of Total and Cause-Specific Mortality in Three Prospective Cohorts. Am. J. Clin. Nutr. 2024, 120, 80–91. [Google Scholar] [CrossRef]
- Ye, Y.X.; Chen, J.X.; Li, Y.; Lai, Y.W.; Lu, Q.; Xia, P.F.; Franco, O.H.; Liu, G.; Pan, A. Adherence to a Planetary Health Diet, Genetic Susceptibility, and Incident Cardiovascular Disease: A Prospective Cohort Study from the UK Biobank. Am. J. Clin. Nutr. 2024, 120, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Sotos-Prieto, M.; Ortolá, R.; Maroto-Rodriguez, J.; Carballo-Casla, A.; Kales, S.N.; Rodríguez-Artalejo, F. Association Between Planetary Health Diet and Cardiovascular Disease: A Prospective Study from the UK Biobank. Eur. J. Prev. Cardiol. 2024, 29, zwae282. [Google Scholar] [CrossRef]
- Colizzi, C.; Harbers, M.C.; Vellinga, R.E.; Verschuren, W.M.M.; Boer, J.M.A.; Biesbroek, S.; Temme, E.H.M.; van der Schouw, Y.T. Adherence to the EAT-Lancet Healthy Reference Diet in Relation to Risk of Cardiovascular Events and Environmental Impact: Results from the EPIC-NL Cohort. J. Am. Heart Assoc. 2023, 12, e026318. [Google Scholar] [CrossRef]
- Zhang, S.; Dukuzimana, J.; Stubbendorff, A.; Ericson, U.; Borné, Y.; Sonestedt, E. Adherence to the EAT-Lancet Diet and Risk of Coronary Events in the Malmö Diet and Cancer Cohort Study. Am. J. Clin. Nutr. 2023, 117, 903–909. [Google Scholar] [CrossRef]
- Martins, L.B.; Gamba, M.; Stubbendorff, A.; Gasser, N.; Löbl, L.; Stern, F.; Ericson, U.; Marques-Vidal, P.; Vuilleumier, S.; Chatelan, A. Association Between the EAT-Lancet Diet, Incidence of Cardiovascular Events, and All-Cause Mortality: Results from a Swiss Cohort. J. Nutr. 2024, 155, 483–491. [Google Scholar] [CrossRef]
- Ibsen, D.B.; Christiansen, A.H.; Olsen, A.; Tjønneland, A.; Overvad, K.; Wolk, A.; Mortensen, J.K.; Dahm, C.C. Adherence to the EAT-Lancet Diet and Risk of Stroke and Stroke Subtypes: A Cohort Study. Stroke 2022, 53, 154–163. [Google Scholar] [CrossRef]
- Zhang, S.; Stubbendorff, A.; Ericson, U.; Wändell, P.; Niu, K.; Qi, L.; Borné, Y.; Sonestedt, E. The EAT-Lancet Diet, Genetic Susceptibility, and Risk of Atrial Fibrillation in a Population-Based Cohort. BMC Med. 2023, 21, 280. [Google Scholar] [CrossRef]
- Zhang, S.; Marken, I.; Stubbendorff, A.; Ericson, U.; Qi, L.; Sonestedt, E.; Borné, Y. The EAT-Lancet Diet Index, Plasma Proteins, and Risk of Heart Failure in a Population-Based Cohort. JACC Heart Fail. 2024, 12, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, Q.; Wang, X. Emerging EAT-Lancet Planetary Health Diet Is Associated with Major Cardiovascular Diseases and All-Cause Mortality: A Global Systematic Review and Meta-Analysis. Clin. Nutr. 2024, 43, 167–179. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Regional Office for Europe. WHO European Regional Obesity Report 2022; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2022; Available online: https://iris.who.int/handle/10665/353747 (accessed on 13 January 2025).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
Type of Product | Macronutrient Intake (Range) [g/Day] | Caloric Intake [kcal/Day] | |
---|---|---|---|
Vegetables | All vegetables | 300 (200–600) | 78 |
Fruits | All fruit | 200 (100–300) | 126 |
Whole grains | Rice, wheat, corn, and other grains | 232 | 811 |
Tubers or starchy vegetables | Potatoes and cassava | 50 (0–100) | 39 |
Dairy | Whole milk or equivalents | 250 (0–500) | 153 |
