Distinct Effects of Wheat and Black Bean Consumption on Postprandial Vascular Responses in People with Arterial Stiffness: A Pilot Randomized Cross-Over Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Food Preparation
2.4. Randomization Procedures and Blinding
2.5. Study Visits and Assessments
2.5.1. Screening Visit
2.5.2. Study Visits
2.6. Statistical Methods
3. Results
3.1. Participant Characteristics
3.2. Peripheral Hemodynamic Parameters
3.3. Central Hemodynamic Parameters
3.4. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baier, D.; Teren, A.; Wirkner, K.; Loeffler, M.; Scholz, M. Parameters of pulse wave velocity: Determinants and reference values assessed in the population-based study LIFE-Adult. Clin. Res. Cardiol. 2018, 107, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Mikael, L.R.; Paiva, A.M.G.; Gomes, M.M.; Sousa, A.L.L.; Jardim, P.; Vitorino, P.V.O.; Euzébio, M.B.; Sousa, W.M.; Barroso, W.K.S. Vascular Aging and Arterial Stiffness. Arq. Bras. Cardiol. 2017, 109, 253–258. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, T.J.; Martens, C.R.; Seals, D.R. Nutrition and other lifestyle influences on arterial aging. Ageing Res. Rev. 2017, 39, 106–119. [Google Scholar] [CrossRef]
- Banegas, J.R.; Townsend, R.R. Arterial stiffness and reference values. Rev. Esp. Cardiol. (Engl. Ed.) 2020, 73, 11–13. [Google Scholar] [CrossRef]
- Perrault, R.; Omelchenko, A.; Taylor, C.G.; Zahradka, P. Establishing the interchangeability of arterial stiffness but not endothelial function parameters in healthy individuals. BMC Cardiovasc. Disord. 2019, 19, 190. [Google Scholar] [CrossRef]
- Enns, J.E.; Zahradka, P.; Gurman, R.P.; Baldwin, A.; Foot, B.; Taylor, C.G. Randomized controlled trial to evaluate the effect of canola oil on blood vessel function in peripheral arterial disease: Rationale and design of the Canola-PAD Study. Open Access J. Clin. Trials 2014, 2014, 117–125. [Google Scholar]
- Munakata, M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: Recent evidence and clinical applications. Curr. Hypertens. Rev. 2014, 10, 49–57. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, F.; Liu, J.; Yang, G.Y. Arterial stiffness and stroke: De-stiffening strategy, a therapeutic target for stroke. Stroke Vasc. Neurol. 2017, 2, 65–72. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Pinter, S.; Jug, B.; Godnov, U.; Pajek, J.; Fidler Mis, N. Dietary Intakes and Cardiovascular Health of Healthy Adults in Short-, Medium-, and Long-Term Whole-Food Plant-Based Lifestyle Program. Nutrients 2019, 12, 55. [Google Scholar] [CrossRef]
- Campbell, M.S.; Fleenor, B.S. Whole grain consumption is negatively correlated with obesity-associated aortic stiffness: A hypothesis. Nutrition 2018, 45, 32–36. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Vergnaud, A.-C.; Fezeu, L.; Zureik, M.; Blacher, J.; Péneau, S.; Hercberg, S.; Galan, P.; Czernichow, S. Associations between dietary patterns and arterial stiffness, carotid artery intima-media thickness and atherosclerosis. