Vitamin D Supplementation Effects on Markers Related with Endothelial Function and Coagulation in Obese Orthopedic Patients: Insights from Acute and Chronic Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioethics
2.2. Study Cohort
2.3. Samples Collection
2.4. Outcome Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fruh, S.M. Obesity: Risk Factors, Complications, and Strategies for Sustainable Long-term Weight Management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Movahed, M.R.; Khoubyari, R.; Hashemzadeh, M.; Hashemzadeh, M. Obesity is strongly and independently associated with a higher prevalence of pulmonary embolism. Respir. Investig. 2019, 57, 376–379. [Google Scholar] [CrossRef]
- Ageno, W.; Becattini, C.; Brighton, T.; Selby, R.; Kamphuisen, P.W. Cardiovascular risk factors and venous thromboembolism: A meta-analysis. Circulation 2008, 117, 93–102. [Google Scholar] [CrossRef]
- Samad, F.; Ruf, W. Inflammation, obesity, and thrombosis. Blood 2013, 122, 3415–3422. [Google Scholar] [CrossRef]
- Blokhin, I.O.; Lentz, S.R. Mechanisms of thrombosis in obesity. Curr. Opin. Hematol. 2013, 20, 437–444. [Google Scholar] [CrossRef]
- Shantavasinkul, P.C.; Nimitphong, H. Vitamin D and Visceral Obesity in Humans: What Should Clinicians Know? Nutrients 2022, 14, 3075. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- Kanikarla-Marie, P.; Jain, S.K. 1,25(OH)2D3 Inhibits Oxidative Stress and Monocyte Adhesion by Mediating the Upregulation of GCLC and GSH in Endothelial Cells Treated with Acetoacetate (Ketosis). J. Steroid Biochem. Mol. Biol. 2016, 159, 94–101. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Liu, Y.; Peng, X.; Porta, A. New Insights into the Mechanisms of Vitamin D Action. J. Cell. Biochem. 2003, 88, 695–705. [Google Scholar] [CrossRef]
- Latic, N.; Erben, R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef] [PubMed]
- Condoleo, V.; Pelaia, C.; Armentaro, G.; Severini, G.; Clausi, E.; Cassano, V.; Miceli, S.; Fiorentino, T.V.; Succurro, E.; Arturi, F.; et al. Role of Vitamin D in Cardiovascular Diseases. Endocrines 2021, 2, 417–426. [Google Scholar] [CrossRef]
- Flore, L.; Robledo, R.; Dettori, L.; Scorcu, M.; Francalacci, P.; Tocco, F.; Massidda, M.; Calò, C.M. Association of VDR Polymorphisms with Muscle Mass Development in Elite Young Soccer Players: A Pilot Study. Sports 2024, 12, 253. [Google Scholar] [CrossRef]
- Yuzawa, R.; Koike, H.; Manabe, I.; Oishi, Y. VDR Regulates Simulated Microgravity-Induced Atrophy in C2C12 Myotubes. Sci. Rep. 2022, 12, 1377. [Google Scholar] [CrossRef]
- Shang, M.; Sun, J. Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. Curr. Med. Chem. 2017, 24, 876–887. [Google Scholar] [CrossRef]
- Targher, G.; Pichiri, I.; Lippi, G. Vitamin D, thrombosis, and hemostasis: More than skin deep. Semin. Thromb. Hemost. 2012, 38, 114–124. [Google Scholar] [CrossRef]
- Sun, J.; Kong, J.; Duan, Y.; Szeto, F.L.; Liao, A.; Madara, J.L.; Li, Y.C. Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E315–E322. [Google Scholar] [CrossRef] [PubMed]
