Tailored Exercise Intervention in Metabolic Syndrome: Cardiometabolic Improvements Beyond Weight Loss and Diet—A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Experimental Design
2.5. Training Protocol
2.5.1. Exercise Monitoring and Adherence
2.5.2. Aerobic Training
2.5.3. Resistance Training
2.6. Statistical Analysis
3. Results
3.1. Correlations
3.2. Gender Differences
3.3. Linear Regression Models
3.4. Key Findings from the Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MS | Metabolic Syndrome |
AMPA | Adapted Personalized Motor Activity |
CPET | Cardiopulmonary Exercise Testing |
HDL | High-Density Lipoprotein |
LDL | Low-Density Lipoprotein |
HbA1c | Glycated Hemoglobin |
VO2max | Maximum Oxygen Consumption |
BMI | Body Mass Index |
FVC | Forced Vital Capacity |
FEV1 | Forced Expiratory Volume in 1 Second |
HR | Heart Rate |
SBP | Systolic Blood Pressure |
DBP | Diastolic Blood Pressure |
ACSM | American College of Sports Medicine |
RM | Repetition Maximum |
IDF | International Diabetes Federation |
References
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Hirode, G.; Wong, R.J. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA 2020, 323, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Poon, E.T.-C.; Wongpipit, W.; Li, H.-Y.; Wong, S.H.-S.; Siu, P.M.; Kong, A.P.-S.; Johnson, N.A. High-intensity interval training for cardiometabolic health in adults with metabolic syndrome: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2024, 58, 1267–1284. [Google Scholar] [CrossRef]
- Naci, H.; Salcher-Konrad, M.; Dias, S.; Blum, M.R.; Sahoo, S.A.; Nunan, D.; Ioannidis, J.P.A. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br. J. Sports Med. 2019, 53, 859–869. [Google Scholar] [CrossRef]
- Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S. ACSM’s New Preparticipation Health Screening Recommendations from ACSM’s Guidelines for Exercise Testing and Prescription, Ninth Edition. Curr. Sports Med. Rep. 2013, 12, 215–217. Available online: http://www.phac-aspc.gc.ca/pau-uap/paguide/ (accessed on 27 January 2025). [CrossRef] [PubMed]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef]
- Shah, R.V.; Murthy, V.L.; Abbasi, S.A.; Blankstein, R.; Kwong, R.Y.; Goldfine, A.B.; Jerosch-Herold, M.; Lima, J.A.C.; Ding, J.; Allison, M.A. Visceral adiposity and the risk of metabolic syndrome across body mass index: The MESA Study. J. Am. Coll. Cardiol. Imaging 2014, 7, 1221–1235. Available online: http://imaging.onlinejacc.org (accessed on 27 January 2025). [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef]
- Ryan, B.J.; Schleh, M.W.; Ahn, C.; Ludzki, A.C.; Gillen, J.B.; Varshney, P.; van Pelt, D.W.; Pitchford, L.M.; Chenevert, T.L.; Gioscia-Ryan, R.A.; et al. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. J. Clin. Endocrinol. Metab. 2020, 105, E2941–E2959. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Leon, A.S.; Rice, T.; Mandel, S.; Després, J.P.; Bergeron, J.; Gagnon, J.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H.; Bouchard, C. Blood Lipid Response to 20 Weeks of Supervised Exercise in a Large Biracial Population: The HERITAGE Family Study. Metabolism 2000, 49, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Smart, N.A.; Downes, D.; van der Touw, T.; Hada, S.; Dieberg, G.; Pearson, M.J.; Wolden, M.; King, N.; Goodman, S.P.J. The Effect of Exercise Training on Blood Lipids: A Systematic Review and Meta-analysis. Sports Med. 2025, 55, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Houmard, J.A.; Duscha, B.D.; Knetzger, K.J.; Wharton, M.B.; McCartney, J.S.; Bales, C.W.; Henes, S.; Samsa, G.P.; Otvos, J.D.; et al. Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. N. Engl. J. Med. 2002, 347, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, S.; Schaller, G.; Mittermayer, F.; Pleiner, J.; Mihaly, J.; Niessner, A.; Richter, B.; Steiner-Boeker, S.; Penak, M.; Strasser, B.; et al. Exercise training improves low-density lipoprotein oxidability in untrained subjects with coronary artery disease. Arch. Phys. Med. Rehabil. 2006, 87, 265–269. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Fagard, R.H. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 2005, 46, 667–675. [Google Scholar] [CrossRef]
- Baffour-Awuah, B.; Man, M.; Goessler, K.F.; Cornelissen, V.A.; Dieberg, G.; Smart, N.A.; Pearson, M.J. Effect of exercise training on the renin–angiotensin–aldosterone system: A meta-analysis. J. Hum. Hypertens. 2024, 38, 89–101. [Google Scholar] [CrossRef]
- Westcott, W.L.; Winett, R.A.; Annesi, J.J.; Wojcik, J.R.; Anderson, E.S.; Madden, P.J. Prescribing physical activity: Applying the ACSM protocols for exercise type, intensity, and duration across 3 training frequencies. Physician Sportsmed. 2009, 37, 51–58. [Google Scholar] [CrossRef]
- Ostman, C.; Smart, N.A.; Morcos, D.; Duller, A.; Ridley, W.; Jewiss, D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2017, 16, 110. [Google Scholar] [CrossRef]
- Lamberti, V., Jr.; Nardini, S.; Romano, P.; Menegon, T.; Lamberti, V., Sr. Una nuova frontiera nella sport-terapia: AMPA system (attività motoria personalizzata e adattata). Med. Dello Sport 2015, 68, 135–146. Available online: https://www.minervamedica.it/it/riviste/medicina-dello-sport/articolo.php?cod=R26Y2015N01A0135 (accessed on 13 December 2024).
- Lamberti, V.; Palermi, S.; Franceschin, A.; Scapol, G.; Lamberti, V.; Lamberti, C.; Vecchiato, M.; Spera, R.; Sirico, F.; Valle, E.D. The effectiveness of Adapted Personalized Motor Activity (AMPA) to improve health in individuals with mental disorders and physical comorbidities: A randomized controlled trial. Sports 2022, 10, 30. [Google Scholar] [CrossRef]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome. Available online: https://idf.org/media/uploads/2023/05/attachments-30.pdf (accessed on 13 December 2024).
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf (accessed on 13 December 2024).
- Lipsy, R.J. The National Cholesterol Education Program Adult Treatment Panel III guidelines. J. Manag. Care Pharm. JMCP 2003, 9 (Suppl. S1), 2–5. [Google Scholar] [CrossRef] [PubMed]
- Radtke, T.; Crook, S.; Kaltsakas, G.; Louvaris, Z.; Berton, D.; Urquhart, D.S.; Kampouras, A.; Rabinovich, R.A.; Verges, S.; Kontopidis, D.; et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2019, 28, 180101. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Howley, E.T. Exercise Physiology: Theory and Application to Fitness and Performance, 10th ed.; McGraw-Hill Education: New York, NY, USA, 2018; pp. 30–150. ISBN 9781259870453/9781259982651. [Google Scholar]
- Rhea, M.R.; Alderman, B.L. A Meta-Analysis of Periodized versus Nonperiodized Strength and Power Training Programs. Res. Q. Exerc. Sport 2004, 75, 413–422. [Google Scholar] [CrossRef] [PubMed]
- The Jamovi Project. Jamovi, Version 2.3; The Jamovi Project: Sydney, Australia, 2022. Available online: https://www.jamovi.org (accessed on 16 November 2024).
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.1; R Core Team: Vienna, Austria, 2021. Available online: https://cran.r-project.org (accessed on 16 November 2024).
