Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data
2.2. Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2011, 34, S62–S69. [Google Scholar] [CrossRef]
- Solis-Herrera, C.; Triplitt, C.; Reasner, C.; DeFronzo, R.A.; Cersosimo, E. Classification of Diabetes Mellitus. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK279119/ (accessed on 15 February 2025).
- World Health Organization (WHO). Available online: https://www.who.int (accessed on 15 February 2025).
- Zimmet, P.; Alberti, K.G.; Magliano, D.J.; Bennett, P.H. Diabetes mellitus statistics on prevalence and mortality: Facts and fallacies. Nat. Rev. Endocrinol. 2016, 12, 616–622. [Google Scholar] [CrossRef]
- Dicken, S.J.; Dahmb, C.C.; Ibsen, D.B.; Olsen, A.; Tjønneland, A.; Louati-Hajj, M.; Cadeau, C.; Marques, C.; Schulze, M.B.; Jannasch, F.; et al. Food consumption by degree of food processing and risk of type 2 diabetes mellitus: A prospective cohort analysis of the European Prospective Investigation into Cancer and Nutrition (EPIC). Lancet Reg. Health Eur. 2024, 46, 101043. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, B.; Gulanick, M.; Lamendola, C. Risk factors for type 2 diabetes mellitus. J. Cardiovasc. Nurs. 2002, 16, 17–23. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Hu, F.B. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 2003, 38, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Cordova, R.; Kliemann, N.; Huybrechts, I.; Rauber, F.; Vamos, E.P.; Levy, R.B.; Levy, R.B.; Viallon, V.; Casagrande, C.; Casagrande, C.; et al. Consumption of ultra-processed foods associated with weight gain and obesity in adults: A multi-national cohort study. Clin. Nutr. 2021, 40, 5079–5088. [Google Scholar] [CrossRef]
- Moradi, S.; Kermani, M.A.H.; Bagheri, R.; Mohammadi, H.; Jayedi, A.; Lane, M.M.; Asbaghi, O.; Mehrabani, S.; Suzuki, K. Ultra-Processed Food Consumption and Adult Diabetes Risk: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2021, 13, 4410. [Google Scholar] [CrossRef]
- Chen, Z.; Khandpur, N.; Desjardins, C.; Wang, L.; Monteiro, C.A.; Rossato, S.L.; Fung, T.T.; Manson, J.E.; Willett, W.C.; Rimm, E.B.; et al. Ultra-Processed Food Consumption and Risk of Type 2 Diabetes: Three Large Prospective U.S. Cohort Studies. Diabetes Care 2023, 46, 1335–1344. [Google Scholar] [CrossRef]
- Dolan, C.; Glynn, R.; Lawlor, B. A Systematic Review and Delphi Study to Ascertain Common Risk Factors for Type 2 Diabetes Mellitus and Dementia and Brain-Related Complications of Diabetes in Adults. Can. J. Diabetes 2020, 44, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Busili, A.; Kumar, K.; Kudrna, L.; Busaily, I. The risk factors for mental health disorders in patients with type 2 diabetes: An umbrella review of systematic reviews with and without meta-analysis. Heliyon 2024, 10, e28782. [Google Scholar] [CrossRef] [PubMed]
- Arsh, A.; Afaq, S.; Carswell, C.; Bhatti, M.M.; Ullah, I. Siddiqi, Effectiveness of physical activity in managing co-morbid depression in adults with type 2 diabetes mellitus: A systematic review and meta-analysis. J. Affect. Disord. 2023, 329, 448–459. [Google Scholar] [CrossRef]
- Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J. 2016, 92, 63–69. [Google Scholar] [CrossRef]
- Vijan, S. In the clinic. Type 2 diabetes. Ann. Intern. Med. 2015, 162, ITC1-16. [Google Scholar] [CrossRef]
- Robinson, D.J.; Hanson, K.; Jain, A.B.; Kichler, J.C.; Mehta, G.; Melamed, O.C.; Vallis, M.; Bajaj, H.S.; Barnes, T.; Gilbert, J.; et al. Diabetes and Mental Health. Can. J. Diabetes 2023, 47, 308–344. [Google Scholar] [CrossRef]
- Poole, L.; Hackett, R.A. Diabetes distress: The psychological burden of living with diabetes. Lancet Diabetes Endocrinol. 2024, 12, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Dennick, K.; Sturt, J.; Speight, J. What is diabetes distress and how can we measure it? A narrative review and conceptual model. J. Diabetes Complicat. 2017, 31, 898–911. [Google Scholar] [CrossRef] [PubMed]
- Skinner, T.C.; Joensen, L.; Parkin, T. Twenty-five years of diabetes distress research. Diabet. Med. 2020, 37, 393–400. [Google Scholar] [CrossRef]
- Sartorius, N. Depression and diabetes. Dialogues Clin. Neurosci. 2018, 20, 47–52. [Google Scholar] [CrossRef]
- Garrett, C.; Doherty, A. Diabetes and mental health. Clin. Med. 2014, 14, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.K.; Yen, F.; Hwu, C. Diet and exercise are a fundamental part of comprehensive care for type 2 diabetes. J. Diabetes Investig. 2023, 14, 936. [Google Scholar] [CrossRef]
- European Health Interview Survey-Methodology. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=European_health_interview_survey_-_methodology (accessed on 10 February 2025).