- Uberti, F.; Lattuada, D.; Morsanuto, V.; Nava, U.; Bolis, G.; Vacca, G.; Squarzanti, D.F.; Cisari, C.; Molinari, C. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J. Clin. Endocrinol. Metab. 2014, 99, 1367–1374. [Google Scholar] [CrossRef]
- Mussbacher, M.; Salzmann, M.; Brostjan, C.; Hoesel, B.; Schoergenhofer, C.; Datler, H.; Hohensinner, P.; Basílio, J.; Petzelbauer, P.; Assinger, A. Cell Type-Specific Roles of NF-kappaB Linking Inflammation and Thrombosis. Front. Immunol. 2019, 10, 85. [Google Scholar] [CrossRef]
- Ohsawa, M.; Koyama, T.; Yamamoto, K.; Hirosawa, S.; Kamei, S.; Kamiyama, R. 1α,25-dihydroxyvitamin D3 and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL. Circulation 2000, 102, 2867–2872. [Google Scholar] [CrossRef]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Niu, J.; Li, H.; Ke, Y.; Li, R.; Zhang, Y.; Lin, J. Knee symptomatic osteoarthritis, walking disability, NSAIDs use and all-cause mortality: Population-based Wuchuan osteoarthritis study. Sci. Rep. 2017, 7, 3309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nguyen, U.D.T.; Lane, N.E.; Lu, N.; Wei, J.; Lei, G.; Zeng, C.; Zhang, Y. Knee Osteoarthritis, Potential Mediators, and Risk of All-Cause Mortality: Data From the Osteoarthritis Initiative. Arthritis Care Res. 2021, 73, 566–573. [Google Scholar] [CrossRef]
- Cleveland, R.J.; Alvarez, C.; Schwartz, T.A.; Losina, E.; Renner, J.B.; Jordan, J.M.; Callahan, L.F. The impact of painful knee osteoarthritis on mortality: A community-based cohort study with over 24 years of follow-up. Osteoarthr. Cartil. 2019, 27, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Corsi, M.; Alvarez, C.; Callahan, L.F.; Cleveland, R.J.; Golightly, Y.M.; Jordan, J.M.; Nelson, A.E.; Renner, J.; Tsai, A.; Allen, K.D. Contributions of symptomatic osteoarthritis and physical function to incident cardiovascular disease. BMC Musculoskelet. Disord. 2018, 19, 393. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Solmi, M.; Smith, T.O.; Reginster, J.Y.; Maggi, S. Osteoarthritis increases the risk of cardiovascular disease: Data from the osteoarthritis initiative. J. Nutr. Health Aging 2018, 22, 371–376. [Google Scholar] [CrossRef]
- Zeng, C.; Bennell, K.; Yang, Z.; Nguyen, U.D.T.; Lu, N.; Wei, J.; Lei, G.; Zhang, Y. Risk of venous thromboembolism in knee, hip and hand osteoarthritis: A general population-based cohort study. Ann. Rheum. Dis. 2020, 79, 1616–1624. [Google Scholar] [CrossRef]
- Atiquzzaman, M.; Karim, M.E.; Kopec, J.; Wong, H.; Anis, A.H. Role of nonsteroidal antiinflammatory drugs in the association between osteoarthritis and cardiovascular diseases: A longitudinal study. Arthritis Rheumatol. 2019, 71, 1835–1843. [Google Scholar] [CrossRef]
- Barbour, K.E.; Lui, L.Y.; Nevitt, M.C.; Murphy, L.B.; Helmick, C.G.; Theis, K.A.; Hochberg, M.C.; Lane, N.E.; Hootman, J.M.; Cauley, J.A.; et al. Hip osteoarthritis and the risk of all-cause and disease-specific mortality in older women: A population-based cohort study. Arthritis Rheumatol. 2015, 67, 1798–1805. [Google Scholar] [CrossRef]
