Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health
Abstract
:1. Introduction
2. Probiotic Foods
2.1. Kefir
2.2. Kombucha
2.3. Yogurt
2.4. Miso
2.5. Sauerkraut
2.6. Tempeh
2.7. Natto
2.8. Kimchi
3. Plant-Based Foods and Supplementation
3.1. Cranberry
3.2. Garlic
3.3. Bearberry
3.4. Juniper
3.5. Urtica
4. Drug–Food Interactions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rossignol, L.; Vaux, S.; Maugat, S.; Blake, A.; Barlier, R.; Heym, B.; Le Strat, Y.; Blanchon, T.; Hanslik, T.; Coignard, B. Incidence of Urinary Tract Infections and Antibiotic Resistance in the Outpatient Setting: A Cross-Sectional Study. Infection 2017, 45, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Stamm, W.E.; Norrby, S.R. Urinary Tract Infections: Disease Panorama and Challenges. J. Infect. Dis. 2001, 183, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, H.; Wang, Y.; Jiao, J.; Li, Z.; Cao, J.; Song, B.; Jin, J.; Liu, Y.; Wen, X.; et al. Prevalence, Incidence, and Risk Factors of Urinary Tract Infection among Immobile Inpatients in China: A Prospective, Multi-Centre Study. J. Hosp. Infect. 2020, 104, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M. Pathogenesis of Urinary Tract Infections: An Update. J. Antimicrob. Chemother. 2000, 46, 1–7. [Google Scholar] [CrossRef]
- Renko, M.; Salo, J.; Ekstrand, M.; Pokka, T.; Pieviläinen, O.; Uhari, M.; Tapiainen, T. Meta-Analysis of the Risk Factors for Urinary Tract Infection in Children. Pediatr. Infect. Dis. J. 2022, 41, 787–792. [Google Scholar] [CrossRef]
- Eriksson, I.; Gustafson, Y.; Fagerström, L.; Olofsson, B. Prevalence and Factors Associated with Urinary Tract Infections (UTIs) in Very Old Women. Arch. Gerontol. Geriatr. 2010, 50, 132–135. [Google Scholar] [CrossRef]
- Foxman, B. Epidemiology of Urinary Tract Infections: Incidence, Morbidity, and Economic Costs. Dis. Mon. 2003, 49, 53–70. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhan, J.; Zhang, K.; Chen, H.; Cheng, S. Global, Regional, and National Burden of Urinary Tract Infections from 1990 to 2019: An Analysis of the Global Burden of Disease Study 2019. World J. Urol. 2022, 40, 755–763. [Google Scholar] [CrossRef]
- Abbafati, C.; Machado, D.B.; Cislaghi, B.; Salman, O.M.; Karanikolos, M.; McKee, M.; Abbas, K.M.; Brady, O.J.; Larson, H.J.; Trias-Llimós, S.; et al. Global Age-Sex-Specific Fertility, Mortality, Healthy Life Expectancy (HALE), and Population Estimates in 204 Countries and Territories, 1950–2019: A Comprehensive Demographic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1160–1203. [Google Scholar] [CrossRef]
- Schwenger, E.M.; Tejani, A.M.; Loewen, P.S. Probiotics for Preventing Urinary Tract Infections in Adults and Children. Cochrane Database Syst. Rev. 2015, 2015, CD008772. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in Medicine: A Long Debate. Front. Immunol. 2020, 11, 554558. [Google Scholar] [CrossRef] [PubMed]
- Wieërs, G.; Belkhir, L.; Enaud, R.; Leclercq, S.; Philippart de Foy, J.M.; Dequenne, I.; de Timary, P.; Cani, P.D. How Probiotics Affect the Microbiota. Front. Cell Infect. Microbiol. 2020, 9, 490925. [Google Scholar] [CrossRef] [PubMed]
- New, F.J.; Theivendrampillai, S.; Julliebø-Jones, P.; Somani, B. Role of Probiotics for Recurrent UTIs in the Twenty-First Century: A Systematic Review of Literature. Curr. Urol. Rep. 2022, 23, 19–28. [Google Scholar] [CrossRef]
- Chapman, C.M.C.; Gibson, G.R.; Rowland, I. Effects of Single- and Multi-Strain Probiotics on Biofilm Formation and In vitro Adhesion to Bladder Cells by Urinary Tract Pathogens. Anaerobe 2014, 27, 71–76. [Google Scholar] [CrossRef]
- Kranz, J.; Lackner, J.; Künzel, U.; Wagenlehner, F.; Schmidt, S. Phytotherapy in Adults With Recurrent Uncomplicated Cystitis: A Systematic Review. Dtsch. Arztebl. Int. 2022, 119, 353. [Google Scholar] [CrossRef]
- Das, S. Natural Therapeutics for Urinary Tract Infections—A Review. Future J. Pharm. Sci. 2020, 6, 64. [Google Scholar] [CrossRef]
- van Wietmarschen, H.; van Steenbergen, N.; van der Werf, E.; Baars, E. Effectiveness of Herbal Medicines to Prevent and Control Symptoms of Urinary Tract Infections and to Reduce Antibiotic Use: A Literature Review. Integr. Med. Res. 2022, 11, 100892. [Google Scholar] [CrossRef]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like Receptors Activation, Signaling, and Targeting: An Overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef]
- Reboldi, A.; Cyster, J.G. Peyer’s Patches: Organizing B-cell Responses at the Intestinal Frontier. Immunol. Rev. 2016, 271, 230–245. [Google Scholar] [CrossRef]
- Gupta, V.; Nag, D.; Garg, P. Recurrent Urinary Tract Infections in Women: How Promising Is the Use of Probiotics? Indian J. Med. Microbiol. 2017, 35, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Engelsöy, U.; Rangel, I.; Demirel, I. Impact of Proinflammatory Cytokines on the Virulence of Uropathogenic Escherichia coli. Front. Microbiol. 2019, 10, 1051. [Google Scholar] [CrossRef] [PubMed]
- Sundén, F.; Håkansson, L.; Ljunggren, E.; Wullt, B. Escherichia coli 83972 Bacteriuria Protects Against Recurrent Lower Urinary Tract Infections in Patients with Incomplete Bladder Emptying. J. Urol. 2010, 184, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Kranz, J.; Bartoletti, R.; Bruyère, F.; Cai, T.; Geerlings, S.; Köves, B.; Schubert, S.; Pilatz, A.; Veeratterapillay, R.; Wagenlehner, F.M.E.; et al. European Association of Urology Guidelines on Urological Infections: Summary of the 2024 Guidelines. Eur. Urol. 2024, 86, 27–41. [Google Scholar] [CrossRef]
- Stapleton, A.E.; Au-Yeung, M.; Hooton, T.M.; Fredricks, D.N.; Roberts, P.L.; Czaja, C.A.; Yarova-Yarovaya, Y.; Fiedler, T.; Cox, M.; Stamm, W.E. Randomized, Placebo-Controlled Phase 2 Trial of a Lactobacillus Crispatus Probiotic Given Intravaginally for Prevention of Recurrent Urinary Tract Infection. Clin. Infect. Dis. 2011, 52, 1212–1217. [Google Scholar] [CrossRef]
