Revising BMI Cut-Off Points for Overweight and Obesity in Male Athletes: An Analysis Based on Multivariable Model-Building
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Design of the Study
2.2. Body Weight and Height
2.3. Body Composition
- BF% ≥ 21% for overweight;
- BF% ≥ 26% for obesity.
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Findings and Concordance with Previous Studies
4.2. Study Strengths and Limitations
4.3. Potential Clinical Implications and New Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eknoyan, G. Adolphe Quetelet (1796–1874)—The average man and indices of obesity. Nephrol. Dial. Transpl. 2008, 23, 47–51. [Google Scholar] [CrossRef]
- Macdonald, F. Quetelet index as indicator of obesity. Lancet 1986, 1, 1043. [Google Scholar] [CrossRef] [PubMed]
- Zierle-Ghosh, A.; Jan, A. Physiology, Body Mass Index. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gonzalez, M.C.; Correia, M.I.T.D.; Heymsfield, S. A requiem for BMI in the clinical setting. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Corbin, L.J.; Timpson, N. Body mass index: Has epidemiology started to break down causal contributions to health and disease? Obesity 2016, 24, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Berrigan, D.; Troiano, R.P.; Graubard, B. BMI and mortality: The limits of epidemiological evidence. Lancet 2016, 388, 734–736. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 12, 1620. [Google Scholar] [CrossRef]
- González-Cano, H.; Martín-Olmedo, J.J.; Baz-Valle, E.; Contreras, C.; Schoenfeld, B.J.; García-Ramos, A.; Jiménez-Martínez, P.; Alix-Fages, C. Do Muscle Mass and Body Fat Differ Between Elite and Amateur Natural Physique Athletes on Competition Day? A Preliminary, Cross-Sectional, Anthropometric Study. J. Strength. Cond. Res. 2024, 38, 951–956. [Google Scholar] [CrossRef]
- Citarella, R.; Itani, L.; Intini, V.; Zucchinali, G.; Scevaroli, S.; Tannir, H.; El Masri, D.; Kreidieh, D.; El Ghoch, M. Association between dietary practice, body composition, training volume and sport performance in 100-Km elite ultramarathon runners. Clin. Nutr. ESPEN 2021, 42, 239–243. [Google Scholar] [CrossRef]
- Wan Daud Wan Nudri, W.D.; Wan Abdul Manan, W.M.; Rusli, A. Body Mass Index and Body Fat Status of Men Involved in Sports, Exercise, and Sedentary Activites. Malays. J. Med. Sci. 2009, 16, 21–26. [Google Scholar]
- Ode, J.J.; Pivarnik, J.M.; Reeves, M.J.; Knous, J. Body mass index as a predictor of percent fat in college athletes and nonathletes. Med. Sci. Sports Exerc. 2007, 39, 403–409. [Google Scholar] [CrossRef]
- Popadic Gacesca, J.; Barak, O.; Karaba Jakovljevic, D.; Klaönja, A.; Gali, V.; Drapöin, M.; Lukac, D.; Grujic, N. Body Mass Index and Body Fat Content in Elite Athletes. Exerc. Qual. Life. 2011, 2, 43–48. [Google Scholar] [CrossRef]
- Giovanelli, L.; Biganzoli, G.; Spataro, A.; Malacarne, M.; Bernardelli, G.; Spada, R.; Pagani, M.; Biganzoli, E.; Lucini, D. Body composition assessment in a large cohort of Olympic athletes with different training loads: Possible reference values for fat mass and fat-free mass domains. Acta Diabetol. 2024, 61, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Holloway, K.L.; Dobbins, A.G.; Kotowicz, M.A.; Williams, L.J.; Brennan, S.L. Body mass index and measures of body fat for defining obesity and underweight: A cross-sectional, population-based study. BMC Obes. 2014, 1, 9. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.S.; Oliver, J.M.; Katts, G.R.; Green, J.S.; EMartin, S.E.; Crouse, S.F. DEXA or BMI: Clinical considerations for evaluating obesity in collegiate division I-A American football athletes. Clin. J. Sport Med. 2012, 22, 436–438. [Google Scholar] [CrossRef]
- Garn, S.M.; Leonard, W.R.; Hawthorne, V.M. Three limitations of the body mass index. Am. J. Clin. Nutr. 1986, 44, 996–997. [Google Scholar] [CrossRef]
- Jonnalagadda, S.S.; Skinner, R.; Moore, L. Overweight athlete: Fact or fiction? Curr. Sports Med. Rep. 2004, 3, 198–205. [Google Scholar] [CrossRef]
- Torstveit, M.K.; Sundgot-Borgen, J. Are under- and overweight female elite athletes thin and fat? A controlled study. Med. Sci. Sports Exerc. 2012, 44, 949–957. [Google Scholar] [CrossRef]
- Witt, K.A.; Bush, E. College athletes with an elevated body mass index often have a high upper arm muscle area, but not elevated triceps and subscapular skinfolds. J. Am. Diet. Assoc. 2005, 105, 599–602. [Google Scholar] [CrossRef]
- Nevill, A.M.; Stewart, A.D.; Olds, T.; Holder, R. Relationship between adiposity and body size reveals limitations of BMI. Am. J. Phys. Anthr. 2006, 129, 151–156. [Google Scholar] [CrossRef]
- Canda, A. Top level athletes with a body mass index of 30 or higher. Obesity or good muscle development? Apunts Sports Med. 2017, 52, 29–36. [Google Scholar]
- International Society for Advancement of Kinanthropometry. International Standards for Anthropometric Assessment; International Society for Advancement of Kinanthropometry: Potchefstroom, South Africa, 2001. [Google Scholar]
- Cavedon, V.; Milanese, C.; Zancanaro, C. Are body circumferences able to predict strength, muscle mass and bone characteristics in obesity? A preliminary study in women. Int. J. Med. Sci. 2020, 17, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Cavedon, V.; Zancanaro, C.; Milanese, C. Anthropometric prediction of DXA-measured body composition in female team handball players. PeerJ 2018, 6, e5913. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.M.; Royston, P. Simplified estimation of age-specific reference intervals for skewed data. Stat. Med. 1997, 16, 2785–2803. [Google Scholar] [CrossRef]
- Sauerbrei, W.; Meier-Hirmer, C.; Benner, A.; Royston, P. Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs. Comput. Stat. Data Anal. 2006, 50, 3464–3485. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 15; Stata Press: College Station, TX, USA, 2017. [Google Scholar]
- Landis, J.R.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- IBMCorp. IBM SPSS Statistics for Windows, Version 27.0; IBM Corp.: Armonk, NY, USA, 2020.
