Clinical Insights into Non-Alcoholic Fatty Liver Disease and the Therapeutic Potential of Flavonoids: An Update
Abstract
:1. Introduction
2. Materials and Methods
3. Dietary Sources, Intake, and Safety of Flavonoids
4. Flavonoids and Their Actions in NAFLD
Disorder/Substances | In Vitro or In Vivo Model | Mode of Action | References | |
---|---|---|---|---|
Quercetin | MAFLD C57BL/6 mice fed a high-fat diet | improvement of lipid metabolism by reducing lipogenesis proteins, including ACC, FASN, and SREBP-1c, and enhancing β-oxidation proteins, including PPARα and CPT1A, enhanced antioxidant capacity, eliminating phosphorylation of IκBα and NF-κB p65 | Jiang et al. [41] | |
Silymarin | mice fed with 30% fructose | ↓ ↓ ↓ ↑ | AST, ALT, SOD/CAT, TBARSs, TGs, TC, ACC-1, and FAS mRNA levels and activity of hepatic citrate synthase | Carvalho et al. [39] |
Isorhamnetin | HepG2 and BEL-7402 cell lines induced with FFAs | ↓ ↓ | intracellular lipid deposition TGs, TC upregulating FXR and BSEP and downregulating SLCO1B3 | La et al. [40] |
Purification of flavonoids from quinoa whole grain | HepG2 and BEL-7402 fatty liver cell models induced by OA and PA in a high-fat diet-induced NAFLD model in C57BL/6N mice | ↓ ↓ ↓ ↑ | TGs (in both models) TC, LDL-C in mice AST, ALT in mice HDL-C in mice downregulating lipid metabolism genes, CD36, and FASN | La et al. [31] |
Erhuang Quzhi Formula rich in luteolin and quercetin | WRL68 or HepG2 cells induced by OA and PA; male ICR mice | ↓ | lipid accumulation regulated changes in adipose tissue, inhibited MAPK/AKT signaling pathway | Pan et al. [32] |
7-Hydroxyflavone (7-HY) | oleic acid/palmitic acid-induced HepG2 cells and C57BL/6 mice on a high-fat diet | mitigated fat accumulation, hepatic steatosis, and oxidative stress induced by high-fat diet ameliorating abnormal glucose metabolism inhibited TG deposition in HepG2 cells through interaction with STK24 | Qi et al. [43] | |
Grape Seed Proanthocyanidin Extract (GSPE) | CAF-induced liver steatosis male Fischer 344 rats | ↓ | hepatic triglyceride levels modulated liver physiological processes | Rodriguez et al. [33] |
Vine tea (Ampelopsis grossedentata) | mice fed a high-fat diet; HepG2 and L02 cells treated with OA | ↓ ↓ | body mass blood lipids improved hepatic tissue morphology activation of AMPK/mTOR | Wang et al. [34] |
Broussonetia papyrifera | HepG2 cells treated with FFAs; mice fed with a high-fat diet | ↓ ↑ ↑ | TC, LDL-C, TGs HDL-C inhibited generation of ROS; restrained level of MPO, activity of superoxide SOD activation of Nrf2 | Wang et al. [44] |
Quercetin and kaempferol from Carthamus tinctorius L. | a rat model of NAFLD; HepG2 cells | enhancing bile acid receptor NR1H4 expression | Wang et al. [35] | |
Kaempferol | C57BL/6 female mice on a high-fat diet | ↓ | expression of NLRP3- ASC/TMS1-Caspase 3 downregulated expression of NLRP3-ASC/TMS1-Caspase 3 | Yang et al. [42] |
Dihydromyricetin | PA-treated HepG2 cells; rats fed with a high-fat diet | ↑ ↓ | ameliorating hepatic steatosis, GLUT2 expression, and G6Pase and PEPCK expression improved IR | Yang et al. [36] |
Chrysin | NAFLD model cells; db/db mice | ↓ ↓ ↓ ↓ | hyperlipidemia liver injury body weight liver weight | Zhang et al. [37] |
Apigenin-6-C-glucoside | HepG2 and PLC/PRF/5 liver cell lines;murine models of MASLD | ↓ ↓ ↑ | hepatic steatosis and fibrosis, pro-inflammatory macrophage numbers hepatic glycogen content | Khatoon et al. [38] |