- Groah, S.L.; Rounds, A.K.; Ljungberg, I.H.; Sprague, B.M.; Frost, J.K.; Tractenberg, R.E. Intravesical Lactobacillus rhamnosus GG Is Safe and Well Tolerated in Adults and Children with Neurogenic Lower Urinary Tract Dysfunction: First-in-Human Trial. Ther. Adv. Urol. 2019, 11, 1756287219875594. [Google Scholar] [CrossRef]
- Pradhan, S.; Weiss, A.A. Probiotic Properties of Escherichia coli Nissle in Human Intestinal Organoids. mBio 2020, 11. [Google Scholar] [CrossRef]
- Trautner, B.W.; Hull, R.A.; Darouiche, R.O. Escherichia coli 83972 Inhibits Catheter Adherence by a Broad Spectrum of Uropathogens. Urology 2003, 61, 1059–1062. [Google Scholar] [CrossRef]
- Ghani, R.; Mullish, B.H.; McDonald, J.A.K.; Ghazy, A.; Williams, H.R.T.; Brannigan, E.T.; Mookerjee, S.; Satta, G.; Gilchrist, M.; Duncan, N.; et al. Disease Prevention Not Decolonization: A Model for Fecal Microbiota Transplantation in Patients Colonized With Multidrug-Resistant Organisms. Clin. Infect. Dis. 2021, 72, 1444–1447. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Ho, C.L. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front. Bioeng. Biotechnol. 2021, 9, 770248. [Google Scholar] [CrossRef]
- Rolim, F.R.L.; Freitas Neto, O.C.; Oliveira, M.E.G.; Oliveira, C.J.B.; Queiroga, R.C.R.E. Cheeses as Food Matrixes for Probiotics: In Vitro and in Vivo Tests. Trends Food Sci. Technol. 2020, 100, 138–154. [Google Scholar] [CrossRef]
- Ranadheera, C.; Vidanarachchi, J.; Rocha, R.; Cruz, A.; Ajlouni, S. Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef]
- Shah, A.B.; Baiseitova, A.; Zahoor, M.; Ahmad, I.; Ikram, M.; Bakhsh, A.; Shah, M.A.; Ali, I.; Idress, M.; Ullah, R.; et al. Probiotic Significance of Lactobacillus Strains: A Comprehensive Review on Health Impacts, Research Gaps, and Future Prospects. Gut Microbes 2024, 16, 2431643. [Google Scholar] [CrossRef]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with Broad Antifungal Activity: A Promising Approach to Increase Safety and Shelf-Life of Cereal-Based Products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef]
- Choi, A.-R.; Patra, J.K.; Kim, W.J.; Kang, S.-S. Antagonistic Activities and Probiotic Potential of Lactic Acid Bacteria Derived From a Plant-Based Fermented Food. Front. Microbiol. 2018, 9, 1963. [Google Scholar] [CrossRef]
- Leite, A.M.d.O.; Miguel, M.A.L.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M.F. Microbiological, Technological and Therapeutic Properties of Kefir: A Natural Probiotic Beverage. Braz. J. Microbiol. 2013, 44, 341–349. [Google Scholar] [CrossRef]
- Vieira, C.P.; Rosario, A.I.L.S.; Lelis, C.A.; Rekowsky, B.S.S.; Carvalho, A.P.A.; Rosário, D.K.A.; Elias, T.A.; Costa, M.P.; Foguel, D.; Conte-Junior, C.A. Bioactive Compounds from Kefir and Their Potential Benefits on Health: A Systematic Review and Meta-Analysis. Oxid. Med. Cell Longev. 2021, 2021, 9081738. [Google Scholar] [CrossRef]
- Luang-In, V.; Deeseenthum, S. Exopolysaccharide-Producing Isolates from Thai Milk Kefir and Their Antioxidant Activities. LWT 2016, 73, 592–601. [Google Scholar] [CrossRef]
- Zacconi, C.; Santos, A.; Vescovo, M.; Zarra, P.G. Competitive Exclusion of Campylobacter jejuni by Kefir Fermented Milk. Ann. Microbiol. 2003, 1, 179–187. [Google Scholar]
- Marquina, D.; Santos, A.; Corpas, I.; Munoz, J.; Zazo, J.; Peinado, J.M. Dietary Influence of Kefir on Microbial Activities in the Mouse Bowel. Lett. Appl. Microbiol. 2002, 35, 136–140. [Google Scholar] [CrossRef]
- Sarkar, S. Potential of Kefir as a Dietetic Beverage—A Review. Br. Food J. 2007, 109, 280–290. [Google Scholar] [CrossRef]
- Harrison, K.; Curtin, C. Microbial Composition of SCOBY Starter Cultures Used by Commercial Kombucha Brewers in North America. Microorganisms 2021, 9, 1060. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.Q.; Lau, S.W.; Chin, N.L.; Talib, R.A.; Basha, R.K. Fermented Beverage Benefits: A Comprehensive Review and Comparison of Kombucha and Kefir Microbiome. Microorganisms 2023, 11, 1344. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-Y.; Park, S.-I.; Jae-Lee, S. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Jakobsen, L.M.A.; Geiker, N.R.W.; Bertram, H.C. Chemically Acidified, Live and Heat-Inactivated Fermented Dairy Yoghurt Show Distinct Bioactive Peptides, Free Amino Acids and Small Compounds Profiles. Food Chem. 2022, 376, 131919. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Bolling, B.W. Yogurt Consumption for Improving Immune Health. Curr. Opin. Food Sci. 2023, 51, 101017. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Shah, Y.A.; Khan, M.H.; Hussain, M.; Ikram, A.; Ateeq, H.; Noman, M.; Saewan, S.A.; Khashroum, A.O. Miso: A Traditional Nutritious & Health-endorsing Fermented Product. Food Sci. Nutr. 2022, 10, 4103–4111. [Google Scholar] [CrossRef]
- Hirota, A.; Taki, S.; Kawaii, S.; Yano, M.; Abe, N. 1,1-Diphenyl-2-Picrylhydrazyl Radical-Scavenging Compounds from Soybean Miso and Antiproliferative Activity of Isoflavones from Soybean Miso toward the Cancer Cell Lines. Biosci. Biotechnol. Biochem. 2000, 64, 1038–1040. [Google Scholar] [CrossRef]
- Beganović, J.; Pavunc, A.L.; Gjuračić, K.; Špoljarec, M.; Šušković, J.; Kos, B. Improved Sauerkraut Production with Probiotic Strain Lactobacillus plantarum L4 and Leuconostoc mesenteroides LMG 7954. J. Food Sci. 2011, 76, M124–M129. [Google Scholar] [CrossRef]
- Bedi, S.; Ghosh, S.; Bandyopadhyay, B.; Bedi, S.; Maity, M. Fermentation enhanced nutritional quality of food—A review. J. Surv. Fish. Sci. 2023, 10, 6139–6145. [Google Scholar] [CrossRef]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef] [PubMed]
- Manesh, C.; Kuttan, G. Anti-Tumour and Anti-Oxidant Activity of Naturally Occurring Isothiocyanates. J. Exp. Clin. Cancer Res. 2003, 22, 193–199. [Google Scholar] [PubMed]
