Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance
Abstract
:1. Introduction
2. Prevention and Treatment of Non-Communicable Diseases (NCDs)
2.1. Cardiovascular and Metabolic Diseases
2.2. Gut Microbiota Modulation
2.3. Cancer
2.4. Other NCDs
NCDS | Disease | Native Proteins | Peptides/Hydrolyzed | In Vivo Model/Clinical Trials | Biological Activity | References |
---|---|---|---|---|---|---|
Metabolic disorders | Obesity | β-LG | LIVTQTMKG, (f1–9) (oral consumption 1 mg/kg of body weight (BW) | Mice model ddY mice | Decreases food intake and plasma ghrelin (satiety activity) | [65] |
HIRL (β-lactotensin) | C57BL/6J mice | Delay in gut transit, reduction in food intake (I.p. injection, oral consumption) (satiety activity) | [65] | |||
VAGTWY | C57BL/6 mice | Lowers plasma glucose level in oral glucose tolerance test (satiety activity) | [65] | |||
α-LA | α-LA hydrolysate | High-fat diet (HFD)-induced obese mice | Reduction in the levels of inflammatory cytokines (IL-6, TNF-α and LPS); reduction in obesity-associated systematic inflammation and endotoxemia. Increase in Bacteroides/Firmicutes ratio; reduction in pathogenic bacteria load; increase in short-chain fatty acid (SCFA)-producing bacteria | [65] | ||
Administration of peptide DQW | (HFD)-induced NAFLD mice | Increase in Bacteroides/Firmicutes ratio; reduction in pathogenic bacteria; increase in SCFA-producing bacteria; improvement in intestinal barrier integrity and inflammation | [70] | |||
BSA | AFKAWAVAR (Albutensin A) | dYY mice | Delay in gut transit, reduction in food intake (I.p. injection) (satiety activity) | [65] | ||
Whey proteins (WPs) | 2% and 4% WPH for 12 weeks | HFD-fed obese mice model with significantly imbalanced redox status and reduced bone mass | Improvement in HFD-induced bone loss, mainly through their antioxidant and osteogenic capacity by activating Runx2 and GSK-3β/Nrf2 signaling pathway | [58] | ||
Hyperuricemia | α-LA | Oral supplementation of α-LA hydrolysates | Potassium oxonate- and hypoxanthine-induced hyperuricemic mice | Increases the abundance of some SCFA-producing bacteria; decrease in the growth of hyperuricemia- and inflammation-associated genera | [70] | |
β-LG and uncharacterized protein | ALPM (30 mg/kg BW) and LWM (30 mg/kg BW) | Sprague–Dawley rats | Reduction in serum uric acid levels and xanthine oxidase activity | [92] | ||
Dysbiosis | α-LA | Oral gavage of α-LA hydrolysates under 3 kDa (100 mg/kg BW) and VGINYW (5 mg/kg BW) | Spontaneously hypertensive rats (SHRs) | Reduction in hypertension-associated intestinal microbiota dysbiosis; preservation of gut microbiota biodiversity and modulation of SCFA-producing bacteria | [45] | |
Colitis | WPs | 500 mg WPH/kg day for 33 days | Dextran sulfate sodium (DSS)-induced colitis in mice | Regulation of mRNA expression of inflammatory cytokines; strengthening of tight junctions; modulation of oxidative stress levels; gut microbiota regulation | [66] | |
Diabetes | β-LG | LIVTQTMKG | Alloxan-induced type 1 diabetic mice | Reduction in blood glucose levels and glycated serum proteins; increase in glucose transporter-2 expression; protection of injured β cells by suppressing apoptosis; rescuing of Ki67 immunoreactivity through IRS2/PI3K/Akt signaling; increase in the phosphorylation of FOXO1; and upregulation of PDX-1 expression, in turn, resulting in increased insulin secretion | [93] | |
Glycomacropeptide (GMP) | 8-week GHP hydrolysate dietary supplementation | HFD-fed and streptozotocin-induced type 2 diabetic C57BL/6 J mice | Hypoglycemic activity; reduction in dyslipidemia and inflammation; increase in the Bacteroidetes/Firmicutes ratio | [74] | ||
Cardiovascular diseases | Hypertension | WPs | 400 mg WPH/kg BW; 240 mg WPH/kg BW | SHR | Reduction in renin concentration and systolic blood pressure | [94,95] |
WPs | WPH 500 or 1000 mg/kg BW | SHR | Reduction in renin concentration and systolic blood pressure; increase in Akkermansia, Bacteroides and Lactobacillus abundance and, consequently, increase in the amount of promoted high-SCFA content in feces | [44] | ||
Hypertension | LF | LRPVAA (1 nmol/kg BW) | SHR | Reduction in systolic blood pressure | [40] | |
LF | RRWQWR (f20–25) and WQ (120 mg/Kg of BW) | SHR | Reduction in systolic blood pressure | [40] | ||
BSA | KFWGK (5 g kg−1; oral administration | SHR | Long-lasting antihypertensive effect via cholecystokinin (CCK)-dependent vasorelaxation | [96] | ||
Papain hydrolysate of BSA | SHR | Reduction in systolic blood pressure over a 24 h period | [97] | |||
WPs | WPH containing IW and WL (5 and 50 g) | Healthy volunteers | Reduction in plasma ACE activity | [47] | ||
Neurological diseases | Neurodegeneration | LF | SVDGKEDLIW oral administration for 6 weeks (0.1 g/kg BW) | D-galactose treated Kumming mice | Increase in antioxidant enzyme (SOD and GSH-PX) activity | [55] |
Neurodegeneration | WPs | 0.3–3.0 g WPH/kg BW for 30 days | D-galactose-treated mice | Reduction in the decline in aging-related spatial exploration, body movement, and spatial and non-spatial learning/memory ability. Reduction in the degeneration of hippocampal nerve cells; apoptosis of nerve cells; increase in the activity of AChE; reduction in the expression of inflammatory factors (TNF-α and IL-1β) in brain tissue and oxidative stress injury; increase in the expression of p-CaMKII and BDNF synaptic plasticity protein | [83] | |
WPs | 30–100 mg WPH/kg BW | C57BL/6 J for 30 weeks | Modulation of the morphology and organization of hippocampal cells; reduction in inflammation and oxidative stress; modulation of gut microbiota | [82] | ||
Age-related cognitive declines | β-LG | 1 g of whey peptide, which included 1.6 mg of β-lactolin of GTWY fo2 12 weeks | Healthy adults (45–64 years old and 50–75 years old) | Improvement in cognitive performance associated with frontal cortex activity (verbal fluency test, memory, attention) | [87,88] | |
β-lactolin (1.8 mg daily) or placebo for 24 weeks | Adults (≥50 years old) | Improvement in Montreal Cognitive Assessment (MoCA-J) scores for cognitive function | [86] | |||
Alzheimer’s disease | WPs | 30 and 100 mg WPH/kg BW for 140 days | APP/PS1 mice | Improvement in memory impairments through bidirectional effects of the gut microbe–SCFA–brain axis | [84] | |
10 and 100 mg WPH/kg for 10 days | Scopolamine-induced cognitive impairment mice model | Reduction in neuronal damage | [81] | |||
Anxiety | β-LG | β-lactotensin (HIRL, f146–149) 1–10 mg/kg BW oral administration | C57BL/6 and ddY mice | Interaction with neurotensin (particularly NTS2) and dopamine receptors | [89] | |
Cancer | Breast cancer | WPs | WPH | Female mice | Protection against DNA damage in rat mammary glands compared to casein protein | [75] |
Colon cancer | WPs | WPH | Female mice | Inhibition of colon cell cluster development | [75] | |
Fibrosarcoma | LF | LFcinB | Individuals | Reduction in the size of solid Meth A fibrosarcoma | [98] | |
Skin disease | Wounds | Human LF and bovine β-LG | IAENRADAV and GSPSGQKDLLF from human LF; LDTDYKKY from β-LG | Infected wound model | Anti-inflammatory activity, increase in collagen synthesis and deposition, angiogenesis and tissue regeneration | [99] |
Psoriasis | WPs | Whey protein extract XP-828L (2.5 g, twice a day, over 112 days) | Human subjects with mild to moderate psoriasis | Reduces symptoms of psoriasis | [91] | |
Atopic dermatitis (AD) | WPs | Partially and extensively WPH formula | Children (6 months of age) | Reduction in the incidence of AD and allergic manifestation | [100] |
3. Other Biological Properties of BAPs
3.1. Antimicrobial, Antibiofilm Activities
Native Protein | Treatment of Food Models | Biological Activity | References | |
---|---|---|---|---|
Lactoferrin (LF) | Dairy products | Preservation of milk supplemented with peptic hydrolysate (≤2 mg/mL) under limiting conditions (4 °C and pH 4.0) | Antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes | [145] |