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Haszard, J.; Stoner, L.; Skeaff, S.; Black, K.E.; Davison, B.; Harrex, H.; Meredith-Jones, K.; Quigg, R.; Wong, J.E.; et al. Relationships between Dietary Patterns and Indices of Arterial Stiffness and Central Arterial Wave Reflection in 9–11-Year-Old Children. Children 2020, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Vavouranaki, G.; Oikonomou, E.; Vavuranakis, M.A.; Vavuranakis, E.; Vogiatzi, G.; Lazaros, G.; Tsalamandris, S.; Galiatsatos, N.; Theofilis, P.; Santouri, M.; et al. Relationship between whole grain consumption and arterial stiffness. Results of the Corinthia cross-sectional study. Hell. J. Cardiol. 2021, 62, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Zahradka, P.; Wright, B.; Weighell, W.; Blewett, H.; Baldwin, A.; Guzman, R.P.; Taylor, C.G. Daily non-soy legume consumption reverses vascular impairment due to peripheral artery disease. Atherosclerosis 2013, 230, 310–314. [Google Scholar] [CrossRef]
- Kienēs, H.F.; Egert, S. A Systematic Review of the Impact of Fat Quantity and Fatty Acid Composition on Postprandial Vascular Function in Healthy Adults and Patients at Risk of Cardiovascular Disease. Curr. Dev. Nutr. 2023, 7, 102025. [Google Scholar] [CrossRef]
- Lithander, F.E.; Herlihy, L.K.; Walsh, D.M.; Burke, E.; Crowley, V.; Mahmud, A. Postprandial effect of dietary fat quantity and quality on arterial stiffness and wave reflection: A randomised controlled trial. Nutr. J. 2013, 12, 93. [Google Scholar] [CrossRef]
- Fewkes, J.J.; Kellow, N.J.; Cowan, S.F.; Williamson, G.; Dordevic, A.L. A single, high-fat meal adversely affects postprandial endothelial function: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2022, 116, 699–729. [Google Scholar] [CrossRef]
- Staiculescu, M.C.; Galiñanes, E.L.; Zhao, G.; Ulloa, U.; Jin, M.; Beig, M.I.; Meininger, G.A.; Martinez-Lemus, L.A. Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling. Cardiovasc. Res. 2013, 98, 428–436. [Google Scholar] [CrossRef]
- Kume, D.; Nishiwaki, M.; Ito, M. Effect of Powdered Morus australis Leaves on Arterial Stiffness Response after Sucrose Ingestion in Healthy Young Men: A Pilot Study. J. Nutr. Sci. Vitaminol. 2025, 71, 63–69. [Google Scholar] [CrossRef]
- Clark, J.L.; Taylor, C.G.; Zahradka, P. Black beans and red kidney beans induce positive postprandial vascular responses in healthy adults: A pilot randomized cross-over study. Nutr. Metab. Cardiovasc. Dis. 2020, 31, 216–226. [Google Scholar] [CrossRef]
- Joris, P.J.; Plat, J.; Kusters, Y.; Houben, A.; Stehouwer, C.D.A.; Schalkwijk, C.G.; Mensink, R.P. Effects of diet-induced weight loss on postprandial vascular function after consumption of a mixed meal: Results of a randomized controlled trial with abdominally obese men. Clin. Nutr. 2020, 39, 2998–3004. [Google Scholar] [CrossRef] [PubMed]
- McRae, M.P. Health Benefits of Dietary Whole Grains: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2017, 16, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, H.; Shiina, K. State of the Art Review: Brachial-Ankle PWV. J. Atheroscler. Thromb. 2020, 27, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Butlin, M.; Qasem, A. Large Artery Stiffness Assessment Using SphygmoCor Technology. Pulse 2017, 4, 180–192. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; De Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 2015, 241, 507–532. [Google Scholar] [CrossRef]