- Ellulu, M.S.; Rahmat, A.; Patimah, I.; Khaza’ai, H.; Abed, Y. Effect of Vitamin C on Inflammation and Metabolic Markers in Hypertensive and/or Diabetic Obese Adults: A Randomized Controlled Trial. Drug Des. Devel Ther. 2015, 9, 3405–3412. [Google Scholar] [CrossRef]
- Siddeeg, A.; Afzaal, M.; Saeed, F.; Ali, R.; Shah, Y.A.; Shehzadi, U.; Ateeq, H.; Waris, N.; Hussain, M.; Raza, M.A.; et al. Recent Updates and Perspectives of Fermented Healthy Super Food Sauerkraut: A Review. Int. J. Food Prop. 2022, 25, 2320–2331. [Google Scholar] [CrossRef]
- Podsędek, A. Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review. LWT—Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Karyadi, D.; Lukito, W. Beneficial Effects of Tempeh in Disease Prevention and Treatment. Nutr. Rev. 2009, 54, S94–S98. [Google Scholar] [CrossRef]
- Babu, P.D.; Bhakyaraj, R.; Vidhyalakshmi, R. A Low Cost Nutritious Food “Tempeh”—A Review. World J. Dairy Food Sci. 2009, 1, 22–27. [Google Scholar]
- Ahnan-Winarno, A.D.; Cordeiro, L.; Winarno, F.G.; Gibbons, J.; Xiao, H. Tempeh: A Semicentennial Review on Its Health Benefits, Fermentation, Safety, Processing, Sustainability, and Affordability. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1717–1767. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Wong, S.K.; Kezuka, M.; Oshiro, N.; Chan, H.T. Natto and Miso: An Overview on Their Preparation, Bioactive Components and Health-Promoting Effects. Food Res. 2021, 5, 446–452. [Google Scholar] [CrossRef]
- Surya, R.; Nugroho, D. Kimchi throughout Millennia: A Narrative Review on the Early and Modern History of Kimchi. J. Ethn. Foods 2023, 10, 5. [Google Scholar] [CrossRef]
- Hongu, N.; Kim, A.S.; Suzuki, A.; Wilson, H.; Tsui, K.C.; Park, S. Korean Kimchi: Promoting Healthy Meals through Cultural Tradition. J. Ethn. Foods 2017, 4, 172–180. [Google Scholar] [CrossRef]
- Qasemi, A.; Lagzian, M.; Rahimi, F.; Khosravani Majd, F.; Bayat, Z. The Power of Probiotics to Combat Urinary Tract Infections: A Comprehensive Review. Res. Biotechnol. Environ. Sci. 2023, 2, 1–11. [Google Scholar] [CrossRef]
- Guay, D.R.P. Cranberry and Urinary Tract Infections. Drugs 2009, 69, 775–807. [Google Scholar] [CrossRef]
- Sihra, N.; Goodman, A.; Zakri, R.; Sahai, A.; Malde, S. Nonantibiotic Prevention and Management of Recurrent Urinary Tract Infection. Nat. Rev. Urol. 2018, 15, 750–776. [Google Scholar] [CrossRef]
- Saiyed, F.; Maheshwari, R.; Gohil, D.; Joshi, K.; Bhatt, F. A Comprehensive Review on Herbal Medicinal Plants for Urinary Tract Infections. J. Costal Life Med. 2023, 1, 348–356. [Google Scholar]
- Williams, G.; Hahn, D.; Stephens, J.H.; Craig, J.C.; Hodson, E.M. Cranberries for Preventing Urinary Tract Infections. Cochrane Database Syst. Rev. 2023, 2023, CD001321. [Google Scholar] [CrossRef]
- Maki, K.C.; Kaspar, K.L.; Khoo, C.; Derrig, L.H.; Schild, A.L.; Gupta, K. Consumption of a Cranberry Juice Beverage Lowered the Number of Clinical Urinary Tract Infection Episodes in Women with a Recent History of Urinary Tract Infection. Am. J. Clin. Nutr. 2016, 103, 1434–1442. [Google Scholar] [CrossRef]
- Takahashi, S.; Takahashi, S.; Hamasuna, R.; Yasuda, M.; Arakawa, S.; Tanaka, K.; Ishikawa, K.; Hayami, H.; Yamamoto, S.; Kubo, T.; et al. A Randomized Clinical Trial to Evaluate the Preventive Effect of Cranberry Juice (UR65) for Patients with Recurrent Urinary Tract Infection. J. Infect. Chemother. 2013, 19, 112–117. [Google Scholar] [CrossRef]
- Xia, J.Y.; Yang, C.; Xu, D.F.; Xia, H.; Yang, L.G.; Sun, G.J. Consumption of Cranberry as Adjuvant Therapy for Urinary Tract Infections in Susceptible Populations: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. PLoS ONE 2021, 16, e0256992. [Google Scholar] [CrossRef]
- Dong, B.; Zimmerman, R.; Dang, L.; Pillai, G. Cranberry for the Prevention and Treatment of Non-Complicated Urinary Tract Infections. SOJ Pharm. Pharm. Sci. 2018, 1, 1–9. [Google Scholar]
- Vasileiou, I.; Katsargyris, A.; Theocharis, S.; Giaginis, C. Current Clinical Status on the Preventive Effects of Cranberry Consumption against Urinary Tract Infections. Nutr. Res. 2013, 33, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Bodel, P.T.; Cotran, R.; Kass, E.H. Cranberry Juice and the Antibacterial Action of Hippuric Acid. J. Lab. Clin. Med. 1959, 54, 881–888. [Google Scholar] [PubMed]
- Güven, O.; Sayılan, S.; Tataroğlu, Ö.; Hökenek, N.M.; Keleş, D.V. Antibiotic versus Cranberry in the Treatment of Uncomplicated Urinary Infection: A Randomized Controlled Trial. Rev. Assoc. Med. Bras. 2024, 70, e20230799. [Google Scholar] [CrossRef]
- González de Llano, D.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry Polyphenols and Prevention against Urinary Tract Infections: Relevant Considerations. Molecules 2020, 25, 3523. [Google Scholar] [CrossRef]
- Ghosh, S.; Pawar, H.; Pai, O.; Banerjee, U.C. Microbial Transformation of Quinic Acid to Shikimic Acid by Bacillus megaterium. Bioresour. Bioprocess. 2014, 1, 7. [Google Scholar] [CrossRef]
- Jensen, H.D.; Struve, C.; Christensen, S.B.; Krogfelt, K.A. Cranberry Juice and Combinations of Its Organic Acids Are Effective against Experimental Urinary Tract Infection. Front. Microbiol. 2017, 8, 542. [Google Scholar] [CrossRef]
- Keßler, T.; Jansen, B.; Hesse, A. Effect of Blackcurrant-, Cranberry- and Plum Juice Consumption on Risk Factors Associated with Kidney Stone Formation. Eur. J. Clin. Nutr. 2002, 56, 1020–1023. [Google Scholar] [CrossRef]
- Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R.R.; Chattopadhyay, R.R. Medicinal Plants and Urinary Tract Infections: An Update. Pharmacogn. Rev. 2008, 2, 277. [Google Scholar]
- Fazly Bazzaz, B.S.; Darvishi Fork, S.; Ahmadi, R.; Khameneh, B. Deep Insights into Urinary Tract Infections and Effective Natural Remedies. Afr. J. Urol. 2021, 27, 6. [Google Scholar] [CrossRef]
