Vitamin D, B9, and B12 Deficiencies as Key Drivers of Clinical Severity and Metabolic Comorbidities in Major Psychiatric Disorders
Abstract
:1. Introduction
Rationale and Study Objective
2. Materials and Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
- -
- Age between 18 and 65 years;
- -
- Primary diagnosis of SZ, MDD, or BD;
- -
- Ongoing treatment or follow-up at the psychiatric center for these disorders;
- -
- Signed informed consent for participation and use of clinical data for research purposes.
- -
- Current pregnancy or intention to become pregnant within 6 months of inclusion;
- -
- Serious, unstable chronic diseases or neurological conditions that could alter the results (e.g., autoimmune diseases or cancer);
- -
- Regular use of vitamin D, B9, or B12 supplements within three months prior to inclusion;
- -
- Inability to complete clinical assessments due to severe cognitive impairment or acute psychiatric illness.
2.3. Data Collection and Clinical Scales
2.4. Clinical Scales
- -
- -
- -
- Global functioning: the Global Assessment of Functioning (GAF) scale [51] was used to measure overall functioning, with a score <50 indicating severe functional impairment.
- -
- -
- Suicide risk: the Suicidal Behavior Questionnaire-Revised (SBQ-R) [53] was used to assess suicide risk. A score ≥8 was interpreted as indicating a high risk of suicide.
- -
- Metabolic syndrome: the International Diabetes Federation (IDF) criteria [54] were used to diagnose metabolic syndrome, based on factors such as high waist circumference, hypertension, hyperglycemia, elevated triglycerides, and low HDL cholesterol levels.
- -
- Metabolic comorbidities, such as obesity, hypertension, and dyslipidemia, were recorded based on biological data and medical records. The patients were also assessed for substance use, including tobacco (using the Fagerström Test for Nicotine Dependence [55]), alcohol, and cannabis.
2.5. Statistical Analysis
3. Results
3.1. Vitamin D Deficiency Across Diagnostic Groups
3.2. Vitamin B9 (Folate) Deficiency
3.3. Vitamin B12 Deficiency
4. Discussion
4.1. Vitamin D: A Neurosteroid with Systemic Influence
4.2. Folate (B9) and Vitamin B12: Gatekeepers of Neurotransmission and Cognitive Health
4.3. Nutrients and Clinical Outcomes
4.4. Integrating Nutritional Interventions into Psychiatric Care
4.5. Strengths and Limitations
4.6. Future Research and Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADHD | Attention deficit and hyperactivity disorder |
BD | Bipolar disorder |
CDSS | Calgary Depression Scale for Schizophrenia |
CGI | Clinical global impression |
CI | Confidence interval |
CRP | C-reactive protein |
GAF | Global Assessment of Functioning |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
MARS | Medication Adherence Rating Scale |
MDD | Major depressive disorder |
OR | Odd ratio |
PTSD | Post-traumatic stress disorder |
SBQ-R | Suicide Behaviors Questionnaire—Revised |
SF-36 | 36-Item Short Form Health Survey Questionnaire |
SQoL-18 | Schizophrenia Quality of Life—18 items |
STAI-YA | State-Trait Anxiety Inventory—YA Form |
SZ | Schizophrenia |
TSH | Thyroid-stimulating hormone |
UKU | Udvalg for Kliniske Undersøgelser |
References