- Roman, M.J.; Devereux, R.B.; Kizer, J.R.; Lee, E.T.; Galloway, J.M.; Ali, T.; Umans, J.G.; Howard, B.V. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: The Strong Heart Study. Hypertension 2007, 50, 197–203. [Google Scholar] [CrossRef]
- Kim, H.L.; Weber, T. Pulsatile Hemodynamics and Coronary Artery Disease. Korean Circ. J. 2021, 51, 881–898. [Google Scholar] [CrossRef]
- Zhang, Y.; Kalhöfer-Köchling, M.; Bodenschatz, E.; Wang, Y. Physical model of end-diastolic and end-systolic pressure-volume relationships of a heart. Front. Physiol. 2023, 14, 1195502. [Google Scholar] [CrossRef]
- Prentice, A.M. Overeating: The health risks. Obes. Res. 2001, 9 (Suppl. S11), 234S–238S. [Google Scholar] [CrossRef]
- Chartrand, D.J.; Murphy-Després, A.; Alméras, N.; Lemieux, I.; Larose, E.; Després, J.P. Overweight, Obesity, and CVD Risk: A Focus on Visceral/Ectopic Fat. Curr. Atheroscler. Rep. 2022, 24, 185–195. [Google Scholar] [CrossRef]
- Kang, P.S.; Neeland, I.J. Body Fat Distribution, Diabetes Mellitus, and Cardiovascular Disease: An Update. Curr. Cardiol. Rep. 2023, 25, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, L.; Yang, S.; Liu, G.; Pan, L.; Gu, C.; Wang, Y.; Li, D.; Zhao, R.; Wu, M. Mechanisms of Atherosclerosis Induced by Postprandial Lipemia. Front. Cardiovasc. Med. 2021, 8, 636947. [Google Scholar] [CrossRef]
- Thom, N.J.; Early, A.R.; Hunt, B.E.; Harris, R.A.; Herring, M.P. Eating and arterial endothelial function: A meta-analysis of the acute effects of meal consumption on flow-mediated dilation. Obes. Rev. 2016, 17, 1080–1090. [Google Scholar] [CrossRef]
- Kobayashi, R.; Sakazaki, M.; Nagai, Y.; Okamoto, T.; Hashimoto, Y.; Sato, K.; Seki, S.; Hata, U.; Esaki, K.; Tanigawa, R.; et al. Habitual isomaltulose intake reduces arterial stiffness associated with postprandial hyperglycemia in middle-aged and elderly people: A randomized controlled trial. Heart Vessel. 2024, 39, 123–134. [Google Scholar] [CrossRef]
- Kobayashi, R.; Sato, K.; Sakazaki, M.; Nagai, Y.; Iwanuma, S.; Ohashi, N.; Hashiguchi, T. Acute effects of difference in glucose intake on arterial stiffness in healthy subjects. Cardiol. J. 2021, 28, 446–452. [Google Scholar] [CrossRef]
- Li, Z.; Henning, S.M.; Zhang, Y.; Rahnama, N.; Zerlin, A.; Thames, G.; Tseng, C.H.; Heber, D. Decrease of postprandial endothelial dysfunction by spice mix added to high-fat hamburger meat in men with Type 2 diabetes mellitus. Diabet. Med. 2013, 30, 590–595. [Google Scholar] [CrossRef]
- Stanek, A.; Grygiel-Górniak, B.; Brożyna-Tkaczyk, K.; Myśliński, W.; Cholewka, A.; Zolghadri, S. The Influence of Dietary Interventions on Arterial Stiffness in Overweight and Obese Subjects. Nutrients 2023, 15, 1440. [Google Scholar] [CrossRef]
- Dehnavi, Z.; Esfehani, A.J.; Hajhoseini, O.; Barghchi, H.; Yazdi, A.G.; Khorasanchi, Z.; Shadnoush, M.; Rezvani, R.; Esmaily, H.; Safarian, M. Postprandial effects of dietary protein source on metabolic responses, appetite, and arterial stiffness indices in overweight and obese men: The study protocol for a randomized crossover clinical trial. Trials 2023, 24, 415. [Google Scholar] [CrossRef]