Preservation of high-moisture mozzarella cheese stored in governing liquid supplemented with pepsin-digested hydrolysate (LFH; 10 mg/mL) under cold storage period. | Antimicrobial activity against naturally contaminating microflora; antimicrobial activity against spoilage bacteria belonging to Pseudomonas spp.; inhibition of pigment release by P. lactis | [140,141,146,147,148] | ||
Fruits and vegetables | Replacement of fungicides by the application of LFcinB and LF f(17–31) on mandarin fruits | Antimicrobial activity against Penicillium digitatum | [149] | |
Application of hydrolysate (50 mg/mL) and LfcinB f(17–31) (3 mg/mL) in ready-to-eat vegetables | Antimicrobial activity against spoilage Pseudomonas spp. | [140,142,146,147,148] | ||
Wine | Application of pepsin hydrolysate (1–10 mg/mL) and LfcinB f(17–31) during winemaking processes without compromising wine attributes | Antimicrobial activity against Saccharomyces cerevisiae and other spoilage wine yeasts (Cryptococcus albidus, Dekkera bruxellensis, Pichia mem branifaciens, Zygosaccharomyces bailii and Zygosaccha romyces bisporus) and bacteria (Levilactobacillus brevis, Lactobacillus hilgardii, Pediococcus damnosus and Oenococcus oeni) | [150,151] | |
Meat | Application of pepsin-digested lactoferrin in contaminated chicken fillet (0.5 mg/g) under hydrostatic pressure (0, 300, 400 and 500 MPa) for 10 min at 10 °C | Antimicrobial activity against E. coli O157: H7 and P. fluorescens | [152] | |
Whey protein isolate (WPI) | Meat | Application of hydrolyzed whey protein isolate (2%) in pork patties before cooking and subsequent cold storage for 1 week | Antioxidant activity of peptides inhibited lipid oxidation | [153] |
3.2. Antiviral Activities
4. Safety Considerations
Whey Protein Allergenicity
5. Role of Whey-Derived Peptides in Emerging Therapeutics for Immune Tolerance: The Tolerogenic Effect
6. Current Drawbacks and Challenge in Whey Peptide Applications
7. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Batista, M.A.; Campos, N.C.A.; Silvestre, M.P.C. Whey and protein derivatives: Applications in food products development, technological properties and functional effects on child health. Cogent Food Agric. 2018, 4, 1509687. [Google Scholar] [CrossRef]
- Smithers, G.W. Whey and whey proteins—From ‘gutter-to-gold’. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- Smithers, G.W. Whey-ing up the options—Yesterday, today and tomorrow. Int. Dairy J. 2015, 48, 2–14. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Whey proteins and peptides in health-promoting functions—A review. Int. Dairy J. 2022, 126, 105269. [Google Scholar] [CrossRef]
- Yiğit, A.; Bielska, P.; Cais-Sokolińska, D.; Samur, G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. J. Am. Nutr. Assoc. 2023, 42, 758–768. [Google Scholar] [CrossRef]
- Baruzzi, F.; de Candia, S.; Quintieri, L.; Caputo, L.; De Leo, F. Development of a Synbiotic Beverage Enriched with Bifidobacteria Strains and Fortified with Whey Proteins. Front. Microbiol. 2017, 8, 640. [Google Scholar] [CrossRef]
- Mehra, R.; Kumar, H.; Kumar, N.; Ranvir, S.; Jana, A.; Buttar, H.S.; Telessy, I.G.; Awuchi, C.G.; Okpala, C.O.R.; Korzeniowska, M.; et al. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J. Funct. Foods 2021, 87, 104760. [Google Scholar] [CrossRef]
- Kruchinin, A.G.; Bolshakova, E.I.; Barkovskaya, I.A. Bioinformatic Modeling (In Silico) of Obtaining Bioactive Peptides from the Protein Matrix of Various Types of Milk Whey. Fermentation 2023, 9, 380. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, K.K.; Sharma, A.; Jain, R. Peptide-based drug discovery: Current status and recent advances. Drug Discov. Today 2023, 28, 103464. [Google Scholar] [CrossRef]
- Quintieri, L.; Nitride, C.; De Angelis, E.; Lamonaca, A.; Pilolli, R.; Russo, F.; Monaci, L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023, 15, 1509. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef] [PubMed]
- Deo, S.; Turton, K.L.; Kainth, T.; Kumar, A.; Wieden, H.-J. Strategies for improving antimicrobial peptide production. Biotechnol. Adv. 2022, 59, 107968. [Google Scholar] [CrossRef]
- Losurdo, L.; Quintieri, L.; Caputo, L.; Gallerani, R.; Mayo, B.; De Leo, F. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum. FEMS Microbiol. Lett. 2013, 340, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, N.; Caputo, L.; Quintieri, L.; Monaci, L.; Ciriaco, F.; Nicolotti, O. Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease. Biomedicines 2022, 10, 1067. [Google Scholar] [CrossRef]
- Corrochano, A.R.; Buckin, V.; Kelly, P.M.; Giblin, L. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. J. Dairy Sci. 2018, 101, 4747–4761. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Monaci, L.; Fusco, V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024, 13, 601. [Google Scholar] [CrossRef]
- Tondo, A.R.; Caputo, L.; Mangiatordi, G.F.; Monaci, L.; Lentini, G.; Logrieco, A.F.; Montaruli, M.; Nicolotti, O.; Quintieri, L. Structure-Based Identification and Design of Angiotensin Converting Enzyme-Inhibitory Peptides from Whey Proteins. J. Agric. Food Chem. 2020, 68, 541–548. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 2018, 245, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, L.; Tan, W.; Zhao, W. Clinical efficacy of oral immunoglobulin Y in infant rotavirus enteritis: Systematic review and meta-analysis. Medicine 2019, 98, e16100. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Ashaolu, T.J. Antioxidative and mineral-binding food-derived peptides: Production, functions, metal complexation conditions, and digestive fate. Food Res. Int. 2025, 200, 115471. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, X.; Song, L.; Luo, L.; Ma, Z.; Zhang, F. Donkey whey protein and peptides regulate gut microbiota community and physiological functions of D-galactose-induced aging mice. Food Sci. Nutr. 2023, 11, 752–764. [Google Scholar] [CrossRef]
- Ballatore, M.B.; Bettiol, M.d.R.; Vanden Braber, N.L.; Aminahuel, C.A.; Rossi, Y.E.; Petroselli, G.; Erra-Balsells, R.; Cavaglieri, L.R.; Montenegro, M.A. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chem. 2020, 319, 126472. [Google Scholar] [CrossRef]
- Galland, F.; de Espindola, J.S.; Lopes, D.S.; Taccola, M.F.; Pacheco, M.T.B. Food-derived bioactive peptides: Mechanisms of action underlying inflammation and oxidative stress in the central nervous system. Food Chem. Adv. 2022, 1, 100087. [Google Scholar] [CrossRef]
- Galland, F.; de Espindola, J.S.; Sacilotto, E.S.; Almeida, L.G.V.C.; Morari, J.; Velloso, L.A.; dos Santos, L.D.; Rossini, B.C.; Bertoldo Pacheco, M.T. Digestion of whey peptide induces antioxidant and anti-inflammatory bioactivity on glial cells: Sequences identification and structural activity analysis. Food Res. Int. 2024, 188, 114433. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Merwad, A.-R.M.; Mohamed, A.H.; Sitohy, M. Foliar Spray with Pepsin-and Papain-Whey Protein Hydrolysates Promotes the Productivity of Pea Plants Cultivated in Clay Loam Soil. Molecules 2021, 26, 2805. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Popovich, I.G.; Linkova, N.S.; Mironova, E.S.; Ilina, A.R. Peptide regulation of gene expression: A systematic review. Molecules 2021, 26, 7053. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhao, X.; Shi, C.; Chai, Y.; Huang, A.; Shi, Y. Novel insights into whey protein among Yak, Yellow Cattle, and Cattle-Yak milk. Food Chem. X 2024, 22, 101384. [Google Scholar] [CrossRef]
- Singh, M.P.; Vashisht, P.; Singh, L.; Awasti, N.; Sharma, S.; Mohan, C.; Singh, T.P.; Sharma, S.; Shyam, S.; Charles, A.P.R. Donkey milk as a non-bovine alternative: A review of its nutri-functional properties, applications, and challenges. J. Food Sci. Technol. 2024, 61, 1652–1661. [Google Scholar] [CrossRef]
- Rodrigues, M.H.P.; Gräff, C.A.; Tupuna-Yerovi, D.S.; Schmitz, C.; Camargo de Lima, J.; Timmers, L.F.S.M.; Lehn, D.N.; Volken de Souza, C.F. The bioactive potential of cheese whey peptides from different animal origins (bovine, goat, sheep, buffalo, and camel): A systematic review and meta-analysis. Food Res. Int. 2024, 196, 115053. [Google Scholar] [CrossRef]
- Global Burden of Disease 2021: Findings from GBD; Institute for Health Metrics and Evaluation (IHME): Seattle, WA, USA, 2021.