- Mandal, P.K.; Gaur, S.; Roy, R.G.; Samkaria, A.; Ingole, R.; Goel, A. Schizophrenia, Bipolar and Major Depressive Disorders: Overview of Clinical Features, Neurotransmitter Alterations, Pharmacological Interventions, and Impact of Oxidative Stress in the Disease Process. ACS Chem. Neurosci. 2022, 13, 2784–2802. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Womer, F.Y.; Leng, H.; Chang, M.; Yin, Z.; Wei, Y.; Zhou, Q.; Fu, S.; Deng, X.; Lv, J.; et al. The Relationship Between Cognitive Dysfunction and Symptom Dimensions Across Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front. Psychiatry 2019, 10, 253. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Jiang, X.; Yu, H.; Ding, S.; Lu, Y.; Li, W.; Zhang, H.; Liu, B.; Cui, Y.; et al. Common and Specific Functional Activity Features in Schizophrenia, Major Depressive Disorder, and Bipolar Disorder. Front. Psychiatry 2019, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Tang, Y.; Wang, F.; Liao, X.; Jiang, X.; Wei, S.; Mechelli, A.; He, Y.; Xia, M. Transdiagnostic Dysfunctions in Brain Modules Across Patients with Schizophrenia, Bipolar Disorder, and Major Depressive Disorder: A Connectome-Based Study. Schizophr. Bull. 2020, 46, 699–712. [Google Scholar] [CrossRef]
- Saarni, S.I.; Viertiö, S.; Perälä, J.; Koskinen, S.; Lönnqvist, J.; Suvisaari, J. Quality of life of people with schizophrenia, bipolar disorder and other psychotic disorders. Br. J. Psychiatry 2010, 197, 386–394. [Google Scholar] [CrossRef]
- Kadakia, A.; Catillon, M.; Fan, Q.; Williams, G.R.; Marden, J.R.; Anderson, A.; Kirson, N.; Dembek, C. The Economic Burden of Schizophrenia in the United States. J. Clin. Psychiatry 2022, 83, 22m14458. Available online: http://www.psychiatrist.com/jcp/economic-burden-schizophrenia-united-states (accessed on 9 October 2024). [CrossRef]
- Greenberg, P.E.; Fournier, A.-A.; Sisitsky, T.; Simes, M.; Berman, R.; Koenigsberg, S.H.; Kessler, R.C. The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). PharmacoEconomics 2021, 39, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Batinic, B.; Ristic, I.; Zugic, M.; Baldwin, D.S. Treatment of Symptom Clusters in Schizophrenia, Bipolar Disorder and Major Depressive Disorder with the Dopamine D3/D2 Preferring Partial Agonist Cariprazine. Front. Psychiatry 2021, 12, 784370. [Google Scholar] [CrossRef]
- Doane, M.J.; Raymond, K.; Saucier, C.; Bessonova, L.; O’Sullivan, A.K.; White, M.K.; Foster, A.M.; LaGasse, K.; Carpenter-Conlin, J.; Sajatovic, M.; et al. Unmet needs with antipsychotic treatment in schizophrenia and bipolar I disorder: Patient perspectives from qualitative focus groups. BMC Psychiatry 2023, 23, 245. [Google Scholar] [CrossRef]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef]
- Dal, N.; Bilici, S. An Overview of the Potential Role of Nutrition in Mental Disorders in the Light of Advances in Nutripsychiatry. Curr. Nutr. Rep. 2024, 13, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Goltzman, D. Functions of vitamin D in bone. Histochem. Cell Biol. 2018, 149, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Sailike, B.; Onzhanova, Z.; Akbay, B.; Tokay, T.; Molnár, F. Vitamin D in Central Nervous System: Implications for Neurological Disorders. Int. J. Mol. Sci. 2024, 25, 7809. [Google Scholar] [CrossRef]
- García-Serna, A.M.; Morales, E. Neurodevelopmental effects of prenatal vitamin D in humans: Systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 2468–2481. [Google Scholar] [CrossRef]
- Calvello, R.; Cianciulli, A.; Nicolardi, G.; De Nuccio, F.; Giannotti, L.; Salvatore, R.; Porro, C.; Trotta, T.; Panaro, M.A.; Lofrumento, D.D. Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an Animal Model of Parkinson’s Disease, Shifting M1 to M2 Microglia Responses. J. Neuroimmune Pharmacol. 2017, 12, 327–339. [Google Scholar] [CrossRef]
- Bermudez Echeverry, M.; Honda Takada, S.; Petrucelli Arruda, B.; Sterzeck Cardoso, D.; Pinheiro Martins, P.; Midori Ikebara, J.; Sousa-Santos, A.V.; Torres Da Silva, V.R.C. Vitamins D and B12, Altered Synaptic Plasticity and Extracellular Matrix. In B-Complex Vitamins—Sources, Intakes and Novel Applications; Guy LeBlanc, J., Ed.; IntechOpen: London, UK, 2022; ISBN 978-1-83969-797-5. Available online: https://www.intechopen.com/chapters/78604 (accessed on 9 October 2024).