- Segers, P.; Rietzschel, E.R.; Chirinos, J.A. How to Measure Arterial Stiffness in Humans. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1034–1043. [Google Scholar] [CrossRef]
- Loader, T.B.; Zahradka, P.; Ahmadi, S.; Taylor, C.G. Processing method modulates the effectiveness of black beans for lowering blood cholesterol in spontaneously hypertensive rats. J. Sci. Food Agric. 2020, 101, 449–458. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Tuzun, E.; Quick, C.M. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses. Am. Physiol. Soc. J. 2016, 311, R522–R531. [Google Scholar] [CrossRef] [PubMed]
- Bacigalupi, E.; Pizzicannella, J.; Rigatelli, G.; Scorpiglione, L.; Foglietta, M.; Rende, G.; Mantini, C.; Fiore, F.M.; Pelliccia, F.; Zimarino, M. Biomechanical factors and atherosclerosis localization: Insights and clinical applications. Front. Cardiovasc. Med. 2024, 11, 1392702. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, J.D.; Schwartz, M.A. Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annu. Rev. Biomed. Eng. 2021, 23, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Valensi, P.; Cosson, E. Hemodynamic changes in postprandial state. Diabetes Metab. 2006, 32, 2S37–2S41. [Google Scholar] [CrossRef]
- Huang, L.; Li, S.; Xie, X.; Huang, X.; Xiao, L.D.; Zou, Y.; Jiang, W.; Zhang, F. Prevalence of postprandial hypotension in older adults: A systematic review and meta-analysis. Age Ageing 2024, 53, afae022. [Google Scholar] [CrossRef]
- Awosika, A.; Adabanya, U.; Millis, R.M.; Omole, A.E.; Moon, J.H. Postprandial Hypotension: An Underreported Silent Killer in the Aged. Cureus 2023, 15, e35411. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Sahye-Pudaruth, S.; Khodabandehlou, K.; Liang, F.; Kasmani, M.; Wanyan, J.; Wang, M.; Selvaganesh, K.; Paquette, M.; Patel, D.; et al. Systematic review and meta-analysis examining the relationship between postprandial hypotension, cardiovascular events, and all-cause mortality. Am. J. Clin. Nutr. 2022, 116, 663–671. [Google Scholar] [CrossRef]
- Gentilcore, D.; Jones, K.L.; O’Donovan, D.G.; Horowitz, M. Postprandial hypotension—Novel insights into pathophysiology and therapeutic implications. Curr. Vasc. Pharmacol. 2006, 4, 161–171. [Google Scholar] [CrossRef]
- Gentilcore, D.; Hausken, T.; Meyer, J.H.; Chapman, I.M.; Horowitz, M.; Jones, K.L. Effects of intraduodenal glucose, fat, and protein on blood pressure, heart rate, and splanchnic blood flow in healthy older subjects. Am. J. Clin. Nutr. 2008, 87, 156–161. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, L.; Xie, X.; Pu, L.; Jiang, W.; Zou, Y.; Zhang, F. Non-pharmacological interventions for older adults with postprandial hypotension: A scoping review. J. Clin. Nurs. 2023, 32, 5974–5987. [Google Scholar] [CrossRef]
- Mitchell, G.F. Arterial Stiffness and Wave Reflection: Biomarkers of Cardiovascular Risk. Artery Res. 2009, 3, 56–64. [Google Scholar] [CrossRef] [PubMed]
- DeMers, D.; Wachs, D. Physiology, Mean Arterial Pressure. In StatPearls [Internet]; StatPearls Publishing LLC: Treasure Island, FL, USA, 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/30855814/ (accessed on 7 January 2025).