- Hsu, P.S.; Lin, H.H.; Li, C.R.; Chung, W.S. Increased risk of stroke in patients with osteoarthritis: A population-based cohort study. Osteoarthr. Cartil. 2017, 25, 1026–1031. [Google Scholar] [CrossRef]
- Nüesch, E.; Dieppe, P.; Reichenbach, S.; Williams, S.; Iff, S.; Jüni, P. All cause and disease specific mortality in patients with knee or hip osteoarthritis: Population based cohort study. BMJ 2011, 342, d1165. [Google Scholar] [CrossRef]
- Tsuboi, M.; Hasegawa, Y.; Matsuyama, Y.; Suzuki, S.; Suzuki, K.; Imagama, S. Do musculoskeletal degenerative diseases affect mortality and cause of death after 10 years in Japan? J. Bone Miner. Metab. 2011, 29, 217–223. [Google Scholar] [CrossRef]
- Hoeven, T.A.; Leening, M.J.G.; Bindels, P.J.; Castaño-Betancourt, M.; van Meurs, J.B.; Franco, O.H.; Kavousi, M.; Hofman, A.; Ikram, M.A.; Witteman, J.C.M.; et al. Disability and not osteoarthritis predicts cardiovascular disease: A prospective population-based cohort study. Ann. Rheum. Dis. 2015, 74, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, T.L.; Wingard, D.L.; Barrett-Connor, E. Self-Reported arthritis among men and women in an adult community. J. Community Health 1990, 15, 195–208. [Google Scholar] [CrossRef]
- Liu, R.; Kwok, W.Y.; Vliet Vlieland, T.P.M.; Kroon, H.M.; Meulenbelt, I.; Houwing-Duistermaat, J.J.; Rosendaal, F.R.; Huizinga, T.W.J.; Kloppenburg, M. Mortality in osteoarthritis patients. Scand. J. Rheumatol. 2015, 44, 70–73. [Google Scholar] [CrossRef]
- Watson, D.J.; Rhodes, T.; Guess, H.A. All-Cause mortality and vascular events among patients with rheumatoid arthritis, osteoarthritis, or no arthritis in the UK general practice research database. J. Rheumatol. 2003, 30, 1196–1202. [Google Scholar] [PubMed]
- Liu, F.Y.; Wang, M.Q.; Fan, Q.S.; Duan, F.; Wang, Z.J.; Song, P. Endovascular embolization of pulmonary arteriovenous malformations. Chin. Med. J. 2010, 123, 23–28. [Google Scholar] [PubMed]
- Vogel, R.A.; Corretti, M.C.; Plotnick, G.D. Effect of a single high-fat meal on endothelial function in healthy subjects. Am. J. Cardiol. 1997, 79, 350–354. [Google Scholar] [CrossRef]
- Harvey, K.A.; Walker, C.L.; Pavlina, T.M.; Xu, Z.; Zaloga, G.P.; Siddiqui, R.A. Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin. Nutr. 2010, 29, 492–500. [Google Scholar] [CrossRef]
- Meigs, J.B. Metabolic syndrome: In search of a clinical role. Diabetes Care 2004, 27, 2761–2763. [Google Scholar] [CrossRef]
- Haffner, S.M. Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity 2006, 14, 121S–127S. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Rosenson, R.S.; Jialal, I. Metabolic syndrome: An appraisal of the pro-inflammatory and procoagulant status. Endocrinol. Metab. Clin. N. Am. 2004, 33, 431–453. [Google Scholar] [CrossRef]
- Vranić, L.; Mikolašević, I.; Milić, S. Vitamin D Deficiency: Consequence or Cause of Obesity? Medicina 2019, 55, 541. [Google Scholar] [CrossRef] [PubMed]
- Bošanská, L.; Michalský, D.; Lacinová, Z.; Dostálová, I.; Bártlová, M.; Haluzíková, D.; Matoulek, M.; Kasalický, M.; Haluzík, M. The influence of obesity and different fat depots on adipose tissue gene expression and protein levels of cell adhesion molecules. Physiol. Res. 2010, 59, 79–88. [Google Scholar] [CrossRef]