- Du, J.; Jiang, Y.; Lloyd, C.; Sartorius, N.; Ren, J.; Zhao, W.; Wei, J.; Hong, X. Validation of Chinese version of the 5-item WHO well-being index in type 2 diabetes mellitus patients. BMC Psychiatry 2023, 23, 890. [Google Scholar] [CrossRef]
- Halliday, J.A.; Hendrieckx, C.; Busija, L.; Browne, J.L.; Nefs, G.; Pouwer, F.; Speight, J. Validation of the WHO-5 as a first-step screening instrument for depression in adults with diabetes: Results from Diabetes MILES—Australia. Diabetes Res. Clin. Pract. 2017, 132, 27–35. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. Wellbeing Measures in Primary Health Care/the DepCare Project: Report on a WHO Meeting: Stockholm, Sweden, 12–13 February 1998. Available online: https://iris.who.int/handle/10665/349766 (accessed on 10 February 2025).
- Topp, C.W.; Østergaard, S.D.; Søndergaard, S.; Bech, P. The WHO-5 Well-Being Index: A Systematic Review of the Literature. Psychother Psychosom. 2015, 84, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Stata Statistical Software; StataCorp LLC: College Station, TX, USA, 2023.
- Ducat, L.; Philipson, L.H.; Anderson, B.J. The Mental Health Comorbidities of Diabetes. JAMA 2014, 312, 691. [Google Scholar] [CrossRef]
- Ornelas, A.C.C.; Alves, V.M.; Carta, M.G.; Nardi, A.E.; Kinrys, G. Mental Disorders in Subjects with Diabetes: A Systematic Review. Health Care Curr. Rev. 2017, 5, 2. [Google Scholar] [CrossRef]
- Eren, I.; Erdi, O.; Ozcankaya, R. Relationship between blood glucose control and psychiatric disorders in type II diabetic patients. Turk Psikiyatr. Derg. Turk. J. Psychiatry 2003, 14, 184–191. [Google Scholar]
- Ulambayar, B.; Ghanem, A.S.; Kovács, N.; Trefán, L.; Móré, M.; Nagy, A.C. Cardiovascular disease and risk factors in adults with diabetes mellitus in Hungary: A population-based study. Front. Endocrinol. 2023, 14, 1263365. [Google Scholar] [CrossRef]
- Eren, İ.; Erdi, Ö.; Şahin, M. The effect of depression on quality of life of patients with type II diabetes mellitus. Depress. Anxiety 2008, 25, 98–106. [Google Scholar] [CrossRef]
- Basiri, R.; Seidu, B.; Cheskin, L.J. Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence. Nutrients 2023, 15, 3929. [Google Scholar] [CrossRef]
- Rees, J.; Bagatini, S.R.; Lo, J.; Hodgson, J.M.; Christophersen, C.T.; Daly, R.M.; Magliano, D.J.; Shaw, J.E.; Sim, M.; Bondonno, C.P.; et al. Association between Fruit and Vegetable Intakes and Mental Health in the Australian Diabetes Obesity and Lifestyle Cohort. Nutrients 2021, 13, 1447. [Google Scholar] [CrossRef] [PubMed]
- Ocean, N.; Howley, P.; Ensor, J. Lettuce be happy: A longitudinal UK study on the relationship between fruit and vegetable consumption and well-being. Soc. Sci. Med. 2019, 222, 335–345. [Google Scholar] [CrossRef]
- Gehlich, K.H.; Beller, J.; Lange-Asschenfeldt, B.; Köcher, W.; Meinke, M.C.; Lademann, J. Fruit and vegetable consumption is associated with improved mental and cognitive health in older adults from non-Western developing countries. Public Health Nutr. 2019, 22, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Warma, S.; Lee, Y.; Brietzke, E.; McIntyre, R.S. Microbiome abnormalities as a possible link between diabetes mellitus and mood disorders: Pathophysiology and implications for treatment. Neurosci. Biobehav. Rev. 2022, 137, 104640. [Google Scholar] [CrossRef] [PubMed]