5. Results
5.1. Flavonoids and Liver-Related Changes in NAFLD
5.2. Flavonoids and Their Impact on Liver Biochemical Parameters in NAFLD Patients
5.3. Flavonoids, Metabolic Status, and Body Weight in NAFLD
5.4. Flavonoids and Anti-Inflammatory Effects in NAFLD
6. Summary
Supplementary Materials
Funding
Conflicts of Interest
References
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, P.; Alboebadi, R.; Bazyar, H.; Raiesi, D.; ZareJavid, A.; Azadbakht, M.K.; Karimi, M.; Razmi, H. Grape seed extract supplementation in non-alcoholic fatty liver disease. Int. J. Vitam. Nutr. Res. 2024, 94, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Gofton, C.; Upendran, Y.; Zheng, M.H.; George, J. MAFLD: How is it different from NAFLD? Clin. Mol. Hepatol. 2023, 29, S17–S31. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Tümen, D.; Heumann, P.; Gülow, K.; Demirci, C.N.; Cosma, L.S.; Müller, M.; Kandulski, A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022, 10, 3202. [Google Scholar] [CrossRef]
- Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022, 22, 63. [Google Scholar] [CrossRef]
- Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and Its Management. Nutr. Clin. Pract. 2020, 35, 72–84. [Google Scholar] [CrossRef]
- Li, L.; Ji, K.; Du, F.; Jin, N.; Boesch, C.; Farag, M.A.; Li, H.; Liu, X.; Xiao, J. Does Flavonoid Supplementation Alleviate Non-Alcoholic Fatty Liver Disease? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mol. Nutr. Food Res. 2023, 67, e2300480. [Google Scholar] [CrossRef]
- Wang, K.; Tan, W.; Liu, X.; Deng, L.; Huang, L.; Wang, X.; Gao, X. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed. Pharmacother. 2021, 137, 111326. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Jin, L.; Qin, X.; He, B. Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease. Front. Pharmacol. 2022, 13, 1005312. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, A.; Szostak-Wegierek, D. Flavonoids-food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014, 65, 79–85. [Google Scholar] [PubMed]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef]
- Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. [Google Scholar] [CrossRef]
- Phan, M.A.T.; Bucknall, M.P.; Arcot, J. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of anthocyanins but decreases carotenoid bioaccessibility after simulated in vitro gastro-intestinal digestion. Food Chem. 2019, 298, 125040. [Google Scholar] [CrossRef]
- Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.; Luben, R.N.; Spencer, J.P.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G. Flavonoid intake in European adults (18 to 64 years). PLoS ONE 2015, 10, e0128132. [Google Scholar] [CrossRef]
- Murphy, K.J.; Walker, K.M.; Dyer, K.A.; Bryan, J. Estimation of daily intake of flavonoids and major food sources in middle-aged Australian men and women. Nutr. Res. 2019, 61, 64–81. [Google Scholar] [CrossRef]
- Bai, W.; Wang, C.; Ren, C. Intakes of total and individual flavonoids by US adults. Int. J. Food Sci. Nutr. 2014, 65, 9–20. [Google Scholar] [CrossRef]
- Xu, Y.; Le Sayec, M.; Roberts, C.; Hein, S.; Rodriguez-Mateos, A.; Gibson, R. Dietary Assessment Methods to Estimate (Poly)phenol Intake in Epidemiological Studies: A Systematic Review. Adv. Nutr. 2021, 12, 1781–1801. [Google Scholar] [CrossRef]