- Mertens, I.; Van Gaal, L.F. Obesity, haemostasis and the fibrinolytic system. Obes. Rev. 2002, 3, 85–101. [Google Scholar] [CrossRef]
- Rosito, G.A.; D’agostino, R.B.; Massaro, J.; Lipinska, I.; Mittleman, M.A.; Sutherland, P.; Wilson, P.W.F.; Levy, D.; Muller, J.E.; Tofler, G.H. Association between obesity and a prothrombotic state: The Framingham Offspring Study. Thromb. Haemost. 2004, 91, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Samad, F.; Pandey, M.; Loskutoff, D.J. Regulation of tissue factor gene expression in obesity. Blood 2001, 98, 3353–3358. [Google Scholar] [CrossRef] [PubMed]
- Langer, F.; Spath, B.; Fischer, C.; Stolz, M.; Ayuk, F.A.; Kröger, N.; Bokemeyer, C.; Ruf, W. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood 2013, 121, 2324–2335. [Google Scholar] [CrossRef]
- Sprengers, E.D.; Kluft, C. Plasminogen activator inhibitors. Blood 1987, 69, 381–387. [Google Scholar] [CrossRef]
- Declerck, P.J.; Alessi, M.C.; Verstreken, M.; Kruithof, E.K.; Juhan-Vague, I.; Collen, D. Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay. Blood 1988, 71, 220–225. [Google Scholar] [CrossRef]
- Cura-Esquivel, I.; Perales-Quintana, M.M.; Torres-González, L.; Guzmán-Avilán, K.; Muñoz-Espinosa, L.; Cordero-Pérez, P. Metabolic, inflammatory and adipokine differences on overweight/obese children with and without metabolic syndrome: A cross-sectional study. PLoS ONE 2023, 18, e0281381. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, R.; Akbari, M.; Lankarani, K.B.; Heydari, S.T.; Kolahdooz, F.; Asemi, Z. The effects of vitamin D supplementation on endothelial activation among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. 2018, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Naeini, A.E.; Moeinzadeh, F.; Vahdat, S.; Ahmadi, A.; Hedayati, Z.P.; Shahzeidi, S. The Effect of Vitamin D Administration on Intracellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Levels in Hemodialysis Patients: A Placebo-controlled, Double-blinded Clinical Trial. J. Res. Pharm. Pract. 2017, 6, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.; Scotece, M.; López, V.; Gómez, R.; Lago, F.; Pino, J.; Gómez-Reino, J.J.; Gualillo, O. Adiponectin and leptin induce VCAM-1 expression in human and murine chondrocytes. PLoS ONE 2012, 7, e52533. [Google Scholar] [CrossRef]
- Harasymowicz, N.S.; Azfer, A.; Burnett, R.; Simpson, H.; Salter, D.M. Chondrocytes from osteoarthritic cartilage of obese patients show altered adiponectin receptors expression and response to adiponectin. J. Orthop. Res. 2021, 39, 2333–2339. [Google Scholar] [CrossRef]
- Halder, S.K.; Osteen, K.G.; Al-Hendy, A. 1,25-dihydroxyvitamin d3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells. Biol. Reprod. 2013, 89, 150. [Google Scholar] [CrossRef]
- Barbosa, E.M.; Nonogaki, S.; Katayama, M.L.; Folgueira, M.A.; Alves, V.F.; Brentani, M.M. Vitamin D3 modulation of plasminogen activator inhibitor type-1 in human breast carcinomas under organ culture. Virchows Arch. 2004, 444, 175–182. [Google Scholar] [CrossRef]