- de Fátima Garcia, B.; de Barros, M.; de Souza Rocha, T. Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Crit. Rev. Food Sci. Nutr. 2021, 61, 2003–2021. [Google Scholar] [CrossRef] [PubMed]
- Cagnin, C.; Garcia, B.d.F.; Rocha, T.d.S.; Prudencio, S.H. Bioactive Peptides from Corn (Zea mays L.) with the Potential to Decrease the Risk of Developing Non-Communicable Chronic Diseases: In Silico Evaluation. Biology 2024, 13, 772. [Google Scholar] [CrossRef] [PubMed]
- Baraiya, R.; Anandan, R.; Elavarasan, K.; Prakash, P.; Rathod, S.K.; Rajasree, S.R.R.; Renuka, V. Potential of fish bioactive peptides for the prevention of global pandemic non-communicable disease: Production, purification, identification, and health benefits. Discov. Food 2024, 4, 34. [Google Scholar] [CrossRef]
- Abdisa, K.B.; Szerdahelyi, E.; Molnár, M.A.; Friedrich, L.; Lakner, Z.; Koris, A.; Toth, A.; Nath, A. Metabolic Syndrome and Biotherapeutic Activity of Dairy (Cow and Buffalo) Milk Proteins and Peptides: Fast Food-Induced Obesity Perspective—A Narrative Review. Biomolecules 2024, 14, 478. [Google Scholar] [CrossRef]
- Koirala, P.; Dahal, M.; Rai, S.; Dhakal, M.; Nirmal, N.P.; Maqsood, S.; Al-Asmari, F.; Buranasompob, A. Dairy Milk Protein–Derived Bioactive Peptides: Avengers Against Metabolic Syndrome. Curr. Nutr. Rep. 2023, 12, 308–326. [Google Scholar] [CrossRef]
- Price, D.; Jackson, K.G.; Lovegrove, J.A.; Givens, D.I. The effects of whey proteins, their peptides and amino acids on vascular function. Nutr. Bull. 2022, 47, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Budreviciute, A.; Damiati, S.; Sabir, D.K.; Onder, K.; Schuller-Goetzburg, P.; Plakys, G.; Katileviciute, A.; Khoja, S.; Kodzius, R. Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Front. Public Heal. 2020, 8, 574111. [Google Scholar] [CrossRef]
- Heidari-Beni, M. Early Life Nutrition and Non Communicable Disease. In Advances in Experimental Medicine and Biology; 2019; Volume 1121, pp. 33–40. ISBN 9783030106157. [Google Scholar]
- Mirzapour-Kouhdasht, A.; Garcia-Vaquero, M. Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products Including Commercialization and Legislation. Foods 2022, 11, 1270. [Google Scholar] [CrossRef]
- Baba, W.N.; Baby, B.; Mudgil, P.; Gan, C.Y.; Vijayan, R.; Maqsood, S. Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. LWT 2021, 143, 111135. [Google Scholar] [CrossRef]
- Rama, G.R.; Kaufmann, E.S.; Ducati, R.G.; Camargo de Lima, J.; Staats, C.; Timmers, L.F.S.M.; Volken de Souza, C.F. From in silico to in vitro: Hydrolysis of cheese whey to obtain peptides with anti-aging and anti-hypertensive activities. Biocatal. Agric. Biotechnol. 2024, 57, 103093. [Google Scholar] [CrossRef]
- Martin, M.; Kopaliani, I.; Jannasch, A.; Mund, C.; Todorov, V.; Henle, T.; Deussen, A. Antihypertensive and cardioprotective effects of the dipeptide isoleucine–tryptophan and whey protein hydrolysate. Acta Physiol. 2015, 215, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Dou, P.; Li, X.; Zou, X.; Wang, K.; Yao, L.; Sun, Z.; Hong, H.; Luo, Y.; Tan, Y. Antihypertensive effects of whey protein hydrolysate involve reshaping the gut microbiome in spontaneously hypertension rats. Food Sci. Hum. Wellness 2024, 13, 1974–1986. [Google Scholar] [CrossRef]
- Xie, D.; Shen, Y.; Su, E.; Du, L.; Xie, J.; Wei, D. The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats. Food Funct. 2022, 13, 2743–2755. [Google Scholar] [CrossRef] [PubMed]
- Tavares, T.G.; Malcata, F.X. Whey proteins as source of bioactive peptides against hypertension. Bioact. Food Pept. Health Dis. 2013, 75, e4v1. [Google Scholar]
- Martin, M.; Hagemann, D.; Nguyen, T.T.; Schwarz, L.; Khedr, S.; Moskopp, M.L.; Henle, T.; Deussen, A. Plasma concentrations and ACE-inhibitory effects of tryptophan-containing peptides from whey protein hydrolysate in healthy volunteers. Eur. J. Nutr. 2020, 59, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Jogi, N.; Yathisha, U.G.; Bhat, I.; Mamatha, B.S. Antihypertensive activity of orally consumed ACE-I inhibitory peptides. Crit. Rev. Food Sci. Nutr. 2022, 62, 8986–8999. [Google Scholar] [CrossRef]
- Saubenova, M.; Oleinikova, Y.; Rapoport, A.; Maksimovich, S.; Yermekbay, Z.; Khamedova, E. Whey as an Optimal Substrate for the Development of Functional Products Enriched with Bioactive Peptides. Fermentation 2024, 10, 359. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, G.; Rentería-Monterrubio, A.L.; Gutiérrez-Méndez, N.; Ortega-Gutiérrez, J.A.; Santellano-Estrada, E.; Rojas-González, S.; Chávez-Martínez, A. Effect of probiotic cultures on the angiotensin converting enzyme inhibitory activity of whey-based fermented beverages. J. Food Sci. Technol. 2020, 57, 3731–3738. [Google Scholar] [CrossRef]
- Osman, A.; El-Hadary, A.; Korish, A.A.; AlNafea, H.M.; Alhakbany, M.A.; Awad, A.A.; Abdel-Hamid, M. Angiotensin-I converting enzyme inhibition and antioxidant activity of papain-hydrolyzed camel whey protein and its hepato-renal protective effects in thioacetamide-induced toxicity. Foods 2021, 10, 468. [Google Scholar] [CrossRef]
- Okagu, I.U.; Ezeorba, T.P.C.; Aham, E.C.; Aguchem, R.N.; Nechi, R.N. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. Food Chem. Mol. Sci. 2022, 4, 100078. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, W.; Yuan, Z.; Wang, X.; Huang, A. Anti-inflammatory effect of two novel peptides derived from Binglangjiang buffalo whey protein in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Chem. 2023, 429, 136804. [Google Scholar] [CrossRef]
- Guo, H.; Zang, C.; Zheng, L.; Ding, L.; Yang, W.; Shan Ren, N.; Guan, H. Novel Antioxidant Peptides from Fermented Whey Protein by Lactobacillus rhamnosus B2-1: Separation and Identification by in Vitro and in Silico Approaches. J. Agric. Food Chem. 2024, 72, 23306–23319. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Aweya, J.J.; Yuan, Z.; Weng, W.; Zhang, Y.; Liu, G.-M. Antimicrobial mechanism of Larimichthys crocea whey acidic protein-derived peptide (LCWAP) against Staphylococcus aureus and its application in milk. Int. J. Food Microbiol. 2020, 335, 108891. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.B.; Jung, E.-J.; Jo, K.; Suh, H.J.; Choi, H.-S. Neuroprotective effect of whey protein hydrolysate containing leucine-aspartate-isoleucine-glutamine-lysine on HT22 cells in hydrogen peroxide–induced oxidative stress. J. Dairy Sci. 2024, 107, 2620–2632. [Google Scholar] [CrossRef] [PubMed]
- de Espindola, J.S.; Ferreira Taccóla, M.; da Silva, V.S.N.; dos Santos, L.D.; Rossini, B.C.; Mendonça, B.C.; Pacheco, M.T.B.; Galland, F. Digestion-resistant whey peptides promote antioxidant effect on Caco-2 cells. Food Res. Int. 2023, 173, 113291. [Google Scholar] [CrossRef]
- Bu, T.; Huang, J.; Yu, Y.; Sun, P.; Yang, K. Whey Protein Hydrolysate Ameliorated High-Fat-Diet Induced Bone Loss via Suppressing Oxidative Stress and Regulating GSK-3β/Nrf2 Signaling Pathway. Nutrients 2023, 15, 2863. [Google Scholar] [CrossRef]
- D’Souza, K.; Mercer, A.; Mawhinney, H.; Pulinilkunnil, T.; Udenigwe, C.C.U.; Kienesberger, P.C. Whey Peptides Stimulate Differentiation and Lipid Metabolism in Adipocytes and Ameliorate Lipotoxicity-Induced Insulin Resistance in Muscle Cells. Nutrients 2020, 12, 425. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Liu, C.; Feng, X.; Xie, Y.; Yue, H.; Dong, J.; Zhao, Z.; Chen, G.; Yang, J. Camel whey protein (CWP) ameliorates liver injury in type 2 diabetes mellitus rats and insulin resistance (IR) in HepG2 cells via activation of the PI3K/Akt signaling pathway. Food Funct. 2022, 13, 255–269. [Google Scholar] [CrossRef]
- Akan, E. An evaluation of the in vitro antioxidant and antidiabetic potentials of camel and donkey milk peptides released from casein and whey proteins. J. Food Sci. Technol. 2021, 58, 3743–3751. [Google Scholar] [CrossRef]
- Du, X.; Jing, H.; Wang, L.; Huang, X.; Wang, X.; Wang, H. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. LWT 2022, 159, 113257. [Google Scholar] [CrossRef]
- Gaudel, C.; Nongonierma, A.B.; Maher, S.; Flynn, S.; Krause, M.; Murray, B.A.; Kelly, P.M.; Baird, A.W.; Fitzgerald, R.J. A Whey Protein Hydrolysate Promotes Insulinotropic Activity in a Clonal Pancreatic b -Cell Line and Enhances Glycemic Function in ob/ob Mice 1–3. J. Nutr. 2013, 143, 1109–1114. [Google Scholar] [CrossRef]
- Rai, C.; Priyadarshini, P. Whey protein hydrolysates improve high-fat-diet-induced obesity by modulating the brain–peripheral axis of GLP-1 through inhibition of DPP-4 function in mice. Eur. J. Nutr. 2023, 62, 2489–2507. [Google Scholar] [CrossRef] [PubMed]