- Lardner, A.L. Vitamin D and hippocampal development-the story so far. Front. Mol. Neurosci. 2015, 8, 58. [Google Scholar] [CrossRef]
- Anglin, R.E.S.; Samaan, Z.; Walter, S.D.; McDonald, S.D. Vitamin D deficiency and depression in adults: Systematic review and meta-analysis. Br. J. Psychiatry 2013, 202, 100–107. [Google Scholar] [CrossRef]
- Mo, H.; Zhang, J.; Huo, C.; Zhang, M.; Xiao, J.; Peng, J.; Wang, G.; Wang, C.; Li, Y. The association of vitamin D deficiency, age and depression in US adults: A cross-sectional analysis. BMC Psychiatry 2023, 23, 534. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Hoogendijk, W.; Lips, P.; Heijboer, A.C.; Schoevers, R.; Van Hemert, A.M.; Beekman, A.T.F.; Smit, J.H.; Penninx, B. The association between low vitamin D and depressive disorders. Mol. Psychiatry 2014, 19, 444–451. Available online: http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=13594184&AN=95046857&h=f0EOloY%2F%2Bx5kdfFYAqQUO0Ytpvxf0hdM891YZkLFdYI0Sjh7etCHg8mlkMoIvGrjQUV0h8I9x3WU1ijNJ4xMrA%3D%3D&crl=c (accessed on 18 July 2016). [CrossRef]
- Carnegie, R.E.; Zheng, J.; Borges, M.C.; Jones, H.J.; Wade, K.H.; Sallis, H.M.; Lewis, S.J.; Evans, D.M.; Revez, J.A.; The Major Depressive Disorder Working Group of The Psychiatric Genomics Consortium; et al. Micronutrients and Major Depression: A Mendelian Randomisation Study. Nutrients 2024, 16, 3690. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Yan, W.; Li, X.; Zhao, L.; Lu, T.; Zhang, D.; Li, J.; Wang, L. Calcium Homeostasis and Psychiatric Disorders: A Mendelian Randomization Study. Nutrients 2023, 15, 4051. [Google Scholar] [CrossRef]
- Zajkowska, I.; Niczyporuk, P.; Urbaniak, A.; Tomaszek, N.; Modzelewski, S.; Waszkiewicz, N. Investigating the Impacts of Diet, Supplementation, Microbiota, Gut-Brain Axis on Schizophrenia: A Narrative Review. Nutrients 2024, 16, 2228. [Google Scholar] [CrossRef]
- Lioudyno, V.I.; Tsymbalova, E.A.; Chernyavskaya, E.A.; Scripchenko, E.Y.; Bisaga, G.N.; Dmitriev, A.V.; Abdurasulova, I.N. Association of Increased Homocysteine Levels with Impaired Folate Metabolism and Vitamin B Deficiency in Early-Onset Multiple Sclerosis. Biochemistry 2024, 89, 562–573. [Google Scholar] [CrossRef]
- Ma, F.; Wu, T.; Zhao, J.; Ji, L.; Song, A.; Zhang, M.; Huang, G. Plasma Homocysteine and Serum Folate and Vitamin B12 Levels in Mild Cognitive Impairment and Alzheimer’s Disease: A Case-Control Study. Nutrients 2017, 9, 725. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Zhao, W.; Yun, Y.; Bai, L.; An, H.; Zhang, Q.; Yan, J.; Fan, F.; Han, X.; Yang, F. Homocysteine levels in first-episode patients with psychiatric disorders. Front. Psychiatry 2024, 15, 1380900. [Google Scholar] [CrossRef]
- Kennedy, K.P.; Alexander, J.L.; Garakani, A.; Gross, L.S.; Mintz, D.L.; Parikh, T.; Pine, J.H.; Sumner, C.R.; Baron, D.A. Vitamin B12 Supplementation in Psychiatric Practice. Curr. Psychiatry Rep. 2024, 26, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Tobin, D.; Vuckovic, A.; Sarris, J. Targeting Divergent Pathways in the Nutritional Management of Depression. Nutrients 2024, 16, 2806. [Google Scholar] [CrossRef]