- Weatherwax, R.M.; Ramos, J.S.; Harris, N.K.; Kilding, A.E.; Dalleck, L.C. Changes in Metabolic Syndrome Severity Following Individualized Versus Standardized Exercise Prescription: A Feasibility Study. Int. J. Environ. Res. Public Health 2018, 15, 2594. [Google Scholar] [CrossRef]
- Passoni, E.; Lania, A.; Adamo, S.; Grasso, G.S.; Noè, D.; Miserocchi, G.; Beretta, E. Mild Training Program in Metabolic Syndrome Improves the Efficiency of the Oxygen Pathway. Respir. Physiol. Neurobiol. 2015, 208, 8–14. [Google Scholar] [CrossRef]
- Johnson, J.L.; Slentz, C.A.; Houmard, J.A.; Samsa, G.P.; Duscha, B.D.; Aiken, L.B.; McCartney, J.S.; Tanner, C.J.; Kraus, W.E. Exercise training amount and intensity effects on metabolic syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise). Am. J. Cardiol. 2007, 100, 1759–1766. [Google Scholar] [CrossRef]
- Halle, M.; Papadakis, M. A New Dawn of Managing Cardiovascular Risk in Obesity: The Importance of Combining Lifestyle Intervention and Medication. Eur. Heart J. 2024, 45, 1143–1145. [Google Scholar] [CrossRef]
- Pattyn, N.; Cornelissen, V.A.; Eshghi, S.R.; Vanhees, L. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: A meta-analysis of controlled trials. Sports Med. 2013, 43, 121–133. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D. Effects of Aerobic Exercise on Lipids and Lipoproteins. Lipids Health Dis. 2017, 16, 132. [Google Scholar] [CrossRef]
- Ahn, C.; Ryan, B.J.; Schleh, M.W.; Varshney, P.; Ludzki, A.C.; Gillen, J.B.; Van Pelt, D.W.; Pitchford, L.M.; Howton, S.M.; Rode, T.; et al. Exercise Training Remodels Subcutaneous Adipose Tissue in Adults with Obesity Even Without Weight Loss. J. Physiol. 2022, 600, 2127–2146. [Google Scholar] [CrossRef]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, H.; Vargas, M.A.; Gaio, J.; Cofie, P.L.; Reis, W.P.; Peters, W.; Berk, L. Cardiorespiratory fitness decreases high-sensitivity C-reactive protein and improves parameters of metabolic syndrome. Cureus 2024, 16, e63317. [Google Scholar] [CrossRef] [PubMed]
- King, N.A.; Hopkins, M.; Caudwell, P.; Stubbs, R.J.; Blundell, J.E. Beneficial effects of exercise: Shifting the focus from body weight to other markers of health. Br. J. Sports Med. 2009, 43, 924–927. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Tompuri, T.; Lintu, N.; Viitasalo, A.; Savonen, K.; Lakka, T.A.; Laukkanen, J.A. Is low cardiorespiratory fitness a feature of metabolic syndrome in children and adults? J. Sci. Med. Sport 2022, 25, 923–929. [Google Scholar] [CrossRef]
- O’Donnell, D.E.; McGuire, M.; Samis, L.; Webb, K.A. General exercise training improves ventilatory and peripheral muscle strength and endurance in chronic airflow limitation. Am. J. Respir. Crit. Care Med. 1998, 157 Pt 1, 1489–1497. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25, 1–72. [Google Scholar] [CrossRef]