- Kondrashina, A.; Brodkorb, A.; Giblin, L. Dairy-derived peptides for satiety. J. Funct. Foods 2020, 66, 103801. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, Y.; Fan, S.; Qiu, W. Dual functions of whey protein peptides: Investigating antioxidant properties and mechanisms of colitis relief. Food Biosci. 2025, 63, 105733. [Google Scholar] [CrossRef]
- Qi, X.; Guan, K.; Zhao, L.; Wang, R. Whey Protein Peptide Pro-Glu-Trp Ameliorates Hyperuricemia by Enhancing Intestinal Uric Acid Excretion, Modulating the Gut Microbiota, and Protecting the Intestinal Barrier in Rats. J. Agric. Food Chem. 2024, 72, 2573–2584. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.F.; Pouliot, Y.; Saint-Sauveur, D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16, 1315–1323. [Google Scholar] [CrossRef]
- Chen, K.; Ma, D.; Yang, X.; Liu, P.; Wang, J.; Liao, W. Clinical insights into the immunomodulatory effects of food-derived peptides. Food Front. 2024, 5, 2483–2497. [Google Scholar] [CrossRef]
- Gallo, V.; Arienzo, A.; Tomassetti, F.; Antonini, G. Milk Bioactive Compounds and Gut Microbiota Modulation: The Role of Whey Proteins and Milk Oligosaccharides. Foods 2024, 13, 907. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Shao, H.; Li, T. Dietary Supplementation with Bovine Lactoferrampin–Lactoferricin Produced by Pichia pastoris Fed-batch Fermentation Affects Intestinal Microflora in Weaned Piglets. Appl. Biochem. Biotechnol. 2012, 168, 887–898. [Google Scholar] [CrossRef]
- Xie, D.; Shen, Y.; Su, E.; Du, L.; Xie, J.; Wei, D. Anti-Hyperuricemic, Nephroprotective, and Gut Microbiota Regulative Effects of Separated Hydrolysate of α-Lactalbumin on Potassium Oxonate-and Hypoxanthine-Induced Hyperuricemic Mice. Mol. Nutr. Food Res. 2023, 67, e2200162. [Google Scholar] [CrossRef]
- Li, T.; Gao, J.; Du, M.; Mao, X. Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food Funct. 2019, 10, 3368–3378. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhan, B.; Chang, R.; Du, M.; Mao, X. Antidiabetic Effect of Casein Glycomacropeptide Hydrolysates on High-Fat Diet and STZ-Induced Diabetic Mice via Regulating Insulin Signaling in Skeletal Muscle and Modulating Gut Microbiota. Nutrients 2020, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Ramani, A.; Hazra, T.; Mudgil, S.; Mudgil, D. Emerging potential of whey proteins in prevention of cancer. Food Humanit. 2024, 2, 100199. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Bao, X.; Dai, Z.; Shen, Q.; Wang, L.; Xue, Y. Mining Bovine Milk Proteins for DPP-4 Inhibitory Peptides Using Machine Learning and Virtual Proteolysis. Research 2024, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Murali, C.; Mudgil, P.; Gan, C.Y.; Tarazi, H.; El-Awady, R.; Abdalla, Y.; Amin, A.; Maqsood, S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep. 2021, 11, 7062. [Google Scholar] [CrossRef]
- Sahna, K.O.; Cakir, B.; Tunali-Akbay, T. Antiproliferative Activity of Whey and Casein Bioactive Peptides on Breast Cancer: An In Vitro and In Silico Study. Int. J. Pept. Res. Ther. 2022, 28, 128. [Google Scholar] [CrossRef]
- Dave, B.; Eason, R.R.; Geng, Y.; Su, Y.; Badger, T.M.; Simmen, R.C.M. Tp53-Associated Growth Arrest and DNA Damage Repair Gene Expression Is Attenuated in Mammary Epithelial Cells of Rats Fed Whey Proteins. J. Nutr. 2006, 136, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Yang, M.; Li, Q.; Cheng, Q.; Wang, Y.; Ye, L.; Tian, F.; Ding, H.; Ling, Y.; Xia, M.; et al. Antitumor activity of a whey peptide-based enteral diet in C26 colon tumor-bearing mice. J. Food Sci. 2023, 88, 4275–4288. [Google Scholar] [CrossRef]
- Ding, N.; Meng, H.; Wu, C.; Yokoyama, W.; Hong, H.; Luo, Y.; Tan, Y. Whey Protein Hydrolysate Renovates Age-Related and Scopolamine-Induced Cognitive Impairment. Nutrients 2023, 15, 1228. [Google Scholar] [CrossRef]
- Ding, N.; Meng, H.; Wu, C.; Hong, H.; Luo, Y.; Tan, Y. Targeting brain health: Whey protein hydrolysate intervention enhances cognitive function in middle-aged mice. Food Biosci. 2024, 57, 103460. [Google Scholar] [CrossRef]
- Yu, X.-C.; Li, Z.; Liu, X.-R.; Hu, J.-N.; Liu, R.; Zhu, N.; Li, Y. The Antioxidant Effects of Whey Protein Peptide on Learning and Memory Improvement in Aging Mice Models. Nutrients 2021, 13, 2100. [Google Scholar] [CrossRef]
- Zhou, Y.; Meng, H.; Ding, N.; Hong, H.; Luo, Y.; Wu, C.; Tan, Y. Whey protein hydrolysate intervention ameliorates memory deficits in APP/PS1 mice: Unveiling gut microbe–short-chain fatty acid–brain axis. Food Front. 2024, 5, 2171–2187. [Google Scholar] [CrossRef]
- Wu, X.; Yu, X.; Zhu, N.; Xu, M.; Li, Y. Beneficial effects of whey protein peptides on muscle loss in aging mice models. Front. Nutr. 2022, 9, 897821. [Google Scholar] [CrossRef] [PubMed]
- Umeda, K.; Kobayashi, K.; Kanatome, A.; Sugimura, Y.; Ano, Y.; Suzuki, H.; Fukuda, T.; Okada, E.; Muto, S. Effects of whey-derived lactopeptide β-lactolin on cognitive performance in mild cognitive impairment: A randomized, double-blind, placebo-controlled trial. Nutr. Neurosci. 2024. [Google Scholar] [CrossRef]
- Kita, M.; Obara, K.; Kondo, S.; Umeda, S.; Ano, Y. Effect of supplementation of a whey peptide rich in tryptophan-tyrosine-related peptides on cognitive performance in healthy adults: A randomized, double-blind, placebo-controlled study. Nutrients 2018, 10, 899. [Google Scholar] [CrossRef]
- Kita, M.; Kobayashi, K.; Obara, K.; Koikeda, T.; Umeda, S.; Ano, Y. Supplementation With Whey Peptide Rich in β-Lactolin Improves Cognitive Performance in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Front. Neurosci. 2019, 13, 399. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, Z.; Benoit, S.; Cakir-Kiefer, C.; Dary, A.; Miclo, L. Food protein-derived anxiolytic peptides: Their potential role in anxiety management. Food Funct. 2021, 12, 1415–1431. [Google Scholar] [CrossRef]
- Holvoet, S.; Nutten, S.; Dupuis, L.; Donnicola, D.; Bourdeau, T.; Hughes-Formella, B.; Simon, D.; Simon, H.-U.; Carvalho, R.S.; Spergel, J.M.; et al. Partially Hydrolysed Whey-Based Infant Formula Improves Skin Barrier Function. Nutrients 2021, 13, 3113. [Google Scholar] [CrossRef]
- Drouin, R.; Lamiot, É.; Cantin, K.; Gauthier, S.F.; Pouliot, Y.; Poubelle, P.E.; Juneau, C. XP-828L (Dermylex), a new whey protein extract with potential benefit for mild to moderate psoriasisThis article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products. Can. J. Physiol. Pharmacol. 2007, 85, 943–951. [Google Scholar] [CrossRef]
- Qi, X.; Chen, H.; Guan, K.; Sun, Y.; Wang, R.; Li, Q.; Ma, Y. Novel xanthine oxidase inhibitory peptides derived from whey protein: Identification, in vitro inhibition mechanism and in vivo activity validation. Bioorg. Chem. 2022, 128, 106097. [Google Scholar] [CrossRef]
- Huang, S.; Li, Z.; Sun, Y.; Chen, B.; Jiang, Y.; Hong, F. Increased CD34 in pancreatic islet negatively predict islet β-cell decrease in type1 diabetes model. Front. Physiol. 2022, 13, 1032774. [Google Scholar] [CrossRef]
- Hussein, F.A.; Chay, S.Y.; Ghanisma, S.B.M.; Zarei, M.; Auwal, S.M.; Hamid, A.A.; Ibadullah, W.Z.W.; Saari, N. Toxicity study and blood pressure–lowering efficacy of whey protein concentrate hydrolysate in rat models, plus peptide characterization. J. Dairy Sci. 2020, 103, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Cheng, X.; Zhou, J.; Tang, X.; Mao, X.Y. Hypertension-attenuating effect of whey protein hydrolysate on spontaneously hypertensive rats. Food Chem. 2012, 134, 122–126. [Google Scholar] [CrossRef]
- Koyama, S.; Ito, K.; Terao, C.; Akiyama, M.; Horikoshi, M.; Momozawa, Y.; Matsunaga, H.; Ieki, H.; Ozaki, K.; Onouchi, Y.; et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat. Genet. 2020, 52, 1169–1177. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Aluko, R.E.; Auty, M.A.E.; Hayes, M. Addition of an Enzymatic Hydrolysate of Bovine Globulins to Bread and Determination of Hypotensive Effects in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2016, 64, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Eliassen, L.T.; Berge, G.; Sveinbjørnsson, B.; Svendsen, J.S.; Vorland, L.H.; Rekdal, Ø. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res. 2002, 22, 2703–2710. [Google Scholar]
- Li, X.; Yu, W.; Zhang, W.; Yu, Y.; Cheng, H.; Lin, Y.; Feng, J.; Zhao, M.; Jin, Y. Cutaneous wound healing functions of novel milk-derived antimicrobial peptides, hLFT-68 and hLFT-309 from human lactotransferrin, and bLGB-111 from bovine β-lactoglobulin. 2024; preprint. [Google Scholar]
- Von Berg, A.; Koletzko, S.; Grübl, A.; Filipiak-Pittroff, B.; Wichmann, H.E.; Bauer, C.P.; Reinhardt, D.; Berdel, D. The effect of hydrolyzed cow’s milk formula for allergy prevention in the first year of life: The German Infant Nutritional Intervention Study, a randomized double-blind trial. J. Allergy Clin. Immunol. 2003, 111, 533–540. [Google Scholar] [CrossRef]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022.