- Pereira, V.; Figueira, O.; Castilho, P.C. Flavonoids as Insecticides in Crop Protection-A Review of Current Research and Future Prospects. Plants 2024, 13, 776. [Google Scholar] [CrossRef] [PubMed]
- Haytowitz, D.B.; Wu, X.; Bhagwat, S. USDA Database for the Flavonoid Content of Selected Foods. U.S. Dep. Agric. 2018, 2018, 173. [Google Scholar]
- Kozłowska, A.; Szostak-Węgierek, D. Flavonoids–Food Sources, Health Benefits, and Mechanisms Involved. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 53–78. [Google Scholar]
- Yang, K.; Chen, J.; Zhang, T.; Yuan, X.; Ge, A.; Wang, S.; Xu, H.; Zeng, L.; Ge, J. Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front. Immunol. 2022, 13, 949746. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.W.; Wang, Q.L.; Luo, M.; Zhu, M.D.; Liang, H.M.; Li, W.J.; Cai, H.; Zhou, Z.B.; Wang, H.; Tong, S.Q.; et al. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch. Pharm. Res. 2023, 46, 207–272. [Google Scholar] [CrossRef]
- Barenys, M.; Masjosthusmann, S.; Fritsche, E. Is Intake of Flavonoid-Based Food Supplements During Pregnancy Safe for the Developing Child? A Literature Review. Curr. Drug Targets 2017, 18, 196–231. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, D.; Zhang, J.; Yuan, J. Metabolism, Transport and Drug-Drug Interactions of Silymarin. Molecules 2019, 24, 3693. [Google Scholar] [CrossRef]
- Galati, G.; O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 2004, 37, 287–303. [Google Scholar] [CrossRef]
- Kondža, M.; Brizić, I.; Jokić, S. Flavonoids as CYP3A4 Inhibitors In Vitro. Biomedicines 2024, 12, 644. [Google Scholar] [CrossRef]
- Lesjak, M.; KS Srai, S. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals 2019, 12, 119. [Google Scholar] [CrossRef]
- La, X.; Zhang, Z.; Liang, J.; Li, H.; Pang, Y.; He, X.; Kang, Y.; Wu, C.; Li, Z. Isolation and purification of flavonoids from quinoa whole grain and its inhibitory effect on lipid accumulation in nonalcoholic fatty liver disease by inhibiting the expression of CD36 and FASN. J. Sci. Food Agric. 2025, 105, 1330–1342. [Google Scholar] [CrossRef]
- Pan, P.; Chen, W.; Wu, X.; Li, C.; Gao, Y.; Qin, D. Active Targets and Potential Mechanisms of Erhuang Quzhi Formula in Treating NAFLD: Network Analysis and Experimental Assessment. Cell Biochem. Biophys. 2024, 82, 3297–3315. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.M.; de Assis, L.V.M.; Calvo, E.; Colom-Pellicer, M.; Quesada-Vázquez, S.; Cruz-Carrión, Á.; Escoté, X.; Oster, H.; Aragonès, G.; Mulero, M. Grape-Seed Proanthocyanidin Extract (GSPE) Modulates Diurnal Rhythms of Hepatic Metabolic Genes and Metabolites, and Reduces Lipid Deposition in Cafeteria-Fed Rats in a Time-of-Day-Dependent Manner. Mol. Nutr. Food Res. 2024, 68, e2400554. [Google Scholar] [CrossRef]
- Wang, C.; Yang, F.; Zeng, W.; Chen, X.; Qiu, Z.; Wang, Q.; Meng, Y.; Zheng, G.; Hu, J. Vine tea total flavonoids activate the AMPK/mTOR pathway to amelioration hepatic steatosis in mice fed a high-fat diet. J. Food Sci. 2024, 89, 3019–3036. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, C.; Xia, J.; Tan, Y.; Peng, X.; Xiong, W.; Li, N. Novel insights into the role of quercetin and kaempferol from Carthamus tinctorius L. in the management of nonalcoholic fatty liver disease via NR1H4-mediated pathways. Int. Immunopharmacol. 2024, 143, 113035. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiu, W.; Xiao, J.; Sun, J.; Ren, X.; Jiang, L. Dihydromyricetin ameliorates hepatic steatosis and insulin resistance via AMPK/PGC-1α and PPARα-mediated autophagy pathway. J. Transl. Med. 2024, 22, 309. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, C.; Hu, M.; Wang, X.; Li, S.; An, Z.; Yang, X.; Xie, Y. Synthesis and biological evaluation of the novel chrysin prodrug for non-alcoholic fatty liver disease treatment. Front. Pharmacol. 2024, 15, 1336232. [Google Scholar] [CrossRef]
- Khatoon, S.; Das, N.; Chattopadhyay, S.; Joharapurkar, A.; Singh, A.; Patel, V.; Nirwan, A.; Kumar, A.; Mugale, M.N.; Mishra, D.P.; et al. Apigenin-6-C-glucoside ameliorates MASLD in rodent models via selective agonism of adiponectin receptor 2. Eur. J. Pharmacol. 2024, 978, 176800. [Google Scholar] [CrossRef]
- Carvalho, L.C.F.; Ferreira, F.M.; Dias, B.V.; Azevedo, D.C.; de Souza, G.H.B.; Milagre, M.M.; de Lana, M.; Vieira, P.M.A.; Carneiro, C.M.; Paula-Gomes, S.; et al. Silymarin inhibits the lipogenic pathway and reduces worsening of non-alcoholic fatty liver disease (NAFLD) in mice. Arch. Physiol. Biochem. 2024, 130, 460–474. [Google Scholar] [CrossRef]
- La, X.; Zhang, Z.; Dong, C.; Li, H.; He, X.; Kang, Y.; Wu, C.; Li, Z. Isorhamnetin in Quinoa Whole-Grain Flavonoids Intervenes in Non-Alcoholic Fatty Liver Disease by Modulating Bile Acid Metabolism through Regulation of FXR Expression. Foods 2024, 13, 3076. [Google Scholar] [CrossRef]
- Jiang, L.; Yi, R.; Chen, H.; Wu, S. Quercetin alleviates metabolic-associated fatty liver disease by tuning hepatic lipid metabolism, oxidative stress and inflammation. Anim. Biotechnol. 2025, 36, 2442351. [Google Scholar] [CrossRef]
- Yang, H.; Li, D.; Gao, G. Kaempferol Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis (NASH) by Suppressing Neutrophil-Mediated NLRP3-ASC/TMS1-Caspase 3 Signaling. Molecules 2024, 29, 2630. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, Y.; Liao, Q.; Xiao, Y.; Jiang, T.; Liu, S.; Zhou, L.; Li, Y. 7-Hydroxyflavone improves nonalcoholic fatty liver disease by acting on STK24. Phytother. Res. 2024, 38, 3444–3458. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, Y.; Wang, Y.; Yu, Z.; Qin, H.; Zhao, L.; Cheng, J.; Shen, B.; Jin, M.; Feng, H. Total flavonoids of Broussonetia papyrifera alleviate non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signaling pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159497. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yin, X.; Liu, Z.; Wang, J. Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 15489. [Google Scholar] [CrossRef]
- Zeng, J.; Fan, J.G.; Francque, S.M. Therapeutic management of metabolic dysfunction associated steatotic liver disease. United Eur. Gastroenterol. J. 2024, 12, 177–186. [Google Scholar] [CrossRef]
- Israelsen, M.; Francque, S.; Tsochatzis, E.A.; Krag, A. Steatotic liver disease. Lancet 2024, 404, 1761–1778. [Google Scholar] [CrossRef]
- Samy, A.M.; Kandeil, M.A.; Sabry, D.; Abdel-Ghany, A.A.; Mahmoud, M.O. From NAFLD to NASH: Understanding the spectrum of non-alcoholic liver diseases and their consequences. Heliyon 2024, 10, e30387. [Google Scholar] [CrossRef]
- Wei, S.; Wang, L.; Evans, P.C.; Xu, S. NAFLD and NASH: Etiology, targets and emerging therapies. Drug Discov. Today 2024, 29, 103910. [Google Scholar] [CrossRef]