- González de Llano, D.; Liu, H.; Khoo, C.; Moreno-Arribas, M.V.; Bartolomé, B. Some New Findings Regarding the Antiadhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Bacteria. J. Agric. Food Chem. 2019, 67, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.K.; Bala, N.; Sheohare, R.; Patni, B. Role of Cranberry in Urinary Tract Infections. Indian J. Clin. Pract. 2024, 34, 10–15. [Google Scholar] [CrossRef]
- Singh, I.; Gautam, L.K.; Kaur, I.R. Effect of Oral Cranberry Extract (Standardized Proanthocyanidin-A) in Patients with Recurrent UTI by Pathogenic E. coli: A Randomized Placebo-Controlled Clinical Research Study. Int. Urol. Nephrol. 2016, 48, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Keshel, S.H.; Rahimi, A.; Hancox, Z.; Ebrahimi, M.; Khojasteh, A.; Sefat, F. The Promise of Regenerative Medicine in the Treatment of Urogenital Disorders. J. Biomed. Mater. Res. A 2020, 108, 1747–1759. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Zheng, Y.; Qu, S.; Wang, H.; Yi, F. Disease Burden and Long-Term Trends of Urinary Tract Infections: A Worldwide Report. Front. Public. Health 2022, 10, 888205. [Google Scholar] [CrossRef]
- Feliciano, R.P.; Meudt, J.J.; Shanmuganayagam, D.; Krueger, C.G.; Reed, J.D. Ratio of “A-Type” to “B-Type” Proanthocyanidin Interflavan Bonds Affects Extra-Intestinal Pathogenic Escherichia coli Invasion of Gut Epithelial Cells. J. Agric. Food Chem. 2014, 18, 3919–3925. [Google Scholar] [CrossRef]
- Nicolosi, D.; Tempera, G.; Genovese, C.; Furneri, P. Anti-Adhesion Activity of A2-Type Proanthocyanidins (a Cranberry Major Component) on Uropathogenic E. coli and P. mirabilis Strains. Antibiotics 2014, 3, 143–154. [Google Scholar] [CrossRef]
- Xie, B.; Zhou, G.; Chan, S.-Y.; Shapiro, E.; Kong, X.-P.; Wu, X.-R.; Sun, T.-T.; Costello, C.E. Distinct Glycan Structures of Uroplakins Ia and Ib. J. Biol. Chem. 2006, 281, 14644–14653. [Google Scholar] [CrossRef]
- Khandelwal, P.; Abraham, S.N.; Apodaca, G. Cell Biology and Physiology of the Uroepithelium. Am. J. Physiol. Ren. Physiol. 2009, 297, F1477–F1501. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and Their Bioactive Constituents in Human Health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef]
- Hidalgo, G.; Chan, M.; Tufenkji, N. Inhibition of Escherichia coli CFT073 FliC Expression and Motility by Cranberry Materials. Appl. Environ. Microbiol. 2011, 77, 6852–6857. [Google Scholar] [CrossRef]
- Maisuria, V.B.; Los Santos, Y.L.; Tufenkji, N.; Déziel, E. Cranberry-Derived Proanthocyanidins Impair Virulence and Inhibit Quorum Sensing of Pseudomonas Aeruginosa. Sci. Rep. 2016, 6, 30169. [Google Scholar] [CrossRef]
- McCall, J.; Hidalgo, G.; Asadishad, B.; Tufenkji, N. Cranberry Impairs Selected Behaviors Essential for Virulence in Proteus mirabilis HI4320. Can. J. Microbiol. 2013, 59, 430–436. [Google Scholar] [CrossRef]
- Othman, M. Is Cranberry Effective in Preventing Recurrent Urinary Tract Infection in Women? IOSR J. Pharm. 2016, 6, 7–15. [Google Scholar]
- Hisano, M.; Bruschini, H.; Nicodemo, A.C.; Srougi, M. Cranberries and Lower Urinary Tract Infection Prevention. Clinics 2012, 67, 661–667. [Google Scholar] [CrossRef]
- Avorn, J. Reduction of Bacteriuria and Pyuria After Ingestion of Cranberry Juice. JAMA 1994, 271, 751. [Google Scholar] [CrossRef]
- Howell, A.B. Bioactive Compounds in Cranberries and Their Role in Prevention of Urinary Tract Infections. Mol. Nutr. Food Res. 2007, 51, 732–737. [Google Scholar] [CrossRef]
- Howell, A.B. Cranberry Juice and Adhesion of Antibiotic-Resistant Uropathogens. JAMA 2002, 287, 3082–3083. [Google Scholar] [CrossRef]
- Ala-Jaakkola, R.; Laitila, A.; Ouwehand, A.C.; Lehtoranta, L. Role of D-Mannose in Urinary Tract Infections—A Narrative Review. Nutr. J. 2022, 21, 18. [Google Scholar] [CrossRef]
- Bouckaert, J.; Berglund, J.; Schembri, M.; De Genst, E.; Cools, L.; Wuhrer, M.; Hung, C.; Pinkner, J.; Slättegård, R.; Zavialov, A.; et al. Receptor Binding Studies Disclose a Novel Class of High-affinity Inhibitors of the Escherichia coli FimH Adhesin. Mol. Microbiol. 2005, 55, 441–455. [Google Scholar] [CrossRef]
- Larsson, A.; Ohlsson, J.; Dodson, K.W.; Hultgren, S.J.; Nilsson, U.; Kihlberg, J. Quantitative Studies of the Binding of the Class II PapG Adhesin from Uropathogenic Escherichia coli to Oligosaccharides. Bioorg. Med. Chem. 2003, 11, 2255–2261. [Google Scholar] [CrossRef]
- Aggarwal, N.; Leslie, S.W.; Lotfollahzadeh, S. Recurrent Urinary Tract Infections; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- De Nunzio, C.; Bartoletti, R.; Tubaro, A.; Simonato, A.; Ficarra, V. Role of D-Mannose in the Prevention of Recurrent Uncomplicated Cystitis: State of the Art and Future Perspectives. Antibiotics 2021, 10, 373. [Google Scholar] [CrossRef]
- Spencer, J.F.T.; Gorin, P.A.J. Mannose-containing Polysaccharides of Yeasts. Biotechnol. Bioeng. 1973, 15, 1–12. [Google Scholar] [CrossRef]
- Scaglione, F.; Musazzi, U.M.; Minghetti, P. Considerations on D-Mannose Mechanism of Action and Consequent Classification of Marketed Healthcare Products. Front. Pharmacol. 2021, 12, 636377. [Google Scholar] [CrossRef]
- Foxman, B.; Cronenwett, A.E.W.; Spino, C.; Berger, M.B.; Morgan, D.M. Cranberry Juice Capsules and Urinary Tract Infection after Surgery: Results of a Randomized Trial. Am. J. Obstet. Gynecol. 2015, 213, 194.e1–194.e8. [Google Scholar] [CrossRef]
- Hess, M.J.; Hess, P.E.; Sullivan, M.R.; Nee, M.; Yalla, S.V. Evaluation of Cranberry Tablets for the Prevention of Urinary Tract Infections in Spinal Cord Injured Patients with Neurogenic Bladder. Spinal Cord. 2008, 46, 622–626. [Google Scholar] [CrossRef]