- Saghafian, F.; Malmir, H.; Saneei, P.; Milajerdi, A.; Larijani, B.; Esmaillzadeh, A. Fruit and vegetable consumption and risk of depression: Accumulative evidence from an updated systematic review and meta-analysis of epidemiological studies. Br. J. Nutr. 2018, 119, 1087–1101. [Google Scholar] [CrossRef]
- Mahoney, S.E.; Loprinzi, P.D. Influence of flavonoid-rich fruit and vegetable intake on diabetic retinopathy and diabetes-related biomarkers. J. Diabetes Its Complicat. 2014, 28, 767–771. [Google Scholar] [CrossRef]
- Tabatabai, S.V.A.; Esmailinejad, A.S.; Sadeghi, R.; Zeidabadi, B. Factors influencing the consumption of fruits and vegetables in diabetic patients based on Pender’s health promotion model. J. Educ. Health Promot. 2022, 11, 51. [Google Scholar] [CrossRef]
- Begdache, L.; Sadeghzadeh, S.; Derose, G.; Abrams, C. Diet, Exercise, Lifestyle, and Mental Distress among Young and Mature Men and Women: A Repeated Cross-Sectional Study. Nutrients 2020, 13, 24. [Google Scholar] [CrossRef]
- Ramel, A.; Nwaru, B.I.; Lamberg-Allardt, C.; Thorisdottir, B.; Bärebring, L.; Söderlund, F.; Arnesen, E.K.; Dierkes, J.; Åkesson, A. White meat consumption and risk of cardiovascular disease and type 2 diabetes: A systematic review and meta-analysis. Food Nutr. Res. 2023, 67, 9543. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, A.C.; Mattioli, S.; Twining, C.; Bosco, A.D.; Donoghue, A.M.; Arsi, K.; Angelucci, E.; Chiattelli, D.; Castellini, C. Poultry Meat and Eggs as an Alternative Source of n-3 Long-Chain Polyunsaturated Fatty Acids for Human Nutrition. Nutrients 2022, 14, 1969. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, S.; Keshteli, A.H.; Saneei, P.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Red and White Meat Intake in Relation to Mental Disorders in Iranian Adults. Front. Nutr. 2021, 8, 710555. [Google Scholar] [CrossRef]
- Muscaritoli, M. The Impact of Nutrients on Mental Health and Well-Being: Insights From the Literature. Front. Nutr. 2021, 8, 656290. [Google Scholar] [CrossRef]
- Astuti, K.P.; Sasmana, I.G.A.P.; Subrata, I.M. Efek Diet Mediterania Terhadap Kontrol Glikemik Dan Sensitivitas Insulin Pada Pasien Diabetes Melitus: Sebuah Tinjauan Sistematis Dan Meta-Analisis. Essential 2024, 21, 98. [Google Scholar] [CrossRef]
- Ruiz-Roso, M.B.; Knott-Torcal, C.; Matilla-Escalante, D.C.; Garcimartín, A.; Sampedro-Nuñez, M.A.; Dávalos, A.; Marazuela, M. COVID-19 Lockdown and Changes of the Dietary Pattern and Physical Activity Habits in a Cohort of Patients with Type 2 Diabetes Mellitus. Nutrients 2020, 12, 2327. [Google Scholar] [CrossRef]
- Hidayat, K.; Du, X.; Shi, B. Milk in the prevention and management of type 2 diabetes: The potential role of milk proteins. Diabetes Metab. Res. 2019, 35, e3187. [Google Scholar] [CrossRef]
- Hirahatake, K.M.; Slavin, J.L.; Maki, K.C.; Adams, S.H. Associations between dairy foods, diabetes, and metabolic health: Potential mechanisms and future directions. Metabolism 2014, 63, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Egede, L.E.; Gebregziabher, M.; Zhao, Y.; Dismuke, C.E.; Walker, R.J.; Hunt, K.J.; Axon, R.N. Impact of Mental Health Visits on Healthcare Cost in Patients with Diabetes and Comorbid Mental Health Disorders. PLoS ONE 2014, 9, e103804. [Google Scholar] [CrossRef]