- Zuo, Q.; Park, N.H.; Lee, J.K.; Santaliz-Casiano, A.; Madak-Erdogan, Z. Navigating nonalcoholic fatty liver disease (NAFLD): Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids 2024, 203, 109330. [Google Scholar] [CrossRef]
- Ferro, Y.; Montalcini, T.; Mazza, E.; Foti, D.; Angotti, E.; Gliozzi, M.; Nucera, S.; Paone, S.; Bombardelli, E.; Aversa, I.; et al. Randomized Clinical Trial: Bergamot Citrus and Wild Cardoon Reduce Liver Steatosis and Body Weight in Non-diabetic Individuals Aged Over 50 Years. Front. Endocrinol. 2020, 11, 494. [Google Scholar] [CrossRef]
- Li, N.; Cui, C.; Xu, J.; Mi, M.; Wang, J.; Qin, Y. Quercetin intervention reduced hepatic fat deposition in patients with nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled crossover clinical trial. Am. J. Clin. Nutr. 2024, 120, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, M.; Tutino, V.; De Nunzio, V.; Cisternino, A.M.; Cofano, M.; Donghia, R.; Giannuzzi, V.; Zappimbulso, M.; Milella, R.A.; Giannelli, G.; et al. Daily Orange Consumption Reduces Hepatic Steatosis Prevalence in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: Exploratory Outcomes of a Randomized Clinical Trial. Nutrients 2024, 16, 3191. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Pirola, C.J.; Sookoian, S.; Wilson, L.A.; Belt, P.; Liang, T.; Liu, W.; Chalasani, N. Impact of the Association Between PNPLA3 Genetic Variation and Dietary Intake on the Risk of Significant Fibrosis in Patients With NAFLD. Am. J. Gastroenterol. 2021, 116, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yan, R.; Sha, R.; Wang, X.; Zhou, S.; Li, B.; Zheng, Q.; Cao, Y. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4. Clin. Nutr. 2024, 43, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Neshatbini Tehrani, A.; Hatami, B.; Daftari, G.; Hekmatdoost, A.; Yari, Z.; Salehpour, A.; Hosseini, S.A.; Helli, B. The effect of soy isoflavones supplementation on metabolic status in patients with non-alcoholic fatty liver disease: A randomized placebo controlled clinical trial. BMC Public. Health 2024, 24, 1362. [Google Scholar] [CrossRef]
- Baumeier, C.; Schlüter, L.; Saussenthaler, S.; Laeger, T.; Rödiger, M.; Alaze, S.A.; Fritsche, L.; Häring, H.U.; Stefan, N.; Fritsche, A.; et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol. Metab. 2017, 6, 1254–1263. [Google Scholar] [CrossRef]
- Neshatbini Tehrani, A.; Hatami, B.; Helli, B.; Yari, Z.; Daftari, G.; Salehpour, A.; Hedayati, M.; Khalili, E.; Hosseini, S.A.; Hekmatdoost, A. The effect of soy isoflavones on non-alcoholic fatty liver disease and the level of fibroblast growth factor-21 and fetuin A. Sci. Rep. 2024, 14, 5134. [Google Scholar] [CrossRef]
- Rosenberg, J.; Sola, O.; Visconti, A. Approach to Elevated Liver Enzymes. Prim. Care 2023, 50, 363–376. [Google Scholar] [CrossRef]
- Henry, Z.H.; Argo, C.K. How to Identify the Patient with Nonalcoholic Steatohepatitis Who Will Progress to Cirrhosis. Gastroenterol. Clin. N. Am. 2020, 49, 45–62. [Google Scholar] [CrossRef]
- Kalopitas, G.; Antza, C.; Doundoulakis, I.; Siargkas, A.; Kouroumalis, E.; Germanidis, G.; Samara, M.; Chourdakis, M. Impact of Silymarin in individuals with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Nutrition 2021, 83, 111092. [Google Scholar] [CrossRef]