- Garba, L.; Muhammad, R.; Adamu, M.T.; Yarma, A.A.; Juro, H.A.; Isa, S. Antibacterial Evaluation of Alium sativum on Gram-Negative Urinary Tract Bacteria. BIMA J. Sci. Technol. 2023, 7, 99–106. [Google Scholar]
- Jafari, F.; Khalilzadeh, S.; Nejatbakhsh, F. Therapeutic Effects of Garlic (Allium sativum) on Female Reproductive System: A Systematic Review. Heliyon 2023, 9, e22555. [Google Scholar] [CrossRef]
- Focke, M.; Feld, A.; Lichtenthaler, H.K. Allicin, a Naturally Occurring Antibiotic from Garlic, Specifically Inhibits Acetyl-CoA Synthetase. FEBS Lett. 1990, 261, 106–108. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Front. Microbiol. 2021, 12, 613077. [Google Scholar] [CrossRef]
- Poulios, E.; Vasios, G.K.; Psara, E.; Giaginis, C. Medicinal Plants Consumption against Urinary Tract Infections: A Narrative Review of the Current Evidence. Expert. Rev. Anti-Infect. Ther. 2021, 19, 519–528. [Google Scholar] [CrossRef]
- Shahab, U.; Khorshed, A.; Obydul, H. Medicinal Plant Allium sativum = A Review. J. Med. Plants Stud. 2016, 4, 72–79. [Google Scholar]
- Shams-Ghahfarokhi, M.; Shokoohamiri, M.-R.; Amirrajab, N.; Moghadasi, B.; Ghajari, A.; Zeini, F.; Sadeghi, G.; Razzaghi-Abyaneh, M. In Vitro Antifungal Activities of Allium Cepa, Allium sativum and Ketoconazole against Some Pathogenic Yeasts and Dermatophytes. Fitoterapia 2006, 77, 321–323. [Google Scholar] [CrossRef]
- Strika, I.; Basic, A.; Halilovic, N. Antimicrobial Effects of Garlic (Allium sativum L.). Bull. Chem. Technol. Bosnia Herzeg. 2017, 47, 17–22. [Google Scholar]
- Riesute, R.; Salomskiene, J.; Moreno, D.S.; Gustiene, S. Effect of Yeasts on Food Quality and Safety and Possibilities of Their Inhibition. Trends Food Sci. Technol. 2021, 108, 1–10. [Google Scholar] [CrossRef]
- Ledezma, E.; Apitz-Castro, R. Ajoene, El Principal Compuesto Activo Derivado Del Ajo (Allium sativum), Un Nuevo Agente Antifúngico. Rev. Iberoam. Micol. 2006, 23, 75–80. [Google Scholar] [CrossRef]
- Kasim, W. Alleviation of Drought Stress in Vicia Faba by Seed Priming with Ascorbic Acid or Extracts of Garlic and Carrot. Egypt. J. Bot. 2017, 57, 45–59. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Liang, J.-Y.; Jiang, S.-Y.; Zhao, P.; Tao, F.; Li, J.; Li, X.-X.; Zhao, D.-S. Garlic Polysaccharides: A Review on Their Extraction, Isolation, Structural Characteristics, and Bioactivities. Carbohydr. Res. 2022, 518, 108599. [Google Scholar] [CrossRef]
- Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131, 955S–962S. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Maulik, S.K. Effect of Garlic on Cardiovascular Disorders: A Review. Nutr. J. 2002, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; An, L.; He, Z.; Zhang, Y.; Li, S.; Lei, M.; Xu, P.; Lai, Y.; Jiang, Z.; Huang, Y.; et al. Allicin Suppressed Escherichia coli-Induced Urinary Tract Infections by a Novel MALT1/NF-KB Pathway. Food Funct. 2022, 13, 3495–3511. [Google Scholar] [CrossRef] [PubMed]
- Barone, F.E.; Tansey, M.R. Isolation, Purification, Identification, Synthesis, and Kinetics of Activity of the Anticandidal Component of Allium sativum, and a Hypothesis for Its Mode of Action. Mycologia 1977, 69, 793–825. [Google Scholar] [CrossRef]
- Caporaso, N.; Smith, S.M.; Eng, R.H. Antifungal Activity in Human Urine and Serum after Ingestion of Garlic (Allium sativum). Antimicrob. Agents Chemother. 1983, 23, 700–702. [Google Scholar] [CrossRef]
- Oloche, A.; Targema, B.; Ugwuanyi, M.C. Antifungal activity of garlic extract on fungi associated with urinary tract infections among female students of joseph sarwuan tarka university. J. Appl. Biol. Sci. 2024, 2, 134–142. [Google Scholar]
- Lemar, K.M.; Aon, M.A.; Cortassa, S.; O’Rourke, B.; Müller, C.T.; Lloyd, D. Diallyl Disulphide Depletes Glutathione in Candida albicans: Oxidative Stress-mediated Cell Death Studied by Two-photon Microscopy. Yeast 2007, 24, 695–706. [Google Scholar] [CrossRef]
- Balach, O.; Gazel, D.; Eksi, F.; Zer, Y.; Karsligil, T.; Azzawi, S. Al In Vitro Effects of Natural Garlic Juice on Some Fungal Strains. Eur. J. Ther. 2020, 26, 298–302. [Google Scholar] [CrossRef]
- Lionel, O.O.; Adegboyega, I.P.; Ezekiel, A.O.; Olufunke, B.C. Antimicrobial Activity of Garlic (Allium sativum) on Selected Uropathogens from Cases of Urinary Tract Infection. Ann. Trop. Pathol. 2020, 11, 133. [Google Scholar]
- Salman, A.S. Antibacterial Effect of Onion‘s Infusion and Garlic‘s Infusion on Escherichia coli Isolated from Urine Samples. J. Biomed. Biochem. 2022, 1, 15–20. [Google Scholar] [CrossRef]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial Properties of Allium sativum L. against the Most Emerging Multidrug-Resistant Bacteria and Its Synergy with Antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef]
- Tama, R.T.; Hossain, M.S.; Rahaman, M.A.; Alam, M.A.; Rahman, M.-M.; Parvin, A.; Chowdhury, R.S.; Islam, M.S. Harnessing the Power of Natural Products against Bacterial Urinary Tract Infections: A Perspective Review for Cultivating Solutions. Health Sci. Rev. 2024, 13, 100199. [Google Scholar] [CrossRef]
- Madineh, H.; Yadollahi, F.; Yadollahi, F.; Pouria Mofrad, E.; Kabiri, M. Impact of Garlic Tablets on Nosocomial Infections in Hospitalized Patients in Intensive Care Units. Electron. Physician 2017, 9, 4064–4071. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.V.; Pal, R.; Vaiphei, K.; Sharma, S.K.; Ola, R.P. Garlic in Health and Disease. Nutr. Res. Rev. 2011, 24, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Piasek, A.; Bartoszek, A.; Namieśnik, J. Phytochemicals That Counteract the Cardiotoxic Side Effects of Cancer Chemotherapy. Postep. Hig. Med. Dosw. (Online) 2009, 63, 142–158. [Google Scholar]
- Gross, S.D. A Practical Treatise on the Diseases and Injuries of the Urinary Bladder, the Prostate Gland, and the Urethra, 1st ed.; Arkrose Press: London, UK, 1851; Volume 1. [Google Scholar]