- Norha, J.; Sjöros, T.; Garthwaite, T.; Laine, S.; Saarenhovi, M.; Kallio, P.; Laitinen, K.; Houttu, N.; Vähä-Ypyä, H.; Sievänen, H.; et al. Effects of reducing sedentary behavior on cardiorespiratory fitness in adults with metabolic syndrome: A 6-month RCT. Scand. J. Med. Sci. Sports 2023, 33, 1452–1461. [Google Scholar] [CrossRef]
- Morales-Palomo, F.; Moreno-Cabañas, A.; Ramírez-Jiménez, M.; Álvarez-Jiménez, L.; Valenzuela, P.L.; Lucía, A.; Ortega, J.F.; Mora-Rodríguez, R. Exercise reduces medication for metabolic syndrome management: A 5-year follow-up study. Med. Sci. Sports Exerc. 2021, 53, 1319–1325. [Google Scholar] [CrossRef]
- Nasi, M.; Patrizi, G.; Pizzi, C.; Landolfo, M.; Boriani, G.; Dei Cas, A.; Cicero, A.F.G.; Fogacci, F.; Rapezzi, C.; Sisca, G.; et al. The role of physical activity in individuals with cardiovascular risk factors: An opinion paper from Italian Society of Cardiology-Emilia Romagna-Marche and SIC-Sport. J. Cardiovasc. Med. 2019, 20, 631–639. [Google Scholar] [CrossRef]
- Lal, B.; Iqbal, A.; Butt, N.F.; Randhawa, F.A.; Rathore, R.; Waseem, T. Efficacy of high dose Allopurinol in reducing left ventricular mass in patients with left ventricular hypertrophy by comparing its efficacy with Febuxostat—A randomized controlled trial. JPMA J. Pak. Med. Assoc. 2018, 68, 1446–1450. [Google Scholar]
- Cartee, G.D. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E949–E959. [Google Scholar] [CrossRef]
- Šarabon, N.; Kozinc, Ž.; Löfler, S.; Hofer, C. Resistance Exercise, Electrical Muscle Stimulation, and Whole-Body Vibration in Older Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 2902. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Thomas, R.L.; Campbell, M.D.; Prior, S.L.; Bracken, R.M.; Churm, R. Effects of exercise training on metabolic syndrome risk factors in post-menopausal women—A systematic review and meta-analysis of randomised controlled trials. Clin. Nutr. 2023, 42, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Sparks, L.M.; Johannsen, N.M.; Church, T.S.; Earnest, C.P.; Moonen-Kornips, E.; Moro, C.; Hesselink, M.K.; Smith, S.R.; Schrauwen, P. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J. Clin. Endocrinol. Metab. 2013, 98, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Pinckard, K.; Baskin, K.K.; Stanford, K.I. Effects of Exercise to Improve Cardiovascular Health. Front. Cardiovasc. Med. 2019, 6, 69. [Google Scholar] [CrossRef]
- Regensteiner, J.G.; Sippel, J.; McFarling, E.T.; Wolfel, E.E.; Hiatt, W.R. Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Med. Sci. Sports Exerc. 1995, 27, 875–881. [Google Scholar] [CrossRef]
- Faselis, C.; Doumas, M.; Kokkinos, J.P.; Panagiotakos, D.; Kheirbek, R.; Sheriff, H.M.; Hare, K.; Papademetriou, V.; Fletcher, R.; Kokkinos, P. Exercise capacity and progression from prehypertension to hypertension. Hypertension 2012, 60, 333–338. [Google Scholar] [CrossRef]