- Li, S.; Duan, F.; Li, S.; Lu, B. Administration of silymarin in NAFLD/NASH: A systematic review and meta-analysis. Ann. Hepatol. 2024, 29, 101174. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Y.; Jin, Y.; Li, X.; Wang, D.; Yu, X.; Jiang, Z.; Yin, G.; Chen, S.; Zhang, X.; et al. Effects of different natural products in patients with non-alcoholic fatty liver disease-A network meta-analysis of randomized controlled trials. Phytother. Res. 2024, 38, 3801–3824. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, M.; Hosseini, R.; Kazemi, A.; Ofori-Asenso, R.; Mazidi, M.; Mazloomi, S.M. Effects of green tea or green tea catechin on liver enzymes in healthy individuals and people with nonalcoholic fatty liver disease: A systematic review and meta-analysis of randomized clinical trials. Phytother. Res. 2020, 34, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, Z.; Jin, X.; Zhou, Q. Efficacy of traditional Chinese medicine combined with Silibinin on nonalcoholic fatty liver disease: A meta-analysis and systematic review. Medicine 2024, 103, e37052. [Google Scholar] [CrossRef]
- Li, L.; Qin, Y.; Xin, X.; Wang, S.; Liu, Z.; Feng, X. The great potential of flavonoids as candidate drugs for NAFLD. Biomed. Pharmacother. 2023, 164, 114991. [Google Scholar] [CrossRef]
- Mandal, B.; Das, R.; Mondal, S. Anthocyanins: Potential phytochemical candidates for the amelioration of non-alcoholic fatty liver disease. Ann. Pharm. Fr. 2024, 82, 373–391. [Google Scholar] [CrossRef]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021, 110, 921–937. [Google Scholar] [CrossRef]
- Chiriac, S.; Stanciu, C.; Girleanu, I.; Cojocariu, C.; Sfarti, C.; Singeap, A.M.; Cuciureanu, T.; Huiban, L.; Muzica, C.M.; Zenovia, S.; et al. Nonalcoholic Fatty Liver Disease and Cardiovascular Diseases: The Heart of the Matter. Can. J. Gastroenterol. Hepatol. 2021, 2021, 6696857. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [Google Scholar] [CrossRef]
- Naeini, F.; Namkhah, Z.; Tutunchi, H.; Rezayat, S.M.; Mansouri, S.; Yaseri, M.; Hosseinzadeh-Attar, M.J. Effects of naringenin supplementation on cardiovascular risk factors in overweight/obese patients with nonalcoholic fatty liver disease: A pilot double-blind, placebo-controlled, randomized clinical trial. Eur. J. Gastroenterol. Hepatol. 2022, 34, 345–353. [Google Scholar] [CrossRef]
- Namkhah, Z.; Naeini, F.; Mahdi Rezayat, S.; Mehdi, Y.; Mansouri, S.; Javad Hosseinzadeh-Attar, M. Does naringenin supplementation improve lipid profile, severity of hepatic steatosis and probability of liver fibrosis in overweight/obese patients with NAFLD? A randomised, double-blind, placebo-controlled, clinical trial. Int. J. Clin. Pract. 2021, 75, e14852. [Google Scholar] [CrossRef] [PubMed]
- Yari, Z.; Cheraghpour, M.; Alavian, S.M.; Hedayati, M.; Eini-Zinab, H.; Hekmatdoost, A. The efficacy of flaxseed and hesperidin on non-alcoholic fatty liver disease: An open-labeled randomized controlled trial. Eur. J. Clin. Nutr. 2021, 75, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, T.; Manji, L.; Liu, Y.; Chang, Q.; Zhao, Y.; Ding, Y.; Xia, Y. Association Between Serum Uric Acid and Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Meta-Analysis. Clin. Epidemiol. 2023, 15, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Li, J.; Chen, C.; Zhang, K.; Cao, L.; Wang, X.; Ma, J.; Feng, S.; Li, W.D. Higher Serum Uric Acid Level Predicts Non-alcoholic Fatty Liver Disease: A 4-Year Prospective Cohort Study. Front. Endocrinol. 2020, 11, 179. [Google Scholar] [CrossRef]