- Zepeda-Hernández, A.; Garcia-Amezquita, L.E.; Requena, T.; García-Cayuela, T. Probiotics, prebiotics, and synbiotics added to dairy products: Uses and applications to manage type 2 diabetes. Food Res. Int. 2021, 142, 110208. [Google Scholar] [CrossRef]
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Hort, J. Well-being Messaging for Mammalian Milks: A Scoping Review. Front. Nutr. 2021, 8, 688739. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Li, S.; Zhang, D. Association between dietary protein intake and the risk of depressive symptoms in adults. Br. J. Nutr. 2020, 123, 1290–1301. [Google Scholar] [CrossRef]
- Asfaw, M.S.; Dagne, W.K. Physical activity can improve diabetes patients’ glucose control; A systematic review and meta-analysis. Heliyon 2022, 8, e12267. [Google Scholar] [CrossRef] [PubMed]
- Gilani, S.R.M.; Feizabad, A.K. The effects of aerobic exercise training on mental health and self-esteem of type 2 diabetes mellitus patients. Health Psych. Res. 2019, 7, 10–14. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Li, Y.; Han, R. Physical Exercise as Therapy for Type 2 Diabetes Mellitus: From Mechanism to Orientation. Ann. Nutr. Metab. 2019, 74, 313–321. [Google Scholar] [CrossRef]
- Sousa, R.A.L.D.; Improta-Caria, A.C.; Souza, B.S.D.F. Exercise–Linked Irisin: Consequences on Mental and Cardiovascular Health in Type 2 Diabetes. Int. J. Mol. Sci. 2021, 22, 2199. [Google Scholar] [CrossRef]
- Colberg, S.R.; Somma, C.T.; Sechrist, S.R. Physical Activity Participation May Offset Some of the Negative Impact of Diabetes on Cognitive Function. J. Am. Med. Dir. Assoc. 2008, 9, 434–438. [Google Scholar] [CrossRef]
- Mahindru, A.; Patil, P.; Agrawal, V. Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus 2023, 15, e33475. [Google Scholar] [CrossRef]
Variables | Category | N (%) |
---|---|---|
Age group | 18–35 years old | 22 (4.0) |
35–65 years old | 212 (38.9) | |
Older than 65 | 311 (57.1) | |
Gender | Female | 288 (53.1) |
Male | 254 (46.9) | |
WHO-5 Wellbeing Index | Poor mental well-being (≤50) | 165 (30.4) |
Better mental well-being (>50) | 377 (69.6) |
Variables | Category | WHO-5 Wellbeing Index | p Value | |
---|---|---|---|---|
Poor (≤50) | Better (>50) | |||
Vegetable consumption per day | No vegetable consumption | 57 (37.5) | 95 (62.5) | 0.024 |
1 serving | 52 (34.0) | 101 (66.0) | ||
2 servings | 39 (24.7) | 119 (75.3) | ||
More than 3 servings | 16 (21.9) | 57 (78.1) | ||
Fruit consumption per day | No fruits consumption | 97 (37.6) | 161 (62.4) | 0.005 |
1 serving | 33 (23.2) | 109 (76.8) | ||
2 servings | 22 (23.4) | 72 (76.6) | ||
More than 3 servings | 9 (23.1) | 30 (76.9) | ||
Drinking water per day | 2 L and more | 77 (26.3) | 216 (73.7) | 0.068 |
1–2 L | 52 (35.9) | 93 (64.1) | ||
Less than 1 L | 35 (35.0) | 65 (65.5) | ||
Sweets and biscuit consumption | Never eats | 41 (75.9) | 13 (24.1) | 0.293 |
Not regular, only occasions | 205 (66.4) | 104 (33.6) | ||