- Herrod, P.J.J.; Doleman, B.; Blackwell, J.E.M.; O’Boyle, F.; Williams, J.P.; Lund, J.N.; Phillips, B.E. Exercise and other nonpharmacological strategies to reduce blood pressure in older adults: A systematic review and meta-analysis. J. Am. Soc. Hypertens. JASH 2018, 12, 248–267. [Google Scholar] [CrossRef]
- Venturelli, M.; Cè, E.; Limonta, E.; Schena, F.; Caimi, B.; Carugo, S.; Veicsteinas, A.; Esposito, F. Effects of endurance, circuit, and relaxing training on cardiovascular risk factors in hypertensive elderly patients. AGE 2015, 37, 101. [Google Scholar] [CrossRef]
- Wang, X.; Hsu, F.C.; Isom, S.; Walkup, M.P.; Kritchevsky, S.B.; Goodpaster, B.H.; Church, T.S.; Pahor, M.; Stafford, R.S.; Nicklas, B.J. Effects of a 12-month physical activity intervention on prevalence of metabolic syndrome in elderly men and women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 417–424. [Google Scholar] [CrossRef]
- Schultz, M.G.; La Gerche, A.; Sharman, J.E. Cardiorespiratory Fitness, Workload, and the Blood Pressure Response to Exercise Testing. Exerc. Sport Sci. Rev. 2022, 50, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Jae, S.Y.; Kurl, S.; Kunutsor, S.K.; Franklin, B.A.; Laukkanen, J.A. Relation of maximal systolic blood pressure during exercise testing to the risk of sudden cardiac death in men with and without cardiovascular disease. Eur. J. Prev. Cardiol. 2020, 27, 2220–2222. [Google Scholar] [CrossRef] [PubMed]
- Jarrete, A.P.; Novais, I.P.; Nunes, H.A.; Puga, G.M.; Delbin, M.A.; Zanesco, A. Influence of aerobic exercise training on cardiovascular and endocrine-inflammatory biomarkers in hypertensive postmenopausal women. J. Clin. Transl. Endocrinol. 2014, 1, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Golbidi, S.; Mesdaghinia, A.; Laher, I. Exercise in the metabolic syndrome. Oxidative Med. Cell. Longev. 2012, 2012, 349710. [Google Scholar] [CrossRef]
- Hundal, R.S.; Krssak, M.; Dufour, S.; Laurent, D.; Lebon, V.; Chandramouli, V.; Inzucchi, S.E.; Schumann, W.C.; Petersen, K.F.; Landau, B.R.; et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 2000, 49, 2063–2069. [Google Scholar] [CrossRef]
- Ridker, P.M.; Mora, S.; Rose, L.; JUPITER Trial Study Group. Percent reduction in LDL cholesterol following high-intensity statin therapy: Potential implications for guidelines and for the prescription of emerging lipid-lowering agents. Eur. Heart J. 2016, 37, 1373–1379. [Google Scholar] [CrossRef]
- Wang, N.; Salam, A.; Pant, R.; Kota, V.; Dhurjati, R.; Kumar, A.; Haghdoost, F.; Gnanenthiran, S.; Kaistha, P.; Prasad, H.; et al. Blood pressure lowering efficacy of antihypertensive drugs and their combinations: A systematic review and meta-analysis of 500 randomised, double-blind placebo-controlled trials. Eur. Heart J. 2024, 45 (Suppl. S1), ehae666.2594. [Google Scholar] [CrossRef]