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef]
- Ferro, Y.; Maurotti, S.; Mazza, E.; Pujia, R.; Sciacqua, A.; Musolino, V.; Mollace, V.; Pujia, A.; Montalcini, T. Citrus Bergamia and Cynara Cardunculus Reduce Serum Uric Acid in Individuals with Non-Alcoholic Fatty Liver Disease. Medicina 2022, 58, 1728. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 633–646. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, X.; Zhang, P.; Liu, Y.; Ling, W.; Guo, H. Upregulated NLRP3 inflammasome activation is attenuated by anthocyanins in patients with nonalcoholic fatty liver disease: A case-control and an intervention study. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101843. [Google Scholar] [CrossRef]
Flavonoids (mg/100 g) | |||||
---|---|---|---|---|---|
Fruits | Vegetables | Spices and Herbs | |||
Elderberries | 518.05 | Cabbage, red | 210.16 | Parsley, dried | 4854.49 |
Chokeberries | 368.66 | Dock | 102.20 | Oregano, Mexican, dried | 1545.79 |
Currants, black | 170.41 | Kale | 92.98 | Capers, raw | 493.03 |
Blueberries | 180.82 | Fennel | 84.50 | Parsley, fresh | 233.16 |
Blackberries | 147.63 | Radishes | 63.99 | Peppermint, fresh | 60.48 |
Cranberries | 99.22 | Onions, red | 56.61 | Thyme, fresh | 47.75 |
Currants, red | 79.49 | Arugula | 47.11 | Nuts | |
Kumquats | 79.26 | Chard | 25.60 | Pecans | 34.01 |
Raspberries | 55.57 | Celery hearts, green | 22.60 | Pistachios | 14.37 |
Grapefruits | 55.40 | Artichokes | 22.28 | Hazelnuts | 11.96 |
Lemons | 53.38 | Peppers, hot chili | 21.17 | Almonds | 11.00 |
Grapes, red | 52.42 | Broadbeans, cooked | 20.63 | Beverages | |
Limes | 46.80 | Chives | 17.11 | Black tea, brewed | 118.35 |
Oranges | 43.49 | Asparagus, cooked | 15.16 | Black currant juice | 78.04 |
Cherries | 40.00 | Cress, fresh | 14.00 | White tea, brewed | 74.60 |
Strawberries | 33.52 | Chicory, green | 11.79 | Green tea, brewed | 53.84 |
Plums | 14.42 | Lettuce, red | 11.72 | Oolong tea, brewed | 52.37 |
Apples | 13.73 | Spinach | 11.44 | Wine, table red | 34.49 |
Apricots | 10.67 | Endive | 10.10 | Orange juice | 24.13 |
Pears | 8.01 | Brussels sprouts, cooked | 7.68 | Pink grapefruit juice | 17.97 |
Bananas | 6.21 | Peppers, green | 6.98 | Beer | 1.39 |
Legumes | Sweets | Cereals and grains | |||
Cowpeas, black | 277.41 | Dark chocolate | 108.60 | Wheat, purple | 25.85 |
Beans, black | 28.00 | Cocoa, dry powder | 106.68 | Buckwheat | 15.38 |
Beans, kidney, red | 10.87 | Milk chocolate | 15.04 | Sorghum, red | 8.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, A. Clinical Insights into Non-Alcoholic Fatty Liver Disease and the Therapeutic Potential of Flavonoids: An Update. Nutrients 2025, 17, 956. https://doi.org/10.3390/nu17060956
Kozłowska A. Clinical Insights into Non-Alcoholic Fatty Liver Disease and the Therapeutic Potential of Flavonoids: An Update. Nutrients. 2025; 17(6):956. https://doi.org/10.3390/nu17060956
Chicago/Turabian StyleKozłowska, Aleksandra. 2025. "Clinical Insights into Non-Alcoholic Fatty Liver Disease and the Therapeutic Potential of Flavonoids: An Update" Nutrients 17, no. 6: 956. https://doi.org/10.3390/nu17060956
APA StyleKozłowska, A. (2025). Clinical Insights into Non-Alcoholic Fatty Liver Disease and the Therapeutic Potential of Flavonoids: An Update. Nutrients, 17(6), 956. https://doi.org/10.3390/nu17060956