- Brown, H.E.; Roffman, J.L. Vitamin Supplementation in the Treatment of Schizophrenia. CNS Drugs 2014, 28, 611–622. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, M.; Wang, Y.; Wu, H.; Yang, X.; Chen, X.; Wu, J. Exploring the Association between Serum B Vitamins, Homocysteine and Mental Disorders: Insights from Mendelian Randomization. Nutrients 2024, 16, 1986. [Google Scholar] [CrossRef]
- Kaviani, M.; Nikooyeh, B.; Etesam, F.; Behnagh, S.J.; Kangarani, H.M.; Arefi, M.; Yaghmaei, P.; Neyestani, T.R. Effects of vitamin D supplementation on depression and some selected pro-inflammatory biomarkers: A double-blind randomized clinical trial. BMC Psychiatry 2022, 22, 694. [Google Scholar] [CrossRef]
- Jahan-Mihan, A.; Stevens, P.; Medero-Alfonso, S.; Brace, G.; Overby, L.K.; Berg, K.; Labyak, C. The Role of Water-Soluble Vitamins and Vitamin D in Prevention and Treatment of Depression and Seasonal Affective Disorder in Adults. Nutrients 2024, 16, 1902. [Google Scholar] [CrossRef]
- Kaviani, M.; Nikooyeh, B.; Zand, H.; Yaghmaei, P.; Neyestani, T.R. Effects of vitamin D supplementation on depression and some involved neurotransmitters. J. Affect. Disord. 2020, 269, 28–35. [Google Scholar] [CrossRef]
- Sangle, P.; Sandhu, O.; Aftab, Z.; Anthony, A.T.; Khan, S. Vitamin B12 Supplementation: Preventing Onset and Improving Prognosis of Depression. Cureus 2020, 12, e11169. Available online: https://www.cureus.com/articles/42615-vitamin-b12-supplementation-preventing-onset-and-improving-prognosis-of-depression (accessed on 10 October 2024). [CrossRef] [PubMed]
- Neriman, A.; Hakan, Y.; Ozge, U. The psychotropic effect of vitamin D supplementation on schizophrenia symptoms. BMC Psychiatry 2021, 21, 309. [Google Scholar] [CrossRef]
- Roffman, J.L.; Petruzzi, L.J.; Tanner, A.S.; Brown, H.E.; Eryilmaz, H.; Ho, N.F.; Giegold, M.; Silverstein, N.J.; Bottiglieri, T.; Manoach, D.S.; et al. Biochemical, physiological and clinical effects of l-methylfolate in schizophrenia: A randomized controlled trial. Mol. Psychiatry 2018, 23, 316–322. [Google Scholar] [CrossRef]
- Ulloque-Badaracco, J.R.; Hernandez-Bustamante, E.A.; Alarcon-Braga, E.A.; Al-kassab-Córdova, A.; Cabrera-Guzmán, J.C.; Herrera-Añazco, P.; Benites-Zapata, V.A. Vitamin B12, folate, and homocysteine in metabolic syndrome: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1221259. [Google Scholar] [CrossRef]
- Ashok, T.; Puttam, H.; Tarnate, V.C.A.; Jhaveri, S.; Avanthika, C.; Trejo Treviño, A.G.; Sl, S.; Ahmed, N.T. Role of Vitamin B12 and Folate in Metabolic Syndrome. Cureus 2021, 13, e18521. Available online: https://www.cureus.com/articles/73145-role-of-vitamin-b12-and-folate-in-metabolic-syndrome (accessed on 10 October 2024). [CrossRef]
- Boachie, J.; Adaikalakoteswari, A.; Samavat, J.; Saravanan, P. Low Vitamin B12 and Lipid Metabolism: Evidence from Pre-Clinical and Clinical Studies. Nutrients 2020, 12, 1925. [Google Scholar] [CrossRef]
- Saraswathy, K.N.; Joshi, S.; Yadav, S.; Garg, P.R. Metabolic distress in lipid & one carbon metabolic pathway through low vitamin B-12: A population based study from North India. Lipids Health Dis. 2018, 17, 96. [Google Scholar] [CrossRef]