- MoTrPAC Study Group; Lead Analysts; MoTrPAC Study Group. Temporal dynamics of the multi-omic response to endurance exercise training. Nature 2024, 629, 174–183. [Google Scholar] [CrossRef]
- Siopi, A.; Deda, O.; Manou, V.; Kosmidis, I.; Komninou, D.; Raikos, N.; Theodoridis, G.A.; Mougios, V. Comparison of the Serum Metabolic Fingerprint of Different Exercise Modes in Men with and without Metabolic Syndrome. Metabolites 2019, 9, 116. [Google Scholar] [CrossRef]
Pre Intervention Mean (±SD) or Median (Min–Max) | Post Intervention Mean (±SD) or Median (Min–Max) | p | ΔPre-Post Mean (±SD) or Median (Min–Max) | Δ%Pre-Post Mean (±SD) or Median (Min–Max) | |
---|---|---|---|---|---|
N° of pills | 3.0 (0–15) | 3.0 (0–15) | 0.025 | 0 (−3–2) | - |
Weight (kg) | 84.0 (47–125) | 84.0 (48–125) | 0.03 | 0 (−11–5) | 0 (−15.3–4.8) |
Waist (cm) | 103.0 (65–131) | 102.0 (68–132) | <0.001 | −1 (−12–6) | −1.1 (−13.5–8.5) |
Hips (cm) | 106.0 (74–142) | 104.0 (85–142) | 0.008 | −1 (−14–11) | −1 (−14.6–12.9) |
Glycemia (mg/dL) | 120.0 (86–340) | 107.0 (78–246) | <0.001 | −11 (−144–65) | −10.6 (−73.5–34.9) |
HbA1c (%) | 6.6 (2.83–14.6) | 6.4 (4.9–9.7) | <0.001 | −0.2 (−6.2–1.8) | −3.88 (−73.8–18.6) |
Total Cholesterol (mg/dL) | 205.0 (79–324) | 182.0 (115–278) | <0.001 | −19 (−87–98) | −10 (−54–55) |
HDL (mg/dL) | 41.5 (±11.3) | 53.9 (±13.4) | <0.001 | 12.47 (±11.64) | 20.8 (±18.6) |
LDL (mg/dL) | 148.9 (±34.8) | 121.6 (±25.8) | <0.001 | −27.3 (±33.3) | −25.1 (±30.3) |
TG (mg/dL) | 152.0 (46–403) | 141.0 (58–459) | 0.18 | −5 (−206–89) | −3.6 (−191.7–52.5) |
Uric acid (mg/dL) | 5.9 (±1.3) | 5.6 (±1.1) | 0.012 | - | - |
Creatinine (mg/dL) | 0.83 (0.53–1.55) | 0.87 (0.62–1.74) | 0.48 | - | - |
FVC (L) | 3.27 (2.04–5.95) | 3.51 (1.77–6.07) | <0.001 | 0.2 (−1.59–1.73) | 6.6 (−50–39.7) |
FVC % | 104.5 (56–196) | 111.7 (62–157) | <0.001 | - | - |
FEV1 (L) | 2.50 (1.1–4.4) | 2.68 (1.35–4.66) | <0.001 | 0.18 (−1.65–1.87) | 6.6 (−64.7–42.6) |
FEV1 % | 95.5 (62–205) | 106.5 (62–154) | <0.001 | - | - |
Tiffeneau Index | 0.78 (0.48–0.91) | 0.78 (0.65–0.95) | 0.083 | - | - |
PEF (L) | 6.32 (2.72–13.54) | 6.42 (3.01–11.17) | 0.74 | - | - |
PEF% | 93.5 (55–141) | 95.6 (49.2–134) | 0.7 | - | - |
VO2max (L/min) | 1.42 (0.75–2.76) | 1.51 (0.81–2.90) | <0.001 | 0.150 (−0.660–0.790) | 8.6 (−31.4–33.8) |
iVO2max (mL/kg/min) | 16.8 (10.8–27.6) | 18.6 (12.3–33.9) | <0.001 | 1.7 (−6.6–11.1) | 8.8 (−39.8–32.8) |
AT (mL/kg/min) | 12.83 (±2.45) | 14.28 (±2.75) | <0.001 | 1.61 (±1.92) | 10.4 (−47.5–39) |
Peak O2 pulse (mL/min) | 12.0 (6–22) | 13.0 (7–23) | <0.001 | 1 (−8–12.5) | 7.6 (−57.1–54.4) |
Ventilatory reserve (%) | 52.91 (±12.70) | 50.86 (±11.78) | 0.19 | −2.06 (±13.24) | −2.06 (±5.4) |
Age-adjusted PPO (watt) | 137.0 (63–262) | 134.0 (65–262) | 0.01 | 0 (−48–10) | 0 (−27.1–5.5) |
PPO (watt) | 110.0 (60–224) | 125.0 (75–250) | <0.001 | 12 (−29–56) | 8.3 (−19.3–32.7) |