- Hetta, H.F.; Sirag, N.; Alsharif, S.M.; Alharbi, A.A.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Ramadan, Y.N.; Rashed, Z.I.; Alanazi, F.E. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals 2024, 17, 1555. [Google Scholar] [CrossRef]
- Singh, A.; Duche, R.T.; Wandhare, A.G.; Sian, J.K.; Singh, B.P.; Sihag, M.K.; Singh, K.S.; Sangwan, V.; Talan, S.; Panwar, H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob. Proteins 2023, 15, 44–62. [Google Scholar] [CrossRef]
- Madureira, A.R.; Tavares, T.; Gomes, A.M.P.; Pintado, M.E.; Malcata, F.X. Invited review: Physiological properties of bioactive peptides obtained from whey proteins. J. Dairy Sci. 2010, 93, 437–455. [Google Scholar] [CrossRef]
- Hocking, L.; Ali, G.-C.; D’Angelo, C.; Deshpande, A.; Stevenson, C.; Virdee, M.; Guthrie, S. A rapid evidence assessment exploring whether antimicrobial resistance complicates non-infectious health conditions and healthcare services, 2010–2020. JAC-Antimicrobial Resist. 2021, 3, dlab171. [Google Scholar] [CrossRef] [PubMed]
- Quintieri, L.; Fanelli, F.; Caputo, L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019, 8, 372. [Google Scholar] [CrossRef]
- Messaoui, H.; Roudj, S.; Karam, N.-E. Antioxidant and antibacterial activities of bovine whey proteins hydrolysed with selected lactobacillus strains. In Food and Environment Safety; Springer International Publishing: Cham, Switzerland, 2020; Volume XIX, pp. 25–39. [Google Scholar]
- Wafaa, N.; Elbarbary, H.A.; Ibrahim, E.M.A.; Mohamed, H.A.; Jenssen, H. Effect of Enzyme Type and Hydrolysis Time on Antibacterial and Antioxidant Activity of Whey Protein Hydrolysates. Iraqi J. Agric. Sci. 2022, 53, 1340–1357. [Google Scholar] [CrossRef]
- Innocente, N.; Calligaris, S.; Di Filippo, G.; Melchior, S.; Marino, M.; Nicoli, M.C. Process design for the production of peptides from whey protein isolate with targeted antimicrobial functionality. Int. J. Food Sci. Technol. 2023, 58, 2505–2517. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, R.; Zhang, J.; Zhou, P. Heat-induced denaturation and bioactivity changes of whey proteins. Int. Dairy J. 2021, 123, 105175. [Google Scholar] [CrossRef]
- da Cruz, C.Z.P.; de Mendonça, R.J.; Guimaraes, L.H.S.; dos Santos Ramos, M.A.; Garrido, S.S.; de Paula, A.V.; Monti, R.; Massolini, G. Assessment of the Bioactive Potential of Cheese Whey Protein Hydrolysates Using Immobilized Alcalase. Food Bioprocess Technol. 2020, 13, 2120–2130. [Google Scholar] [CrossRef]
- Iram, D.; Singh, M. In vitro antimicrobial and synergistic effect of fermented Indian zebu (Sahiwal) cow colostrum whey derived peptides with Lactobacillus rhamnosus against pathogenic bacteria. J. Food Sci. Technol. 2023, 60, 2568–2580. [Google Scholar] [CrossRef]
- Yang, Y.; Bu, D.; Zhao, X.; Sun, P.; Wang, J.; Zhou, L. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: Quantitative differential expression patterns. J. Proteome Res. 2013, 12, 1660–1667. [Google Scholar] [CrossRef]
- Wang, R.; Han, Z.; Ji, R.; Xiao, Y.; Si, R.; Guo, F.; He, J.; Hai, L.; Ming, L.; Yi, L. Antibacterial Activity of Trypsin-Hydrolyzed Camel and Cow Whey and Their Fractions. Animals 2020, 10, 337. [Google Scholar] [CrossRef]
- Ashokbhai, J.K.; Basaiawmoit, B.; Das, S.; Sakure, A.; Maurya, R.; Bishnoi, M.; Kondepudi, K.K.; Padhi, S.; Rai, A.K.; Liu, Z.; et al. Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk: In-vitro, in-silico and molecular interaction studies. Food Biosci. 2022, 47, 101666. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Ehsani, M.R.; Aminlari, M.; Hoseini, E.; Azad, I. Antimicrobial Peptides Derived from Goat’s Milk Whey Proteins Obtained by Enzymatic Hydrolysis. J. Food Biosci. Technol. 2017, 7, 65–72. [Google Scholar]
- Liu, R.; Yang, Y.; Zhang, Y.; Sun, Q.; Zhu, P.; Xu, H.; Zheng, W.; Lu, Y.; Fu, Q. Proteomic and antimicrobial peptide analyses of Buffalo colostrum and mature Milk whey: A comparative study. Food Chem. 2024, 448, 139119. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, M.J.; Ezzatpanah, H.; Ghahderijani, M. In vitro and in silico studies for the identification of anti-cancer and antibacterial peptides from camel milk protein hydrolysates. PLoS ONE 2023, 18, e0288260. [Google Scholar] [CrossRef] [PubMed]
- Sansi, M.S.; Iram, D.; Vij, S. In vitro biosafety and bioactivity assessment of the goat milk protein derived hydrolysates peptides. J. Food Saf. 2023, 43, e13061. [Google Scholar] [CrossRef]
- Zhao, C.; Ashaolu, T.J. Bioactivity and safety of whey peptides. LWT 2020, 134, 109935. [Google Scholar] [CrossRef]
- Shivanna, S.K.; Nataraj, B.H. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Biosci. 2020, 38, 100771. [Google Scholar] [CrossRef]
- Campos, M.I.F.; Barbosa, P.P.d.S.; Camargo, L.J.; Pinto, L.D.S.; Mataribu, B.; Serrão, C.; Marques-Santos, L.F.; Lopes, J.H.; de Oliveira, J.M.C.; Gadelha, C.A.d.A.; et al. Characterization of goat whey proteins and their bioactivity and toxicity assay. Food Biosci. 2022, 46, 101591. [Google Scholar] [CrossRef]
- Wang, Y.; Morton, J.D.; Bekhit, A.E.-D.A.; Carne, A.; Mason, S.L. Amino Acid Sequences of Lactoferrin from Red Deer (Cervus elaphus) Milk and Antimicrobial Activity of Its Derived Peptides Lactoferricin and Lactoferrampin. Foods 2021, 10, 1305. [Google Scholar] [CrossRef]
- Fanelli, F.; Caputo, L.; Quintieri, L. Phenotypic and genomic characterization of Pseudomonas putida ITEM 17297 spoiler of fresh vegetables: Focus on biofilm and antibiotic resistance interaction. Curr. Res. Food Sci. 2021, 4, 74–82. [Google Scholar] [CrossRef]
- Ramamourthy, G.; Vogel, H.J. Antibiofilm activity of lactoferrin-derived synthetic peptides against Pseudomonas aeruginosa PAO1. Biochem. Cell Biol. 2021, 99, 138–148. [Google Scholar] [CrossRef]
- Quintieri, L.; Caputo, L.; Monaci, L.; Cavalluzzi, M.M.; Denora, N. Lactoferrin-derived peptides as a control strategy against skinborne staphylococcal biofilms. Biomedicines 2020, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Wuersching, S.N.; Huth, K.C.; Hickel, R.; Kollmuss, M. Inhibitory effect of LL-37 and human lactoferricin on growth and biofilm formation of anaerobes associated with oral diseases. Anaerobe 2021, 67, 102301. [Google Scholar] [CrossRef] [PubMed]
- de Sá Almeida, J.S.; de Oliveira Marre, A.T.; Teixeira, F.L.; Boente, R.F.; Domingues, R.M.C.P.; de Paula, G.R.; Lobo, L.A. Lactoferrin and lactoferricin B reduce adhesion and biofilm formation in the intestinal symbionts Bacteroides fragilis and Bacteroides thetaiotaomicron. Anaerobe 2020, 64, 102232. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Martínez, L.E.; Canizalez-Román, A.; Angulo-Zamudio, U.A.; Flores-Villaseñor, H.; Velázquez-Román, J.; Bolscher, J.G.M.; Nazmi, K.; León-Sicairos, N. Bovine lactoferrin and chimera lactoferrin prevent and destroy Salmonella Typhimurium biofilms in Caco-2 cells. Biochem. Cell Biol. 2024, 102, 515–525. [Google Scholar] [CrossRef]
- Zarzosa-Moreno, D.; Avalos-Gómez, C.; Ramírez-Texcalco, L.S.; Torres-López, E.; Ramírez-Mondragón, R.; Hernández-Ramírez, J.O.; Serrano-Luna, J.; de la Garza, M. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules 2020, 25, 5763. [Google Scholar] [CrossRef]
- Mishra, B.; Felix, L.O.; Basu, A.; Kollala, S.S.; Chhonker, Y.S.; Ganesan, N.; Murry, D.J.; Mylonakis, E. Design and Evaluation of Short Bovine Lactoferrin-Derived Antimicrobial Peptides against Multidrug-Resistant Enterococcus faecium. Antibiotics 2022, 11, 1085. [Google Scholar] [CrossRef]