- Fagan, T.C.; Sawyer, P.R.; Gourley, L.A.; Lee, J.T.; Gaffney, T.E. Postprandial alterations in hemodynamics and blood pressure in normal subjects. Am. J. Cardiol. 1986, 58, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Auer, J.; Lamm, G.; O’Rourke, M.F.; Eber, B. Arterial stiffness, central blood pressures, and wave reflections in cardiomyopathy-implications for risk stratification. J. Card. Fail. 2007, 13, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, N.M.J.; Kraakman, M.J.; Flynn, M.C.; Nagareddy, P.R.; Schalkwijk, C.G.; Murphy, A.J. Postprandial Glucose Spikes, an Important Contributor to Cardiovascular Disease in Diabetes? Front. Cardiovasc. Med. 2020, 7, 570553. [Google Scholar] [CrossRef]
- Levitan, E.B.; Song, Y.; Ford, E.S.; Liu, S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med. 2004, 164, 2147–2155. [Google Scholar] [CrossRef]
- Loader, J.; Montero, D.; Lorenzen, C.; Watts, R.; Méziat, C.; Reboul, C.; Stewart, S.; Walther, G. Acute Hyperglycemia Impairs Vascular Function in Healthy and Cardiometabolic Diseased Subjects: Systematic Review and Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2060–2072. [Google Scholar] [CrossRef]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.; Thorpe, J.; Testa, R.; Bonfigli, A.R.; Giugliano, D. Glucose “peak” and glucose “spike”: Impact on endothelial function and oxidative stress. Diabetes Res. Clin. Pract. 2008, 82, 262–267. [Google Scholar] [CrossRef]
- Brand-Miller, J.; Dickinson, S.; Barclay, A.; Celermajer, D. The glycemic index and cardiovascular disease risk. Curr. Atheroscler. Rep. 2007, 9, 479–485. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Rodriguez, J.; Patrie, J.T.; Whisner, C.M.; Angadi, S.S. Effects of Glycemic Index and Cereal Fiber on Postprandial Endothelial Function, Glycemia, and Insulinemia in Healthy Adults. Nutrients 2019, 11, 2387. [Google Scholar] [CrossRef]
Participant Characteristics | Mean ± SD (Range) |
---|---|
Demographics | |
Sex (male/female) | 3/6 |
Age (years) | 57 ± 6 (50–64) |
Anthropometrics | |
Height (cm) | 170 ± 8 (158–186) |
Weight (kg) | 88.1 ± 13.6 (69.1–113) |
Body mass index (kg/m2) | 30.6 ± 3.7 (25.1–35.3) |
Waist circumference (cm) | 98.1 ± 8.2 (84–112) |
Body fat (%) | 36.1 ± 7.8 (26.7–47.3) |
Skeletal muscle index (kg/m2) | 7.97 ± 0.93 (6.4–9.6) |
Vascular Assessments | |
Brachial-ankle pulse wave velocity, left side (cm/s) | 1595 ± 121 (1445–1818) |
Brachial-ankle pulse wave velocity, right side (cm/s) | 1564 ± 131 (1385–1766) |
Systolic blood pressure (mmHg) | 136 ± 10 (124–150) |
Diastolic blood pressure (mmHg) | 86 ± 6 (77–95) |
Ankle-brachial index, left side | 1.14 ± 0.07 (1.06–1.245) |
Ankle-brachial index, right side | 1.14 ± 0.04 (1.06–1.19) |