- Wu-Wong, J.R.; Nakane, M.; Ma, J. Effects of vitamin D analogs on the expression of plasminogen activator inhibitor-1 in human vascular cells. Thromb. Res. 2006, 118, 709–714. [Google Scholar] [CrossRef]
- Jorde, R.; Haug, E.; Figenschau, Y.; Hansen, J.B. Serum levels of vitamin D and hemostatic factors in healthy subjects: The Tromsø study. Acta Haematol. 2007, 117, 91–97. [Google Scholar] [CrossRef]
- Fukomoto, S.; Allan, E.H.; Martin, T.J. Regulation of plasminogen activator inhibitor-1 (PAI-1) expression by 1,25-dihydroxyvitamin D-3 in normal and malignant rat osteoblasts. Biochim. Biophys. Acta 1994, 1201, 223–228. [Google Scholar] [CrossRef]
- Schoenhard, J.A.; Asselbergs, F.W.; Poku, K.A.; Stocki, S.A.; Gordon, S.; Vaughan, D.E.; Brown, N.J.; Moore, J.H.; Williams, S.M. Male-female differences in the genetic regulation of t-PA and PAI-1 levels in a Ghanaian population. Hum. Genet. 2008, 124, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Asselbergs, F.W.; Williams, S.M.; Hebert, P.R.; Coffey, C.S.; Hillege, H.L.; Navis, G.; Vaughan, D.E.; van Gilst, W.H.; Moore, J.H. The gender-specific role of polymorphisms from the fibrinolytic, renin-angiotensin, and bradykinin systems in determining plasma t-PA and PAI-1 levels. Thromb. Haemost. 2006, 96, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Y.; Chong, S.S.; Huang, E.Y.; Tuan, T.L. Plasminogen activator/plasmin system: A major player in wound healing? Wound Repair. Regen. 2003, 11, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Topaloglu, O.; Arslan, M.S.; Karakose, M.; Ucan, B.; Ginis, Z.; Cakir, E.; Akkaymak, E.T.; Sahin, M.; Ozbek, M.; Cakal, E.; et al. Is there any association between thrombosis and tissue factor pathway inhibitor levels in patients with vitamin D deficiency? Clin. Appl. Thromb. Hemost. 2015, 21, 428–433. [Google Scholar] [CrossRef]
AOCs Group | |||
---|---|---|---|
Protein | Mean ± SEM [1] | Mean ± SEM [2] | p-Value |
α2AP [ng/mL] | 30.45 ± 2.83 | 29.79 ± 2.38 | 0.446 |
TFPI [ng/mL] | 159.93 ± 22.46 | 165.06 ± 22.18 | 0.184 |
PAI-1 [ng/mL] | 2.51 ± 0.32 | 2.82 ± 0.38 | 0.043 |
VCAM-1 [ng/mL] | 13.22 ± 0.52 | 14.13 ± 0.6 | 0.007 |
Vitamin D [ng/mL] | 19.44 ± 1.4 | 33.83 ± 3.12 | <0.001 |
COCs Group | |||
---|---|---|---|
Protein | Mean ± SEM [1] | Mean ± SEM [2] | p-Value |
α2AP [ng/mL] | 29.09 ± 2.98 | 30.34 ± 2.81 | 0.460 |
TFPI [ng/mL] | 149.66 ± 23.95 | 167.04 ± 21.54 | 0.112 |
PAI-1 [ng/mL] | 2.35 ± 0.33 | 2.51 ± 0.34 | 0.177 |
VCAM-1 [ng/mL] | 12.52 ± 0.38 | 13.57 ± 0.61 | 0.031 |
Vitamin D [ng/mL] | 20.39 ± 1.66 | 35.22 ± 2.46 | <0.001 |
AOCs Group | COCs Group | ||
---|---|---|---|
Protein | Mean ± SEM [1] | Mean ± SEM [1] | p-Value |
α2AP [ng/mL] | 30.45 ± 2.83 | 29.09 ± 2.98 | 0.786 |
TFPI [ng/mL] | 159.93 ± 22.46 | 149.66 ± 23.95 | 0.731 |
PAI-1 [ng/mL] | 2.51 ± 0.32 | 2.35 ± 0.33 | 0.678 |
VCAM-1 [ng/mL] | 13.22 ± 0.52 | 12.52 ± 0.38 | 0.849 |
Vitamin D [ng/mL] | 19.44 ± 1.4 | 20.39 ± 1.66 | 0.539 |
AOCs Group | COCs Group | ||
---|---|---|---|
Protein | Mean ± SEM [2] | Mean ± SEM [2] | p-Value |