- Quintieri, L.; Zühlke, D.; Fanelli, F.; Caputo, L.; Liuzzi, V.C.; Logrieco, A.F.; Hirschfeld, C.; Becher, D.; Riedel, K. Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin. Food Microbiol. 2019, 82, 177–193. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Zühlke, D.; Caputo, L.; Logrieco, A.F.; Albrecht, D.; Riedel, K. Biofilm and Pathogenesis-Related Proteins in the Foodborne P. fluorescens ITEM 17298 With Distinctive Phenotypes During Cold Storage. Front. Microbiol. 2020, 11, 991. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, Z.; Wang, Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl. Microbiol. Biotechnol. 2022, 106, 6365–6381. [Google Scholar] [CrossRef]
- Rajput, A.; Kumar, M. Anti-biofilm Peptides: A New Class of Quorum Quenchers and Their Prospective Therapeutic Applications. In Biotechnological Applications of Quorum Sensing Inhibitors; Springer: Singapore, 2018; pp. 87–110. ISBN 9789811090264. [Google Scholar]
- Quintieri, L.; Caputo, L.; Brasca, M.; Fanelli, F. Recent advances in the mechanisms and regulation of qs in dairy spoilage by pseudomonas spp. Foods 2021, 10, 3088. [Google Scholar] [CrossRef]
- Aslanli, A.; Domnin, M.; Stepanov, N.; Efremenko, E. Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes. Int. J. Mol. Sci. 2023, 24, 3566. [Google Scholar] [CrossRef]
- Vergis, J.; Malik, S.S.; Pathak, R.; Kumar, M.; Ramanjaneya, S.; Kurkure, N.V.; Barbuddhe, S.B.; Rawool, D.B. Exploiting Lactoferricin (17–30) as a Potential Antimicrobial and Antibiofilm Candidate Against Multi-Drug-Resistant Enteroaggregative Escherichia coli. Front. Microbiol. 2020, 11, 575917. [Google Scholar] [CrossRef] [PubMed]
- Li, G. Effect of Whey Protein Fermentation and Hydrolysis on Listeria monocytogenes Virulence Gene Expression in the Presence of the Gut Microbiota Modelled in the Simulator of the Human Intestinal Microbial Ecosystem. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2022. [Google Scholar]
- Quintieri, L.; Caputo, L.; Monaci, L.; Deserio, D.; Morea, M.; Baruzzi, F. Antimicrobial efficacy of pepsin-digested bovine lactoferrin on spoilage bacteria contaminating traditional Mozzarella cheese. Food Microbiol. 2012, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Quintieri, L.; Bianchi, D.M.; Decastelli, L.; Monaci, L.; Visconti, A.; Baruzzi, F. Pepsin-digested bovine lactoferrin prevents Mozzarella cheese blue discoloration caused by Pseudomonas fluorescens. Food Microbiol. 2015, 46, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Baruzzi, F.; Pinto, L.; Quintieri, L.; Carito, A.; Calabrese, N.; Caputo, L. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp. Int. J. Food Microbiol. 2015, 215, 179–186. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Alía, A.; Martínez-Blanco, M.; Lozano-Ojalvo, D.; Córdoba, J.J. Control of Listeria monocytogenes growth and virulence in a traditional soft cheese model system based on lactic acid bacteria and a whey protein hydrolysate with antimicrobial activity. Int. J. Food Microbiol. 2022, 361, 109444. [Google Scholar] [CrossRef]
- Jrad, Z.; Oussaief, O.; Khorchani, T.; El-Hatmi, H. Microbial and enzymatic hydrolysis of dromedary whey proteins and caseins: Techno-functional, radical scavenging, antimicrobial properties and incorporation in beverage formulation. J. Food Meas. Charact. 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Murdock, C.A.; Matthews, K.R. Antibacterial activity of pepsin-digested lactoferrin on foodborne pathogens in buffered broth systems and ultra-high temperature milk with EDTA. J. Appl. Microbiol. 2002, 93, 850–856. [Google Scholar] [CrossRef]
- Quintieri, L.; Caputo, L.; Morea, M.; Baruzzi, F. Control of Mozzarella spoilage bacteria by using bovine lactoferrin pepsin-digested hydrolysate. In Worldwide Research Efforts in the Fighting Against Microbial Pathogens: From Basic Research to Technological Developments Control; BrownWalker Press: Boca Raton, FL, USA, 2013; pp. 118–122. ISBN 1612336361. [Google Scholar]
- Quintieri, L.; Carito, A.; Pinto, L.; Calabrese, N.; Baruzzi, F.; Caputo, L. Application of lactoferricin B to control microbial spoilage in cold stored fresh foods. In Multidisciplinary Approach for Studying and Combating Microbial Pathogens; Mendez-Vilas, A., Ed.; BrownWalker Press: Boca Raton, FL, USA, 2015; pp. 58–62. [Google Scholar]
- Quintieri, L.; Caputo, L.; De Angelis, M.; Fanelli, F. Genomic Analysis of Three Cheese-Borne Pseudomonas lactis with Biofilm and Spoilage-Associated Behavior. Microorganisms 2020, 8, 1208. [Google Scholar] [CrossRef]
- Muñoz, A.; Marcos, J.F. Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides. J. Appl. Microbiol. 2006, 101, 1199–1207. [Google Scholar] [CrossRef]
- Enrique, M.; Manzanares, P.; Yuste, M.; Martínez, M.; Vallés, S.; Marcos, J.F. Selectivity and antimicrobial action of bovine lactoferrin derived peptides against wine lactic acid bacteria. Food Microbiol. 2009, 26, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Enrique, M.; Marcos, J.F.; Yuste, M.; Martínez, M.; Vallés, S.; Manzanares, P. Antimicrobial action of synthetic peptides towards wine spoilage yeasts. Int. J. Food Microbiol. 2007, 118, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Del Olmo, A.; Calzada, J.; Nuñez, M. Effect of lactoferrin and its derivatives, high hydrostatic pressure, and their combinations, on Escherichia coli O157:H7 and Pseudomonas fluorescens in chicken filets. Innov. Food Sci. Emerg. Technol. 2012, 13, 51–56. [Google Scholar] [CrossRef]
- Peña-Ramos, E.A.; Xiong, Y.L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 2003, 64, 259–263. [Google Scholar] [CrossRef]
- Gallo, V.; Giansanti, F.; Arienzo, A.; Antonini, G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. J. Funct. Foods 2022, 89, 104932. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.; Silva, M.; Grácio, M.; Pedroso, L.; Lima, A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int. J. Mol. Sci. 2024, 25, 1842. [Google Scholar] [CrossRef]
- Oevermann, A.; Engels, M.; Thomas, U.; Pellegrini, A. The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antiviral Res. 2003, 59, 23. [Google Scholar] [CrossRef]
- Çakır, B.; Okuyan, B.; Şener, G.; Tunali-Akbay, T. Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. Eur. J. Pharmacol. 2021, 891, 173781. [Google Scholar] [CrossRef]
- Knipping, K.; Simons, P.J.; Buelens-Sleumer, L.S.; Cox, L.; den Hartog, M.; de Jong, N.; Teshima, R.; Garssen, J.; Boon, L.; Knippels, L.M.J. Development of β-Lactoglobulin-Specific Chimeric Human IgEκ Monoclonal Antibodies for In Vitro Safety Assessment of Whey Hydrolysates. PLoS ONE 2014, 9, e106025. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Bohn, T.; Cámara, M.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Jos, A.; Maciuk, A.; Mangelsdorf, I.; McNulty, B.; et al. Nutritional safety and suitability of a specific protein hydrolysate manufactured by Fonterra Co-operative Group Ltd. derived from a whey protein concentrate and used in infant formula and follow-on formula. EFSA J. 2025, 23, e9160. [Google Scholar] [CrossRef]
- European Commission. Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending Directive 1999/21/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006L0141-20130918&from=CS (accessed on 2 January 2025).