Plasma/Serum Chemistry | |
Creatinine (µmol/L) | 74.3 ± 15.7 (50–93) |
Aspartate aminotransferase (U/L) | 18.4 ± 3.7 (14–27) |
Alanine aminotransferase (U/L) | 17.2 ± 7.6 (11–36) |
Cholesterol (mmol/L) | 5.41 ± 1.30 (3.5–7.2) |
HDL Cholesterol (mmol/L) | 1.37 ± 0.31 (0.9–1.8) |
LDL Cholesterol (mmol/L) | 3.43 ± 0.95 (1.9–4.8) |
Non-HDL Cholesterol (mmol/L) | 4.04 ± 1.16 (2.4–5.9) |
Triglycerides (mmol/L) | 1.39 ±0.62 (0.9–2.6) |
Hemoglobin A1c (%) | 5.59 ± 0.44 (4.8–6.4) |
Peripheral Hemodynamic Parameters 1 | ||||||
---|---|---|---|---|---|---|
Food | Wheat | Bean | Rice | |||
Time | T0 | T120 | T0 | T120 | T0 | T120 |
Systolic pressure (mmHg) | 137.6 ± 2.3 | 143.6 ± 4.0 | 140.4 ± 2.5 | 143.9 ± 2.2 | 140.8 ± 2.2 | 147.0 ± 1.9 * |
Diastolic pressure (mmHg) | 88.1 ± 2.2 | 87.4 ± 3.3 | 85.1 ± 2.0 | 88.0 ± 2.0 * | 88.6 ± 2.3 | 89.4 ± 2.7 |
Peripheral pulse pressure (mmHg) | 49.4 ± 1.9 | 56.1 ± 3.3 * | 55.3 ± 1.8 | 55.9 ± 2.6 | 52.2 ± 2.7 | 57.6 ± 1.8 * |
Mean arterial pressure (mmHg) | 103.2 ± 2.1 | 102.7 ± 3.1 | 101.8 ± 1.9 | 103.8 ± 1.6 | 104.4 ± 2.1 | 106.1 ± 2.6 |
Aortic Hemodynamic Parameters 1 | ||||||
---|---|---|---|---|---|---|
Food | Wheat | Bean | Rice | |||
Time | T0 | T120 | T0 | T120 | T0 | T120 |
Systolic pressure (mmHg) | 126.7 ± 2.2 | 131.4 ± 3.5 | 129.1 ± 2.0 | 133.2 ± 2.0 | 130.3 ± 1.7 | 136.0 ± 1.8 * |
Diastolic pressure (mmHg) | 88.7 ± 2.2 | 87.9 ± 3.2 | 86.3 ± 2.0 | 88.8 ± 2.0 | 89.0 ± 2.2 | 90.2 ± 2.7 |
Pulse pressure (mmHg) | 38.0 ± 1.9 | 43.6 ± 2.9 | 42.8 ± 1.5 | 44.4 ± 2.7 | 41.3 ± 2.1 | 45.8 ± 1.8 * |
Mean arterial pressure (mmHg) | 103.2 ± 2.1 | 102.7 ± 3.1 | 101.8 ± 1.9 | 103.8 ± 1.6 | 104.4 ± 2.1 | 106.1 ± 2.6 |
Heart rate (bpm) | 67.7 ± 1.9 | 58.2 ± 1.8 * | 63.2 ± 1.5 | 58.0 ± 1.4 * | 63.3 ± 2.1 | 58.0 ± 2.2 * |
Central Hemodynamic Parameters 1 | ||||||
---|---|---|---|---|---|---|
Food | Wheat | Bean | Rice | |||
Time | T0 | T120 | T0 | T120 | T0 | T120 |
Heart rate (bpm) | 67.7 ± 1.9 | 58.2 ± 1.8 * | 63.2 ± 1.5 | 58.0 ± 1.4 * | 63.3 ± 2.1 | 58.0 ± 2.2 * |
Period (ms) | 891.6 ± 25.1 | 1039.1 ± 31.7 * | 953.3 ± 22.6 | 1038.2 ± 26.2 * | 956.6 ± 31.4 | 1045.2 ± 38.5 |
Ejection duration (ms) | 293.6 ± 6.1 | 320.4 ± 7.8 * | 310.4 ± 5.2 | 326.1 ± 6.0 * | 314.7 ± 5.8 | 326.1 ± 6.1 |
Ejection duration (%) | 33.2 ± 0.8 | 30.9 ± 0.7 | 32.7 ± 0.8 | 31.4 ± 0.7 * | 33.3 ± 0.8 | 31.4 ± 0.9 |
Aortic T2 (ms) | 212.9 ± 5.0 | 220.7 ± 2.2 | 221.6 ± 4.7 | 227.7 ± 4.8 * | 222.9 ± 3.7 | 229.8 ± 3.9 |
P1 Height (P1-DP) (mmHg) | 30.3 ± 1.4 | 35.4 ± 2.6 * | 33.1 ± 1.2 | 34.6 ± 1.7 | 31.3 ± 1.7 | 35.2 ± 1.2 * |
Aortic augmentation pressure (mmHg) | 11.6 ± 1.9 | 10.4 ± 1.1 | 13.2 ± 1.9 | 13.8 ± 2.0 | 13.1 ± 1.4 | 14.7 ± 1.7 |