Less than one a day | 65 (71.4) | 26 (28.6) | ||
More than one a day | 62 (74.7) | 21 (25.3) | ||
Red meat consumption | More than 4 times a week | 22 (33.3) | 44 (66.7) | 0.086 |
1–3 times a week | 86 (27.1) | 232 (72.9) | ||
Less than 1 time a week | 56 (36.8) | 96 (63.1) | ||
White meat consumption | More than 4 times a week | 25 (21.7) | 90 (78.3) | 0.004 |
1–3 times a week | 122 (31.4) | 267 (68.6) | ||
Less than 1 time a week | 16 (51.6) | 15 (48.4) | ||
Milk and milk product consumption | More than 4 times a week | 95 (28.4) | 240 (71.6) | 0.003 |
1–3 times a week | 26 (24.5) | 80 (75.5) | ||
Less than 1 time a week | 53 (55.2) | 43 (44.8) | ||
Primary characteristics of physical activity | Light | 98 (42.2) | 134 (57.8) | 0.001 |
Moderate | 61 (21.2) | 226 (78.8) | ||
Heavy | 4 (28.6) | 10 (71.4) | ||
Number of days walked at least 10 min a week | Did not walk | 133 (33.0) | 270 (67.0) | 0.044 |
1–3 days | 17 (28.3) | 43 (71.7) | ||
4–7 days | 15 (18.9) | 64 (80.1) | ||
Number of days engaged in sport for at least 10 min per week | Did not engage in sport | 139 (33.4) | 277 (66.6) | 0.02 |
1–3 days | 17 (22.7) | 58 (77.3) | ||
4–7 days | 9 (17.6) | 42 (82.4) |
Variables | OR (95%CI) | p-Value | |
---|---|---|---|
Gender | Male (Reference) | ||
Female | 1.61 (1.08–2.42) | 0.019 | |
Age group | 18–35 years old (Reference) | ||
35–65 years old | 1.89 (0.56–6.31) | 0.299 | |
Older than 65 | 1.53 (0.45–5.12) | 0.487 | |
Vegetable consumption per day | No vegetable consumption (Reference) | ||
1 serving | 1.08 (0.62–1.86) | 0.774 | |
2 servings | 0.7 (0.39–1.23) | 0.222 | |
More than 3 servings | 0.63 (0.3–1.31) | 0.222 | |
Fruit consumption per day | No fruit consumption (Reference) | ||
1 serving | 0.52 (0.31–0.89) | 0.017 | |
2 servings | 0.62 (0.34–1.13) | 0.122 | |
More than 3 servings | 0.62 (0.25–1.48) | 0.258 | |
White meat consumption | More than 4 times a week (Reference) | ||
More than 1–3 times a week | 1.48 (0.88–2.5) | 0.133 | |
Less than 1 time a week | 3.34 (1.35–8.22) | 0.009 | |
Milk and milk product consumption | More than 4 times a week (Reference) | ||
More than 1–3 times a week | 0.67 (0.39–1.14) | 0.145 | |
Less than 1 time a week | 1.6 (1.18–2.64) | 0.044 | |
Number of days walked at least 10 min a week | Did not walk 10 min (Reference) | ||
1–3 days | 0.97 (0.51–1.85) | 0.939 | |
4–7 days | 0.43 (0.23–0.83) | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulambayar, B.; Ghanem, A.S.; Tóth, Á.; Nagy, A.C. Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus. Nutrients 2025, 17, 1042. https://doi.org/10.3390/nu17061042
Ulambayar B, Ghanem AS, Tóth Á, Nagy AC. Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus. Nutrients. 2025; 17(6):1042. https://doi.org/10.3390/nu17061042
Chicago/Turabian StyleUlambayar, Battamir, Amr Sayed Ghanem, Ágnes Tóth, and Attila Csaba Nagy. 2025. "Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus" Nutrients 17, no. 6: 1042. https://doi.org/10.3390/nu17061042
APA StyleUlambayar, B., Ghanem, A. S., Tóth, Á., & Nagy, A. C. (2025). Impact of Physical Activity and Dietary Habits on Mental Well-Being in Patients with Diabetes Mellitus. Nutrients, 17(6), 1042. https://doi.org/10.3390/nu17061042