- Tache, A.M.; Dinu, L.D.; Vamanu, E. Novel Insights on Plant Extracts to Prevent and Treat Recurrent Urinary Tract Infections. Appl. Sci. 2022, 12, 2635. [Google Scholar] [CrossRef]
- Iqbal, A.; Ibrahim, M.; Muhammad, N. Natural Approach Used for Urinary Tract Infections. Phytopharm. Res. J. 2023, 2, 1–17. [Google Scholar]
- Yarnell, E. Botanical Medicines for the Urinary Tract. World J. Urol. 2002, 20, 285–293. [Google Scholar] [CrossRef]
- Dib, M.A.; Paolini, J.; Bendahou, M.; Varesi, L.; Allali, H.; Desjobert, J.-M.; Tabti, B.; Costa, J. Chemical Composition of Fatty Acid and Unsaponifiable Fractions of Leaves, Stems and Roots of Arbutus unedo and in vitro Antimicrobial Activity of Unsaponifiable Extracts. Nat. Prod. Commun. 2010, 5, 1934578X1000500721. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Blumenthal, M. The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines, 1st ed.; American Botanical Council, Ed.; American Botanical Council: Austin, TX, USA, 1998; Volume 1. [Google Scholar]
- Blaut, M.; Braune, A.; Wunderlich, S.; Sauer, P.; Schneider, H.; Glatt, H. Mutagenicity of Arbutin in Mammalian Cells after Activation by Human Intestinal Bacteria. Food Chem. Toxicol. 2006, 44, 1940–1947. [Google Scholar] [CrossRef]
- Jurica, K.; Karačonji, I.B.; Šegan, S.; Opsenica, D.M.; Kremer, D. Quantitative Analysis of Arbutin and Hydroquinone in Strawberry Tree (Arbutus unedo L., Ericaceae) Leaves by Gas Chromatography-Mass Spectrometry/Kvantitativna Analiza Arbutina i Hidrokinona u Listovima Obične Planike (Arbutus unedo L., Ericaceae) Plinskokromatografskom Metodom Uz Detekciju Masenim Spektrometrom. Arch. Ind. Hyg. Toxicol. 2015, 66, 197–202. [Google Scholar] [CrossRef]
- de Arriba, S.G.; Naser, B.; Nolte, K.-U. Risk Assessment of Free Hydroquinone Derived from Arctostaphylos Uva-ursi folium Herbal Preparations. Int. J. Toxicol. 2013, 32, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Larsson, B.; Jonasson, A.; Fianu, S. Prophylactic Effect of UVA-E in Women with Recurrent Cystitis: A Preliminary Report. Curr. Ther. Res. 1993, 53, 441–443. [Google Scholar] [CrossRef]
- Sumreen, L.; Shaheen, G.; Shamin, T.; Rehman, T.; Tanger, R.; Shirazi, J.H.; Hadi, F. The Antibacterial Effect of Uva Ursi Plant Tincture Against Some Uropathogens. Plant Cell Biotechnol. Mol. Biol. 2022, 1, 94–103. [Google Scholar] [CrossRef]
- Vranješ, M.; Popović, B.M.; Štajner, D.; Ivetić, V.; Mandić, A.; Vranješ, D. Effects of Bearberry, Parsley and Corn Silk Extracts on Diuresis, Electrolytes Composition, Antioxidant Capacity and Histopathological Features in Mice Kidneys. J. Funct. Foods 2016, 21, 272–282. [Google Scholar] [CrossRef]
- Hafizović, L.; Karup, S.; Hadžialić, A. Effect of Vaccinium vitis-Idaea Tea and Arctostaphylos Uva-Ursi Tea on Growth of Causative Agents of Urinary Tract Infections. J. Nat. Sci. Eng. 2021, 3, 1–7. [Google Scholar] [CrossRef]
- Prasad, K.; Mishra, D.A. A Comprehensive Review on the Antimicrobial Effects of Medicinal Plants against Pathogens of Urinary Tract Infections. Afr. J. Biol. Sci. 2024, 6, 2294–2301. [Google Scholar]
- Bozyel, M.E.; Turu, D.; Benek, A.; Merdamert-Bozyel, E.; Canli, K. Bioactivities, Pharmacological Properties, and Ethnomedicinal Uses of Juniper Berries (Genus Juniperus). In Ethnomedicinal Plants for Drug Discovery; Springer Nature Singapore: Singapore, 2024; pp. 205–216. [Google Scholar]
- Olas, B.; Różański, W.; Urbańska, K.; Bryś, M. Plants Used in Podkarpackie Voivodeship (Poland) to Treat Urinary Diseases. Res. Sq. 2021, preprint. [Google Scholar]
- Saeed, S. Herbal Remedies for Urinary Tract Infection. Int. J. Biol. Biotechnol. 2010, 7, 347–352. [Google Scholar]
- Stanić, G.; Samaržija, I.; Blažević, N. Time-Dependent Diuretic Response in Rats Treated with Juniper berry Preparations. Phytother. Res. 1998, 12, 494–497. [Google Scholar] [CrossRef]
- Pepeljnjak, S.; Kosalec, I.; Kalodera, Z.; Blazević, N. Antimicrobial Activity of Juniper berry Essential Oil (Juniperus communis L., Cupressaceae). Acta Pharm. 2005, 55, 417–422. [Google Scholar] [PubMed]
- Schilcher, H. Juniper Berry Oil in Diseases of the Efferent Urinary Tract? Med. Monatsschr. Pharm. 1995, 18, 198–199. [Google Scholar] [PubMed]
- Keles, O.; Bakırel, T.; Ak, S.; Alpmar, A. The Antibacterial Activity of Some Plants Used for Medicinal Purposes against Pathogens of Veterinary Importance. Folia Vet. 2001, 1, 22–25. [Google Scholar]
- Kalia, A.; Joshi, B.; Mukhija, M. Pharmacognostical Review of Urtica dioica L. Int. J. Green. Pharm. 2014, 8, 201. [Google Scholar] [CrossRef]
- Proença da Cunha, A.; Pereira da Silva, A.; Rodrigues Roque, O. Plantas e Produtos Vegetais Em Fitoterapia, 4th ed.; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2024; Volume 1. [Google Scholar]
- Subba, S.; Pradhan, K. A Comprehensive Review on Common Plants with Remarkable Medicinal Properties: Urtica dioica. J. Med. Plants Stud. 2022, 10, 87–91. [Google Scholar] [CrossRef]
- Chrubasik, J.E.; Roufogalis, B.D.; Wagner, H.; Chrubasik, S.A. A Comprehensive Review on Nettle Effect and Efficacy Profiles, Part I: Herba Urticae. Phytomedicine 2007, 14, 423–435. [Google Scholar] [CrossRef]
- Kukric, Z.; Topalic-Trivunovic, L.; Kukavica, B.; Matos, S.; Pavicic, S.; Boroja, M.; Savic, A. Characterization of Antioxidant and Antimicrobial Activities of Nettle Leaves (Urtica dioica L.). Acta Period. Technol. 2012, 43, 257–272. [Google Scholar] [CrossRef]
- Turker, A.U.; Usta, C. Biological Screening of Some Turkish Medicinal Plant Extracts for Antimicrobial and Toxicity Activities. Nat. Prod. Res. 2008, 22, 136–146. [Google Scholar] [CrossRef]
- Balpetek Külcü, D.; Demir Gökışık, C.; Aydın, S. An Investigation of Antibacterial and Antioxidant Activity of Nettle (Urtica dioica L.), Mint (Mentha piperita), Thyme (Thyme serpyllum) and Chenopodium album L. Plants from Yaylacık Plateau, Giresun, Turkey. Turk. J. Agric. Food Sci. Technol. 2019, 7, 73–80. [Google Scholar] [CrossRef]