Relative PPO (watt/kg) | 1.46 (±0.39) | 1.61 (±0.39) | <0.001 | 0.16 (± 0.32–0.61) | 0 (−27.1–5.47) |
HR basal (bpm) | 68.0 (48–98) | 61.0 (46–83) | <0.001 | −5 (−29–15) | −7.6 (−49.2–22.4) |
HR peak (bpm) | 121.5 (±17.2) | 122.1 (±16.5) | 0.7 | - | - |
HR recovery (bpm) | 89.4 (±15.9) | 83.8 (±11.3) | <0.001 | −5.6 (± 10.1) | −6 (−40.9–20.3) |
SBP basal (mmHg) | 140.0 (110–160) | 120.0 (105–160) | <0.001 | −15 (−55–30) | −12 (−52.4–20) |
DBP basal (mmHg) | 80.0 (70–110) | 80.0 (60–95) | <0.001 | −5 (−35–15) | −5.9 (−50–17.7) |
SBP peak (mmHg) | 195.0 (150–250) | 190.0 (155–240) | 0.2 | - | - |
DBP peak (mmHg) | 85.0 (55–110) | 80.0 (60–110) | 0.004 | −5 (−30–30) | −5.9 (−38.5–27.8) |
SBP recovery (mmHg) | 139.6 (±13.8) | 129.3 (±12.0) | <0.001 | −10 (−40–25) | −8 (−30.4–17.2) |
DBP recovery (mmHg) | 80.0 (55–105) | 75.0 (50–95) | <0.001 | −5 (−25–15) | −6.7 (−41.7–17.7) |
Outcome | Baseline Predictors | β | SE | p-Value |
---|---|---|---|---|
LDL cholesterol (%Δ) | Baseline LDL | −0.377 | 0.11 | 0.001 |
Triglycerides (%Δ) | Baseline triglycerides | −0.233 | 0.081 | 0.007 |
Baseline fasting glucose | −0.411 | 0.129 | 0.003 | |
HDL cholesterol (%Δ) | Age | −0.655 | 0.252 | 0.013 |
Baseline HDL | −0.847 | 0.279 | 0.004 | |
Fasting glucose (%Δ) | Baseline fasting glucose | −0.295 | 0.061 | <0.001 |
Systolic blood pressure (%Δ) | Baseline LDL | 0.089 | 0.045 | 0.057 |
Diastolic blood pressure (%Δ) | Baseline triglycerides | 0.037 | 0.02 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braggio, M.; Dorelli, G.; Olivato, N.; Lamberti, V.; Valenti, M.T.; Dalle Carbonare, L.; Cominacini, M. Tailored Exercise Intervention in Metabolic Syndrome: Cardiometabolic Improvements Beyond Weight Loss and Diet—A Prospective Observational Study. Nutrients 2025, 17, 872. https://doi.org/10.3390/nu17050872
Braggio M, Dorelli G, Olivato N, Lamberti V, Valenti MT, Dalle Carbonare L, Cominacini M. Tailored Exercise Intervention in Metabolic Syndrome: Cardiometabolic Improvements Beyond Weight Loss and Diet—A Prospective Observational Study. Nutrients. 2025; 17(5):872. https://doi.org/10.3390/nu17050872
Chicago/Turabian StyleBraggio, Michele, Gianluigi Dorelli, Nicola Olivato, Vito Lamberti, Maria Teresa Valenti, Luca Dalle Carbonare, and Mattia Cominacini. 2025. "Tailored Exercise Intervention in Metabolic Syndrome: Cardiometabolic Improvements Beyond Weight Loss and Diet—A Prospective Observational Study" Nutrients 17, no. 5: 872. https://doi.org/10.3390/nu17050872
APA StyleBraggio, M., Dorelli, G., Olivato, N., Lamberti, V., Valenti, M. T., Dalle Carbonare, L., & Cominacini, M. (2025). Tailored Exercise Intervention in Metabolic Syndrome: Cardiometabolic Improvements Beyond Weight Loss and Diet—A Prospective Observational Study. Nutrients, 17(5), 872. https://doi.org/10.3390/nu17050872