- Liu, L.; Li, S.; Zheng, J.; Bu, T.; He, G.; Wu, J. Safety considerations on food protein-derived bioactive peptides. Trends Food Sci. Technol. 2020, 96, 199–207. [Google Scholar] [CrossRef]
- McGregor, R.A.; Poppitt, S.D. Milk protein for improved metabolic health: A review of the evidence. Nutr. Metab. 2013, 10, 46. [Google Scholar] [CrossRef]
- Monaci, L.; Pilolli, R.; De Angelis, E.; Crespo, J.F.; Novak, N.; Cabanillas, B. Food allergens: Classification, molecular properties, characterization, and detection in food sources. In Advances in Food and Nutrition Research; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 93, pp. 113–146. ISBN 9780128206881. [Google Scholar]
- Feng, N.; Zhang, H.; Li, Y.; Liu, Y.; Xu, L.; Wang, Y.; Fei, X.; Tian, J. A novel catalytic material for hydrolyzing cow’s milk allergenic proteins: Papain-Cu3(PO4)2·3H2O-magnetic nanoflowers. Food Chem. 2020, 311, 125911. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Pilolli, R.; Quintieri, L.; Caputo, L.; Luparelli, A.; De Angelis, E. Casein: Allergenicity and molecular properties. In Casein-Structural Properties, Uses, Health Benefits and Nutraceutical Applications; Elsevier: Amsterdam, The Netherlands, 2024; pp. 363–377. ISBN 9780443158360. [Google Scholar]
- Hochwallner, H.; Schulmeister, U.; Swoboda, I.; Spitzauer, S.; Valenta, R. Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods 2014, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Bavaro, S.L.; De Angelis, E.; Pilolli, R.; Costa, J.; Barni, S.; Novembre, E.; Mafra, I.; Monaci, L. Milk Ingredients in Meat Products: Can Autoclaving and In Vitro Gastroduodenal Digestion Mitigate Their IgE-Binding Capacity? Nutrients 2021, 13, 931. [Google Scholar] [CrossRef]
- Bavaro, S.L.; De Angelis, E.; Barni, S.; Pilolli, R.; Mori, F.; Novembre, E.M.; Monaci, L. Modulation of milk allergenicity by baking milk in foods: A proteomic investigation. Nutrients 2019, 11, 1536. [Google Scholar] [CrossRef]
- Bourdeau, T.; Affolter, M.; Dupuis, L.; Panchaud, A.; Lahrichi, S.; Merminod, L.; Martin-Paschoud, C.; Adams, R.; Nutten, S.; Blanchard, C. Peptide Characterization and Functional Stability of a Partially Hydrolyzed Whey-Based Formula over Time. Nutrients 2021, 13, 3011. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Lamonaca, A.; Luparelli, A.; Pilolli, R.; De Angelis, E. (Bio)technological Approaches for Reducing Allergenicity of Food Ingredients. In Sustainable Food Science: A Comprehensive Approach; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 86–102. ISBN 9780128239605. [Google Scholar]
- Quintieri, L.; Monaci, L.; Baruzzi, F.; Giuffrida, M.G.; de Candia, S.; Caputo, L. Reduction of whey protein concentrate antigenicity by using a combined enzymatic digestion and ultrafiltration approach. J. Food Sci. Technol. 2017, 54, 1910–1916. [Google Scholar] [CrossRef]
- Beyer, K. Hypoallergenicity: A principle for the treatment of food allergy. In Nutrition Support for Infants and Children at Risk; Karger Publishers: Berlin, Germany, 2007; pp. 37–47. [Google Scholar]
- Vandenplas, Y.; Marchand, J.; Meyns, L. Symptoms, diagnosis, and treatment of cow’s milk allergy. In Current Pediatric Reviews; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; pp. 293–297. [Google Scholar]
- Adel-Patient, K.; Wavrin, S.; Bernard, H.; Meziti, N.; Ah-Leung, S.; Wal, J.-M. Oral tolerance and Treg cells are induced in BALB/c mice after gavage with bovine β-lactoglobulin. Allergy 2011, 66, 1312–1321. [Google Scholar] [CrossRef]
- Damodaran, S.; Li, Y. A two-step enzymatic modification method to reduce immuno-reactivity of milk proteins. Food Chem. 2017, 237, 724–732. [Google Scholar] [CrossRef]
- Pescuma, M.; Hébert, E.M.; Font, G.; Saavedra, L.; Mozzi, F. Hydrolysate of β-lactoglobulin by Lactobacillus delbrueckii subsp. bulgaricus CRL 656 suppresses the immunoreactivity of β-lactoglobulin as revealed by in vivo assays. Int. Dairy J. 2019, 88, 71–78. [Google Scholar] [CrossRef]
- Meng, X.; Li, X.; Wang, X.; Gao, J.; Yang, H.; Chen, H. Potential allergenicity response to structural modification of irradiated bovine α-lactalbumin. Food Funct. 2016, 7, 3102–3110. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Bai, Y.; Gao, J.; Li, X.; Chen, H. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin. Food Chem. 2017, 219, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, Q.-H.; He, G.-Q. Effect of ultrasonic-ionic liquid pretreatment on the hydrolysis degree and antigenicity of enzymatic hydrolysates from whey protein. Ultrason. Sonochem. 2020, 63, 104926. [Google Scholar] [CrossRef]
- Wróblewska, B.; Troszyńska, A. Enzymatic hydrolysis of cow’s whey milk proteins in the aspect of their utilization for the production of hypoallergenic formulas. Polish J. Food Nutr. Sci. 2005, 14, 349–357. [Google Scholar]
- Xiong, Z.; Wang, W.; Ma, X.; Zhang, X.; Wu, Z.; Yang, A.; Wu, Y.; Meng, X.; Chen, H.; Li, X. Development of a Two-Step Hydrolysis Hypoallergenic Cow’s Milk Formula and Evaluation of Residue Allergenicity by Peptidomics and Immunoreactivity Analysis. J. Agric. Food Chem. 2023, 71, 12237–12249. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, Z.; Li, M.; Zhou, M.; Sun, X. Peptide profiles and allergy-reactivity of extensive hydrolysates of milk protein. Food Chem. 2023, 411, 135544. [Google Scholar] [CrossRef]
- Warren, C.M.; Sehgal, S.; Sicherer, S.H.; Gupta, R.S. Epidemiology and the Growing Epidemic of Food Allergy in Children and Adults Across the Globe. Curr. Allergy Asthma Rep. 2024, 24, 95–106. [Google Scholar] [CrossRef]
- Du Toit, G.; Sampson, H.A.; Plaut, M.; Burks, A.W.; Akdis, C.A.; Lack, G. Food allergy: Update on prevention and tolerance. J. Allergy Clin. Immunol. 2017, 141, 30–40. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T. Regulatory T cells: How do they suppress immune responses? Int. Immunol. 2009, 21, 1105–1111. [Google Scholar] [CrossRef]
- Faria, A.M.C.; Weiner, H.L. Oral tolerance. Immunol. Rev. 2005, 206, 232–259. [Google Scholar] [CrossRef]
- Vickery, B.P.; Scurlock, A.M.; Jones, S.M.; Burks, A.W. Mechanisms of immune tolerance relevant to food allergy. J. Allergy Clin. Immunol. 2011, 127, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Kiewiet, M.B.G.; Gros, M.; van Neerven, R.J.J.; Faas, M.M.; de Vos, P. Immunomodulating properties of protein hydrolysates for application in cow’s milk allergy. Pediatr. Allergy Immunol. 2015, 26, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; Di Costanzo, M.; Bedogni, G.; Amoroso, A.; Cosenza, L.; Di Scala, C.; Granata, V.; Nocerino, R. Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J. Allergy Clin. Immunol. 2017, 139, 1906–1913.e4. [Google Scholar] [CrossRef]
- Sánchez-Valverde, F.; Etayo, V.; Gil, F.; Aznal, E.; Martínez, D.; Amézqueta, A.; Mendizábal, M.; Galbete, A.; Pastor, N.; Vanderhoof, J. Factors Associated with the Development of Immune Tolerance in Children with Cow’s Milk Allergy. Int. Arch. Allergy Immunol. 2019, 179, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Nocerino, R.; Di Costanzo, M.; Bedogni, G.; Cosenza, L.; Maddalena, Y.; Di Scala, C.; Della Gatta, G.; Carucci, L.; Voto, L.; Coppola, S.; et al. Dietary Treatment with Extensively Hydrolyzed Casein Formula Containing the Probiotic Lactobacillus rhamnosus GG Prevents the Occurrence of Functional Gastrointestinal Disorders in Children with Cow’s Milk Allergy. J. Pediatr. 2019, 213, 137–142.e2. [Google Scholar] [CrossRef]