α2AP [ng/mL] | 29.79 ± 2.38 | 30.34 ± 2.81 | 0.986 |
TFPI [ng/mL] | 165.06 ± 22.18 | 167.04 ± 21.54 | 0.459 |
PAI-1 [ng/mL] | 2.82 ± 0.38 | 2.51 ± 0.34 | 0.678 |
VCAM-1 [ng/mL] | 14.13 ± 0.6 | 13.57 ± 0.61 | 0.551 |
Vitamin D [ng/mL] | 33.83 ± 3.12 | 35.22 ± 2.46 | 0.842 |
Females (N = 12) | Males (N = 6) | ||
---|---|---|---|
Protein | Mean ± SEM [1] | Mean ± SEM [1] | p-Value |
α2AP [ng/mL] | 33.49 ± 3.80 | 24.38 ± 2.66 | 0.13 |
TFPI [ng/mL] | 189.89 ± 30.14 | 100.01 ± 8.4 | 0.06 |
PAI-1 [ng/mL] | 2.89 ± 0.43 | 1.75 ± 0.12 | 0.09 |
VCAM-1 [ng/mL] | 13.74 ± 0.64 | 12.16 ± 0.79 | 0.16 |
Vitamin D [ng/mL] | 19.99 ± 1.75 | 18.33 ± 2.49 | 0.59 |
Females (N = 12) | Males (N = 6) | ||
---|---|---|---|
Protein | Mean ± SEM [2] | Mean ± SEM [2] | p-Value |
α2AP [ng/mL] | 32.16 ± 2.97 | 25.05 ± 3.47 | 0.16 |
TFPI [ng/mL] | 194.43 ± 29.84 | 106.31 ± 8.21 | 0.06 |
PAI-1 [ng/mL] | 3.37 ± 0.5 | 1.7 ± 0.13 | 0.03 |
VCAM-1 [ng/mL] | 14.79 ± 0.75 | 12.79 ± 0.83 | 0.12 |
Vitamin D [ng/mL] | 33.82 ± 3.87 | 33.85 ± 5.79 | 0.99 |
Females (N = 12) AOCs Group | Females (N = 14) COCs Group | ||
---|---|---|---|
Protein | Mean ± SEM [1] | Mean ± SEM [1] | p-Value |
α2AP [ng/mL] | 33.49 ± 3.8 | 29.44 ± 3.18 | 0.52 |
TFPI [ng/mL] | 189.89 ± 30.16 | 151.83 ± 25.62 | 0.52 |
PAI-1 [ng/mL] | 2.89 ± 0.43 | 2.36 ± 0.36 | 0.34 |
VCAM-1 [ng/mL] | 13. 74 ± 0.64 | 12.55 ± 0.4 | 0.12 |
Vitamin D [ng/mL] | 19.99 ± 1.75 | 19.89 ± 1.7 | 0.97 |
Females (N = 12) AOCs Group | Females (N = 14) COCs Group | ||
---|---|---|---|
Protein | Mean ± SEM [2] | Mean ± SEM [2] | p-Value |
α2AP [ng/mL] | 32.16 ± 2.97 | 30.21 ± 3.01 | 0.59 |
TFPI [ng/mL] | 194.43 ± 29.84 | 168.29 ± 23.1 | 0.78 |
PAI-1 [ng/mL] | 3.37 ± 0.5 | 2.53 ± 0.36 | 0.25 |
VCAM-1 [ng/mL] | 14.79 ± 0.75 | 13.56 ± 0.66 | 0.29 |
Vitamin D [ng/mL] | 33.82 ± 3.87 | 35.75 ± 2.58 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawryjołek, M.; Wiciński, M.; Michalska Gawryjołek, M.; Zabrzyński, J. Vitamin D Supplementation Effects on Markers Related with Endothelial Function and Coagulation in Obese Orthopedic Patients: Insights from Acute and Chronic Cases. Nutrients 2025, 17, 882. https://doi.org/10.3390/nu17050882
Gawryjołek M, Wiciński M, Michalska Gawryjołek M, Zabrzyński J. Vitamin D Supplementation Effects on Markers Related with Endothelial Function and Coagulation in Obese Orthopedic Patients: Insights from Acute and Chronic Cases. Nutrients. 2025; 17(5):882. https://doi.org/10.3390/nu17050882
Chicago/Turabian StyleGawryjołek, Michał, Michał Wiciński, Marta Michalska Gawryjołek, and Jan Zabrzyński. 2025. "Vitamin D Supplementation Effects on Markers Related with Endothelial Function and Coagulation in Obese Orthopedic Patients: Insights from Acute and Chronic Cases" Nutrients 17, no. 5: 882. https://doi.org/10.3390/nu17050882
APA StyleGawryjołek, M., Wiciński, M., Michalska Gawryjołek, M., & Zabrzyński, J. (2025). Vitamin D Supplementation Effects on Markers Related with Endothelial Function and Coagulation in Obese Orthopedic Patients: Insights from Acute and Chronic Cases. Nutrients, 17(5), 882. https://doi.org/10.3390/nu17050882