Aortic Alx (AP/PP) (%) | 29.4 ± 3.9 | 24.3 ± 2.1 | 30.2 ± 3.7 | 29.8 ± 2.8 | 31.8 ± 2.9 | 31.4 ± 2.8 |
Aortic Alx (P2/P1) (%) | 130.7 ± 3.5 | 125.9 ± 2.1 | 130.6 ± 3.5 | 130.6 ± 2.9 | 132.2 ± 2.9 | 132.2 ± 2.9 |
Aortic Alx (AP/PP) @HR75 (%) | 26.1 ± 3.6 | 16.2 ± 2.0 * | 24.6 ± 3.4 | 21.6 ± 2.2 | 26.2 ± 3.1 | 23.2 ± 2.6 |
Buckberg SEVR (%) | 170.6 ± 7.0 | 177.6 ± 6.0 | 166.6 ± 5.8 | 173.3 ± 5.2 | 166.1 ± 5.1 | 173.8 ± 5.6 |
Pressure-time index (Systole) (mmHg.s/min) | 2309.0 ± 96.0 | 2232.6 ± 79.7 | 2303.9 ± 82.3 | 2289.0 ± 58.2 | 2363.3 ± 79.8 | 2342.2 ± 99.8 |
Pressure-time index (Diastole) (mmHg.s/min) | 3889.3 ± 84.8 | 3941.2 ± 131.1 | 3802.6 ± 56.0 | 3860.2 ± 97.9 | 3898.3 ± 63.7 | 4022.9 ± 59.4 * |
End systolic pressure (mmHg) | 119.6 ± 2.0 | 120.7 ± 3.8 | 119.9 ± 1.7 | 122.6 ± 1.5 | 121.9 ± 1.7 | 125.3 ± 1.9 * |
Mean arterial pressure (Systole) (mmHg) | 116.0 ± 2.0 | 120.1 ± 3.2 | 117.2 ± 1.9 | 121.0 ± 1.8 | 118.8 ± 1.6 | 123.7 ± 1.9 * |
Mean arterial pressure (Diastole) (mmHg) | 96.8 ± 2.2 | 95.2 ± 3.3 | 94.3 ± 1.8 | 96.0 ± 1.5 | 97.2 ± 2.2 | 98.2 ± 2.5 |
Wave Reflection Parameters 1 | ||||||
---|---|---|---|---|---|---|
Food | Wheat | Bean | Rice | |||
Time | T0 | T120 | T0 | T120 | T0 | T120 |
Forward pulse height (Pf) (mmHg) | 28.2 ± 1.6 | 28.9 ± 1.6 | 30.1 ± 1.4 | 29.0 ± 1.3 | 29.3 ± 1.5 | 31.6 ± 1.1 |
Reflected pulse height (Pb) (mmHg) | 17.0 ± 0.9 | 18.1 ± 0.8 | 19.1 ± 0.8 | 19.4 ± 1.1 | 18.2 ± 0.9 | 20.2 ± 1.0 |
Reflection magnitude (%) | 61.0 ± 2.9 | 63.3 ± 2.3 | 64.6 ± 3.7 | 67.3 ± 2.4 | 62.8 ± 2.1 | 64.1 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahradka, P.; Perera, D.; Charney, J.; Taylor, C.G. Distinct Effects of Wheat and Black Bean Consumption on Postprandial Vascular Responses in People with Arterial Stiffness: A Pilot Randomized Cross-Over Study. Nutrients 2025, 17, 1159. https://doi.org/10.3390/nu17071159
Zahradka P, Perera D, Charney J, Taylor CG. Distinct Effects of Wheat and Black Bean Consumption on Postprandial Vascular Responses in People with Arterial Stiffness: A Pilot Randomized Cross-Over Study. Nutrients. 2025; 17(7):1159. https://doi.org/10.3390/nu17071159
Chicago/Turabian StyleZahradka, Peter, Danielle Perera, Jordan Charney, and Carla G. Taylor. 2025. "Distinct Effects of Wheat and Black Bean Consumption on Postprandial Vascular Responses in People with Arterial Stiffness: A Pilot Randomized Cross-Over Study" Nutrients 17, no. 7: 1159. https://doi.org/10.3390/nu17071159
APA StyleZahradka, P., Perera, D., Charney, J., & Taylor, C. G. (2025). Distinct Effects of Wheat and Black Bean Consumption on Postprandial Vascular Responses in People with Arterial Stiffness: A Pilot Randomized Cross-Over Study. Nutrients, 17(7), 1159. https://doi.org/10.3390/nu17071159