- Gil, F.; Mendizabal, M.; Amezqueta, A.; Aznal, E.; Durá, T.; Sánchez-Valverde, F. A new score to predict allergic march in patients with IgE-mediated cow milk allergy. Allergy Asthma Proc. 2019, 40, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.F.; Fuller, G.W. Effectiveness of using an extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG compared with an extensively hydrolysed whey formula in managing cow’s milk protein allergic infants. J. Comp. Eff. Res. 2019, 8, 1317–1326. [Google Scholar] [CrossRef]
- Paparo, L.; Picariello, G.; Bruno, C.; Pisapia, L.; Canale, V.; Sarracino, A.; Nocerino, R.; Carucci, L.; Cosenza, L.; Cozzolino, T.; et al. Tolerogenic Effect Elicited by Protein Fraction Derived From Different Formulas for Dietary Treatment of Cow’s Milk Allergy in Human Cells. Front. Immunol. 2021, 11, 604075. [Google Scholar] [CrossRef]
- Pelaseyed, T.; Bergström, J.H.; Gustafsson, J.K.; Ermund, A.; Birchenough, G.M.H.; Schütte, A.; van der Post, S.; Svensson, F.; Rodríguez-Piñeiro, A.M.; Nyström, E.E.L.; et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Revie 2014, 260, 8–20. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity 2015, 43, 29–40. [Google Scholar] [CrossRef]
- Kearley, J.; Barker, J.E.; Robinson, D.S.; Lloyd, C.M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4 + CD25 + regulatory T cells is interleukin 10 dependent. J. Exp. Med. 2005, 202, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Sletten, G.B.G.; Halvorsen, R.; Egaas, E.; Halstensen, T.S. Memory T Cell Proliferation in Cow’s Milk Allergy after CD25+ Regulatory T Cell Removal Suggests a Role for Casein-Specific Cellular Immunity in IgE-Mediated but Not in Non-IgE-Mediated Cow’s Milk Allergy. Int. Arch. Allergy Immunol. 2007, 142, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Lee, S.-H.; Kim, D.-H.; Kang, C.-Y. Complementary role of CD4+CD25+ regulatory T cells and TGF-β in oral tolerance. J. Leukoc. Biol. 2005, 77, 906–913. [Google Scholar] [CrossRef]
- Van Wijk, F.; Wehrens, E.J.M.; Nierkens, S.; Boon, L.; Kasran, A.; Pieters, R.; Knippels, L.M.J. CD4 + CD25 + T cells regulate the intensity of hypersensitivity responses to peanut, but are not decisive in the induction of oral sensitization. Clin. Exp. Allergy 2007, 37, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Blanc, F.; Bernard, H.; Alessandri, S.; Bublin, M.; Paty, E.; Leung, S.A.; Patient, K.A.; Wal, J.M. Update on optimized purification and characterization of natural milk allergens. Mol. Nutr. Food Res. 2008, 52, 166–175. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Q.; Cong, Y.; Yan, W. Preparation, Identification and Application of β-Lactoglobulin Hydrolysates with Oral Immune Tolerance. Foods 2023, 12, 307. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; He, J.; Tang, W.; Liu, J. Innovative multistep modifications of β-Lactoglobulin for enhanced emulsifying and antioxidant activities. Food Hydrocoll. 2024, 148, 109465. [Google Scholar] [CrossRef]
- Ohradanova-Repic, A.; Praženicová, R.; Gebetsberger, L.; Moskalets, T.; Skrabana, R.; Cehlar, O.; Tajti, G.; Stockinger, H.; Leksa, V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023, 15, 1056. [Google Scholar] [CrossRef]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Meulenbroek, L.A.P.M.; van Esch, B.C.A.M.; Hofman, G.A.; den Hartog Jager, C.F.; Nauta, A.J.; Willemsen, L.E.M.; Bruijnzeel-Koomen, C.A.F.M.; Garssen, J.; van Hoffen, E.; Knippels, L.M.J. Oral treatment with β-lactoglobulin peptides prevents clinical symptoms in a mouse model for cow’s milk allergy. Pediatr. Allergy Immunol. 2013, 24, 656–664. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Liu, L.; Wang, L.; Bora, A.F.M.; Du, L. Covalent conjugation of whey protein isolate hydrolysates and galactose through Maillard reaction to improve the functional properties and antioxidant activity. Int. Dairy J. 2020, 102, 104584. [Google Scholar] [CrossRef]
- Yin, C.; Wong, J.H..; Ng, T.B. Recent Studies on the Antimicrobial Peptides Lactoferricin and Lactoferrampin. In Current Molecular Medicine; Bentham Science Publishers: Sharjah, United Arab Emirates, 2014; Volume 14, pp. 1139–1154. [Google Scholar]
- Giroldi, M.; Grambusch, I.M.; Neutzling Lehn, D.; Volken de Souza, C.F. Encapsulation of dairy protein hydrolysates: Recent trends and future prospects. Dry. Technol. 2021, 39, 1513–1528. [Google Scholar] [CrossRef]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Abioye, R.O.; Okagu, I.U.; Obeme-Nmom, J.I. Bioaccessibility of bioactive peptides: Recent advances and perspectives. Curr. Opin. Food Sci. 2021, 39, 182–189. [Google Scholar] [CrossRef]
- Lacroix, I.M.E.; Chen, X.-M.; Kitts, D.D.; Li-Chan, E.C.Y. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Food Funct. 2017, 8, 701–709. [Google Scholar] [CrossRef]
- Rabie, A.S.I.; Alhomsi, T.; AbouKhatwa, M.M.; Mosilhy, E.A.; Elzahaf, R.A. Impact of whey protein supplementation as adjuvant therapy on malnourished cancer patients: Systematic review and meta-analysis. Discov. Food 2024, 4, 118. [Google Scholar] [CrossRef]
- Marshall, K. Whey Protein Review Permission. Altern. Med. Rev. 2004, 9, 136–156. [Google Scholar]
- Bumrungpert, A.; Pavadhgul, P.; Nunthanawanich, P.; Sirikanchanarod, A.; Adulbhan, A. Whey Protein Supplementation Improves Nutritional Status, Glutathione Levels, and Immune Function in Cancer Patients: A Randomized, Double-Blind Controlled Trial. J. Med. Food 2018, 21, 612–616. [Google Scholar] [CrossRef]
- Storck, L.J.; Ruehlin, M.; Gaeumann, S.; Gisi, D.; Schmocker, M.; Meffert, P.J.; Imoberdorf, R.; Pless, M.; Ballmer, P.E. Effect of a leucine-rich supplement in combination with nutrition and physical exercise in advanced cancer patients: A randomized controlled intervention trial. Clin. Nutr. 2020, 39, 3637–3644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintieri, L.; Luparelli, A.; Caputo, L.; Schirinzi, W.; De Bellis, F.; Smiriglia, L.; Monaci, L. Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance. Nutrients 2025, 17, 938. https://doi.org/10.3390/nu17060938
Quintieri L, Luparelli A, Caputo L, Schirinzi W, De Bellis F, Smiriglia L, Monaci L. Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance. Nutrients. 2025; 17(6):938. https://doi.org/10.3390/nu17060938
Chicago/Turabian StyleQuintieri, Laura, Anna Luparelli, Leonardo Caputo, William Schirinzi, Federica De Bellis, Leonardo Smiriglia, and Linda Monaci. 2025. "Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance" Nutrients 17, no. 6: 938. https://doi.org/10.3390/nu17060938
APA StyleQuintieri, L., Luparelli, A., Caputo, L., Schirinzi, W., De Bellis, F., Smiriglia, L., & Monaci, L. (2025). Unraveling the Biological Properties of Whey Peptides and Their Role as Emerging Therapeutics in Immune Tolerance. Nutrients, 17(6), 938. https://doi.org/10.3390/nu17060938