- Mzid, M.; Ben Khedir, S.; Ben Salem, M.; Regaieg, W.; Rebai, T. Antioxidant and Antimicrobial Activities of Ethanol and Aqueous Extracts from Urtica urens. Pharm. Biol. 2017, 55, 775–781. [Google Scholar] [CrossRef]
- Wegener, T. Utilidad Del Jugo de Sumidad de Ortiga En El Tratamiento de Afecciones Urologicas y Reumatologicas. Rev. Fitoter 2011, 1, 23–31. [Google Scholar]
- Sabzar, A.D.; Farooq, A.G.; Abdul, R.Y.; Masood ul Hassan, B.; Towseef, M.B.; Farooz, A.B. Bioactive Potential of Leaf Extracts from Urtica dioica L. against Fish and Human Pathogenic Bacteria. Afr. J. Microbiol. Res. 2012, 6, 6893–6899. [Google Scholar] [CrossRef]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative Determination of Plant Phenolics in Urtica dioica Extracts by High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometric Detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Feng, J.; Zhang, D.; Zhang, B.; Luo, M.; Su, D.; Lin, N. S-Allylcysteine, a Garlic Derivative, Suppresses Proliferation and Induces Apoptosis in Human Ovarian Cancer Cells in Vitro. Acta Pharmacol. Sin. 2014, 35, 267–274. [Google Scholar] [CrossRef]
- Şen, A.; Ertaş, B.; Kayali, D.; Eker, P.; Keleş, R. The Effects of Urtica dioica L. Ethanolic Extract against Urinary Calculi in Rats. J. Res. Pharm. 2020, 24, 205–217. [Google Scholar] [CrossRef]
- Shaheen, G.; Akram, M.; Jabeen, F.; Ali Shah, S.M.; Munir, N.; Daniyal, M.; Riaz, M.; Tahir, I.M.; Ghauri, A.O.; Sultana, S.; et al. Therapeutic Potential of Medicinal Plants for the Management of Urinary Tract Infection: A Systematic Review. Clin. Exp. Pharmacol. Physiol. 2019, 46, 613–624. [Google Scholar] [CrossRef]
- Purdel, C.; Ungurianu, A.; Adam-Dima, I.; Margină, D. Exploring the Potential Impact of Probiotic Use on Drug Metabolism and Efficacy. Biomed. Pharmacother. 2023, 161, 114468. [Google Scholar] [CrossRef]
- Mao, Y.-Q.; Huang, J.-T.; Zhang, S.-L.; Kong, C.; Li, Z.-M.; Jing, H.; Chen, H.-L.; Kong, C.-Y.; Huang, S.-H.; Cai, P.-R.; et al. The Antitumour Effects of Caloric Restriction Are Mediated by the Gut Microbiome. Nat. Metab. 2023, 5, 96–110. [Google Scholar] [CrossRef]
- Ferrere, G.; Tidjani Alou, M.; Liu, P.; Goubet, A.-G.; Fidelle, M.; Kepp, O.; Durand, S.; Iebba, V.; Fluckiger, A.; Daillère, R.; et al. Ketogenic Diet and Ketone Bodies Enhance the Anticancer Effects of PD-1 Blockade. JCI Insight 2021, 6, e145207. [Google Scholar] [CrossRef]
- Ang, Q.Y.; Alexander, M.; Newman, J.C.; Tian, Y.; Cai, J.; Upadhyay, V.; Turnbaugh, J.A.; Verdin, E.; Hall, K.D.; Leibel, R.L.; et al. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell 2020, 181, 1263–1275.e16. [Google Scholar] [CrossRef]
- Orillion, A.; Damayanti, N.P.; Shen, L.; Adelaiye-Ogala, R.; Affronti, H.; Elbanna, M.; Chintala, S.; Ciesielski, M.; Fontana, L.; Kao, C.; et al. Dietary Protein Restriction Reprograms Tumor-Associated Macrophages and Enhances Immunotherapy. Clin. Cancer Res. 2018, 24, 6383–6395. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-L.; Gong, Y.; Qi, Y.-J.; Shao, Z.-M.; Jiang, Y.-Z. Effects of Dietary Intervention on Human Diseases: Molecular Mechanisms and Therapeutic Potential. Signal Transduct. Target. Ther. 2024, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chang, C.-C.; Chiu, T.H.T.; Lin, M.-N.; Lin, C.-L. The Risk of Urinary Tract Infection in Vegetarians and Non-Vegetarians: A Prospective Study. Sci. Rep. 2020, 10, 906. [Google Scholar] [CrossRef] [PubMed]
- Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The Antibacterial Activity of Extracts of Nine Plant Species with Good Activity against Escherichia coli against Five Other Bacteria and Cytotoxicity of Extracts. BMC Complement. Altern. Med. 2017, 17, 133. [Google Scholar] [CrossRef]
- Sharma, A.; Chandraker, S.; Patel, V.; Ramteke, P. Antibacterial Activity of Medicinal Plants against Pathogens Causing Complicated Urinary Tract Infections. Indian. J. Pharm. Sci. 2009, 71, 136. [Google Scholar] [CrossRef]
- Alshami, I.; Alharbi, A.E. Hibiscus Sabdariffa Extract Inhibits in Vitro Biofilm Formation Capacity of Candida albicans Isolated from Recurrent Urinary Tract Infections. Asian Pac. J. Trop. Biomed. 2014, 4, 104–108. [Google Scholar] [CrossRef]
- Johnson, J.R.; Russo, T.A. Extraintestinal Pathogenic Escherichia coli: “The Other Bad E coli”. J. Lab. Clin. Med. 2002, 139, 155–162. [Google Scholar] [CrossRef]
- Johnson, J.R.; Sannes, M.R.; Croy, C.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Bender, J.; Smith, K.E.; Winokur, P.L.; Belongia, E.A. Antimicrobial Drug–Resistant Escherichia coli from Humans and Poultry Products, Minnesota and Wisconsin, 2002–2004. Emerg. Infect. Dis. 2007, 13, 838–846. [Google Scholar] [CrossRef]
- Singer, R.S. Urinary Tract Infections Attributed to Diverse ExPEC Strains in Food Animals: Evidence and Data Gaps. Front. Microbiol. 2015, 6, 28. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and Human Health. J. Sci. Food Agric. 2000, 1, 1744–1756. [Google Scholar] [CrossRef]
- Kontiokari, T.; Laitinen, J.; Järvi, L.; Pokka, T.; Sundqvist, K.; Uhari, M. Dietary Factors Protecting Women from Urinary Tract Infection. Am. J. Clin. Nutr. 2003, 77, 600–604. [Google Scholar] [CrossRef]
- Lee, Y.L.; Najm, W.I.; Owens, J.; Thrupp, L.; Baron, S.; Shanbrom, E.; Cesario, T. Anti-microbial Activity of Urine after Ingestion of Cranberry: A Pilot Study. Evid.-Based Complement. Altern. Med. 2010, 7, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do Human Extraintestinal Escherichia coli Infections Resistant to Expanded-Spectrum Cephalosporins Originate From Food-Producing Animals? A Systematic Review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef]