- NCSS Statistical Software, NCSS, LLC.: Kaysville, UT, USA, 2024.
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Bilsborough, J.C.; Greenway, K.; Opar, D.; Livingstone, S.; Cordy, J.; Coutts, A. The accuracy and precision of DXA for assessing body composition in team sport athletes. J. Sports Sci. 2014, 32, 1821–1828. [Google Scholar] [CrossRef]
- Santos, D.A.; Silva, A.M.; Matias, C.N.; Fields, D.A.; Heymsfield, S.B.; Sardinha, L. Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method. Nutr. Metab. 2010, 7, 22. [Google Scholar] [CrossRef]
- Cavedon, V.; Kreidieh, D.; Milanese, C.; Itani, L.; Pellegrini, M.; Saadeddine, D.; Berri, E.; El Ghoch, M. The Prevalence of and Factors Associated with Disordered Eating Among Adult Athletes in Italy and Lebanon. Nutrients 2025, 17, 191. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z. Cross-Sectional Studies: Strengths, Weaknesses, and Recommendations. Chest 2020, 158, S65–S71. [Google Scholar] [CrossRef]
Total Sample (n = 622) | |
---|---|
Age (years) | 25.7 ± 4.7 |
Weight (kg) | 80.9 ± 11.8 |
Height (cm) | 182.8 ± 9.2 |
BMI (kg/m2) | 24.2 ± 2.6 |
Classification based on WHO BMI cut-off points: | |
Normal weight | 451 (72.5) |
Overweight | 148 (23.8) |
Obesity | 23 (3.7) |
LM (kg) | 65.8 ± 8.0 |
LM% | 82.8 ± 3.2 |
BF (kg) | 10.6 ± 4.1 |
BF% | 13.1 ± 3.4 |
Classification based on BF% cut-off points §: | |
Normal weight | 598 (96.1) |
Overweight | 19 (3.1) |
Obesity | 5 (0.8) |
BF% Classification * | |||||
---|---|---|---|---|---|
Total (n = 622) | Normal Weight (n = 598) | Overweight or Obesity (n = 24) | Significance | Kappa | |
n (%) | |||||
WHO BMI categories | X2 = 51.575; p < 0.001 | K = 0.169; p < 0.001 | |||
Normal weight | 451 (72.5) | 449 (75.1) | 2 (8.3) | ||
Overweight or obesity | 171 (27.5) | 149 (24.9) | 22 (91.7) |
BF% Classification * | |||||
---|---|---|---|---|---|
Total (n = 622) | Normal Weight (n = 598) | Overweight or Obesity (n = 24) | Significance | Kappa | |
n (%) | |||||
New BMI categories | X2 = 184.662; p < 0.001 | K = 0.522; p < 0.001 | |||
Normal weight | 580 (93.2) | 574 (96.0) | 6 (25.0) | ||
Overweight or obesity | 42 (6.8) | 24 (4.0) | 18 (75.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanese, C.; Itani, L.; Cavedon, V.; Saadeddine, D.; Raggi, S.; Berri, E.; El Ghoch, M. Revising BMI Cut-Off Points for Overweight and Obesity in Male Athletes: An Analysis Based on Multivariable Model-Building. Nutrients 2025, 17, 908. https://doi.org/10.3390/nu17050908
Milanese C, Itani L, Cavedon V, Saadeddine D, Raggi S, Berri E, El Ghoch M. Revising BMI Cut-Off Points for Overweight and Obesity in Male Athletes: An Analysis Based on Multivariable Model-Building. Nutrients. 2025; 17(5):908. https://doi.org/10.3390/nu17050908
Chicago/Turabian StyleMilanese, Chiara, Leila Itani, Valentina Cavedon, Dana Saadeddine, Silvia Raggi, Elisa Berri, and Marwan El Ghoch. 2025. "Revising BMI Cut-Off Points for Overweight and Obesity in Male Athletes: An Analysis Based on Multivariable Model-Building" Nutrients 17, no. 5: 908. https://doi.org/10.3390/nu17050908
APA StyleMilanese, C., Itani, L., Cavedon, V., Saadeddine, D., Raggi, S., Berri, E., & El Ghoch, M. (2025). Revising BMI Cut-Off Points for Overweight and Obesity in Male Athletes: An Analysis Based on Multivariable Model-Building. Nutrients, 17(5), 908. https://doi.org/10.3390/nu17050908