Plant-based protein sources | Dry beans, lentils and peas | 50 (0–100) | 172 |
Soy foods | 25 (0–50) | 112 | |
Peanuts | 25 (0–75) | 142 | |
Tree nuts | 25 | 149 | |
Animal protein sources | Beef and lamb | 7 (0–14) | 15 |
Pork | 7 (0–14) | 15 | |
Chicken and other poultry | 29 (0–58) | 62 | |
Eggs | 13 (0–25) | 19 | |
Fish | 28 (0–100) | 40 | |
Added fats | Palm oil | 6.8 (0–6.8) | 60 |
Unsaturated oils (olive, soybean, rapeseed, sunflower, and peanut oil) | 40 (20–80) | 354 | |
Dairy fats | 0 | 0 | |
Lard or tallow | 5 (0–5) | 36 | |
Additional sugars | All sweeteners | 31 | 120 |
Dietary Components | EAT Commission Recommendations |
---|---|
Protein sources | Reduction of red and processed meat Lower intake of dairy products, preference for low-fat dairy products Sources of omega-3 fatty acids such as fish (about 28 g per day) or plant sources of alfa-linolenic acid Intake of eggs of about 13 g per day or 1–5 per week Intake of nuts of 50 g per day Legumes: 50 g dry weight per day of beans, lentils and peas and 25 g per day of soy beans Other protein sources like insects, cyanobacterium (blue-green algae) and in-vitro meat are important in smaller populations, but were not considered in the general world consumption |
Carbohydrate sources | High intake of whole grains and fiber from grain sources, while reducing refined grain and potatoes It is suggested to gain around 60% of the energy intake from complex carbohydrates, mostly whole grains 232 g per day of whole grains and 50 g per day (maximum 100 g) of tubers and starchy vegetables |
Fruits and vegetables | Sources of micronutrients are important and play a key role in the prevention of cardiovascular disease, cancer, and obesity About five servings of fruit and vegetables per day or 300 g per day of vegetables and 200 g per day of fruits |
Added fat | Low-fat diet to prevent weight gain and cardiovascular disease Consumption of mostly plant oils low in saturated fats, reduction of animal fats 50 g per day of total added fat (mostly unsaturated plant oils) |
Sugars and sweeteners | Sugar intake should make up less than 10% of total energy intake, with a tendency towards around 5% or less |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muszalska, A.; Wiecanowska, J.; Michałowska, J.; Pastusiak-Zgolińska, K.M.; Polok, I.; Łompieś, K.; Bogdański, P. The Role of the Planetary Diet in Managing Metabolic Syndrome and Cardiovascular Disease: A Narrative Review. Nutrients 2025, 17, 862. https://doi.org/10.3390/nu17050862
Muszalska A, Wiecanowska J, Michałowska J, Pastusiak-Zgolińska KM, Polok I, Łompieś K, Bogdański P. The Role of the Planetary Diet in Managing Metabolic Syndrome and Cardiovascular Disease: A Narrative Review. Nutrients. 2025; 17(5):862. https://doi.org/10.3390/nu17050862
Chicago/Turabian StyleMuszalska, Aleksandra, Julia Wiecanowska, Joanna Michałowska, Katarzyna Magdalena Pastusiak-Zgolińska, Izabela Polok, Kinga Łompieś, and Paweł Bogdański. 2025. "The Role of the Planetary Diet in Managing Metabolic Syndrome and Cardiovascular Disease: A Narrative Review" Nutrients 17, no. 5: 862. https://doi.org/10.3390/nu17050862
APA StyleMuszalska, A., Wiecanowska, J., Michałowska, J., Pastusiak-Zgolińska, K. M., Polok, I., Łompieś, K., & Bogdański, P. (2025). The Role of the Planetary Diet in Managing Metabolic Syndrome and Cardiovascular Disease: A Narrative Review. Nutrients, 17(5), 862. https://doi.org/10.3390/nu17050862