- Paine, M.F.; Widmer, W.W.; Hart, H.L.; Pusek, S.N.; Beavers, K.L.; Criss, A.B.; Brown, S.S.; Thomas, B.F.; Watkins, P.B. A Furanocoumarin-Free Grapefruit Juice Establishes Furanocoumarins as the Mediators of the Grapefruit Juice–Felodipine Interaction. Am. J. Clin. Nutr. 2006, 83, 1097–1105. [Google Scholar] [CrossRef]
- Genser, D. Food and Drug Interaction: Consequences for the Nutrition/Health Status. Ann. Nutr. Metab. 2008, 52 (Suppl. S1), 29–32. [Google Scholar] [CrossRef]
Biotherapeutic Name | Type | Mode of Action | Clinical Evidence | References |
---|---|---|---|---|
E. coli 83972 | Asymptomatic Bacteriuria | Bacterial interference. Competition for nutrients. Biofilm interference. Bacteriocin production. | Phase 2—significant reduction in rUTI * (N = 20). No active phase 3. Approved for use in LUTD * by EAU *. | [23,24] |
Lactin-V (Lactobacillus crispatus) | Probiotic | Lactic acid and hydrogen peroxide production. Blocks adherence to uroepithelial cells. | Phase 2—rUTI incidence rate reduced to 15% (N = 50). No active phase 3. | [25] |
L. rhamnosus GG | Probiotic | Lactic acid and hydrogen peroxide production. Downregulates NF-κB, P, and Type 1 fimbriae. Biofilm interference. | Phase 2—one or two doses safe in NLUTD * and SCI * patients (N = 80). No active phase 3. | [26] |
Mutaflor (E. coli Nissle 1917) | Probiotic | Microcin production. Competition for iron using iron uptake systems. | In vitro—no significant UPEC * reduction. Phase 4 in active development for children with UTIs. | [5,27] |
Colicin E2 | Bacteriocin | Endonucleolytic degradation of DNA. | Preliminary catheter trials—complete inhibition of susceptible E. coli. | [28] |
Genera | Species | Benefits | Limitations |
---|---|---|---|
Lactobacillus | acidophilus, casei, crispatus, delbrueckii subsp. bulgaricusa, fermentum, gasseri, johnsonii, paracasei, plantarum, reuteri, rhamnosus, helveticus, lactis, sporogenes | Commonly used in fermented foods, including kimchi, sauerkraut, koumiss, yogurt, kurut, cheese, kefir, and kombucha. | There might be issues with interaction with medications that depress the immune system. |
Escherichia, Saccharomyces, Kluyveromyces, Streptococcus, Enterococcus b, Propionibacterium, Pediococcus, Leuconostoc, Bacillus, Clostridium | Escherichia coli Nissle, Saccharomyces boulardii, S. cerevisiae, Kluyveromyces lactis, Streptococcus thermophilus a, S. cremoris, S. diacetylactis, S. intermedius, S. salivarius, Enterococcus franciumb, Propionibacterium freudenreichii, P. freudenreichii subsp. shermanii, P. jensenii, L. lactis, Pediococcus, Leuconostoc lactis subsp. cremoris, L. lactis subsp. lactis, Bacillus cereus, Clostridium butyricum | These bacteria and yeasts are commonly used in the dairy and brewing industries. They can improve the immune system in humans. | There is a need for more studies on patients with chronic diseases such as cancer. |
Bifidobacterium | bifidum, breve, infantis, longum, lactis, animalis, adolescentis, essensis, laterosporus | Suitable as hosts for cellular engineering, to facilitate the increased bioproduction of value-added chemicals, while consuming fewer resources [30]. | There is a need to better understand the impact and safety of their use to treat diseases. |
Plant Species | Common Name | Phytocompounds | Mode of Action | References |
---|---|---|---|---|
Vaccinium macrocarpon | Cranberry | Proanthocyanidins (PACs), malic acid, quinic acid, shikmic acid, hippuric acid, D-mannose, fructose | Decreases urinary pH; prevents bacterial adhesion to urinary tract; blocks bacterial receptors | [64,65,67,76,77,97,99] |
Allium sativum | Garlic | Allicin, alliin, ajoene | Antibacterial; antifungal; prevents microorganisms from using some functions, like RNA and lipid biosynthesis; inhibits growth of E. coli and Candida albicans | [109,110,111,112,128,130,169] |
Juniperus communis | Juniper | Essential oils (terpinen4-ol) | Diuretic properties; antimicrobial effects against UTI pathogens (Klebsiella, Proteus, and Enterococcus) | [139,152,153,154,155] |
Arctostaphylos uva-ursi | Bearberry | Arbutin, ferulic acid, catechin, gallic acid, ellagic acid, caffeic acid | Diuretic action; inhibition of bacteria (E. coli, S. aureus, Proteus vulgaris, Candida albicans) through hydroquinone and alkalization of urine; prevention of bacterial attachment in urinary system | [79,136,137,138,139,140,141,143,144,147,149,150] |
Urtica dioica L. | Nettle | Flavonoids, phenolic compounds, tannins, essential oils | Antimicrobial effect against Gram-positive and Gram-negative bacteria; diuretic properties due to compounds like caffeine, malic acid, and chlorogenic acid. | [157,158,159,160,161,162,163,164,166,167,168,170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva, A.; Raheem, D.; Roy, P.R.; BinMowyna, M.N.; Romão, B.; Alarifi, S.N.; Albaridi, N.A.; Alsharari, Z.D.; Raposo, A. Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health. Nutrients 2025, 17, 986. https://doi.org/10.3390/nu17060986
Saraiva A, Raheem D, Roy PR, BinMowyna MN, Romão B, Alarifi SN, Albaridi NA, Alsharari ZD, Raposo A. Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health. Nutrients. 2025; 17(6):986. https://doi.org/10.3390/nu17060986
Chicago/Turabian StyleSaraiva, Ariana, Dele Raheem, Poly Rani Roy, Mona N. BinMowyna, Bernardo Romão, Sehad N. Alarifi, Najla A. Albaridi, Zayed D. Alsharari, and António Raposo. 2025. "Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health" Nutrients 17, no. 6: 986. https://doi.org/10.3390/nu17060986
APA StyleSaraiva, A., Raheem, D., Roy, P. R., BinMowyna, M. N., Romão, B., Alarifi, S. N., Albaridi, N. A., Alsharari, Z. D., & Raposo, A. (2025). Probiotics and Plant-Based Foods as Preventive Agents of Urinary Tract Infection: A Narrative Review of Possible Mechanisms Related to Health. Nutrients, 17(6), 986. https://doi.org/10.3390/nu17060986