- Kanagasundaram, P.; Lee, J.; Prasad, F.; Costa-Dookhan, K.A.; Hamel, L.; Gordon, M.; Remington, G.; Hahn, M.K.; Agarwal, S.M. Pharmacological Interventions to Treat Antipsychotic-Induced Dyslipidemia in Schizophrenia Patients: A Systematic Review and Meta Analysis. Front. Psychiatry 2021, 12, 642403. [Google Scholar] [CrossRef]
- Van Marwijk, H.W.J.; Van Der Kooy, K.G.; Stehouwer, C.D.A.; Beekman, A.T.F.; Van Hout, H.P.J. Depression increases the onset of cardiovascular disease over and above other determinants in older primary care patients, a cohort study. BMC Cardiovasc. Disord. 2015, 15, 40. [Google Scholar] [CrossRef]
- Swartz, H.A.; Fagiolini, A. Cardiovascular Disease and Bipolar Disorder: Risk and Clinical Implications. J. Clin. Psychiatry 2012, 73, 1563–1565. [Google Scholar] [CrossRef]
- Abdelwahab, M.M.; Gamil, A.H.; Ewais, N.M.; Shahin, M.H.; Ashmawy, R.E.; Baltaji, H.A. Deficiencies in Vitamins and Disease-Specific Diets Impacting Mental Health. In Nutrition and Psychiatric Disorders; Mohamed, W., Kobeissy, F., Eds.; Nutritional Neurosciences; Springer Nature Singapore: Singapore, 2024; pp. 307–325. ISBN 978-981-9726-80-6. Available online: https://link.springer.com/10.1007/978-981-97-2681-3_14 (accessed on 10 October 2024).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 978-0-89042-555-8. Available online: https://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596 (accessed on 7 June 2022).
- Addington, D.; Addington, J.; Maticka-Tyndale, E. Assessing depression in schizophrenia: The Calgary Depression Scale. Br. J. Psychiatry Suppl. 1993, 39–44. [Google Scholar]
- Micoulaud-Franchi, J.-A. Toward a transdiagnostic tool to evaluate depressive symptoms across mental disorders_ Validation of the Calgary depression rating scale in patients with major depressive disorder. Psychiatry Res. 2018, 268, 68–71. [Google Scholar]
- Spielberger, C.D.; Vagg, P.R.; Barker, L.; Donham, G.; Westberry, L. The factor structure of the state-trait anxiety inventory. Stress Anxiety 1980, 7, 95–109. [Google Scholar]
- Julian, L.J. Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care Res. 2011, 63, S467–S472. Available online: https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/acr.2056 (accessed on 9 October 2024). [CrossRef]
- Startup, M.; Jackson, M.C.; Bendix, S. The concurrent validity of the Global Assessment of Functioning (GAF). Br. J. Clin. Psychol. 2002, 41, 417–422. [Google Scholar]
- Ware, J.E.; Kosinski, M.; Keller, S. SF-36 Physical and Mental Health Summary Scales; The Health Institute, New England Medical Center: Boston, MA, USA, 1994. [Google Scholar]
- Osman, A.; Bagge, C.L.; Gutierrez, P.M.; Konick, L.C.; Kopper, B.A.; Barrios, F.X. The Suicidal Behaviors Questionnaire-Revised (SBQ-R): Validation with clinical and nonclinical samples. Assessment 2001, 8, 443–454. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Heatherton, T.F.; Kozlowski, L.T.; Frecker, R.C.; Fagerström, K.O. The Fagerström Test for Nicotine Dependence: A revision of the Fagerström Tolerance Questionnaire. Br. J. Addict. 1991, 86, 1119–1127. [Google Scholar] [CrossRef]
- Cui, X.; Eyles, D.W. Vitamin D and the Central Nervous System: Causative and Preventative Mechanisms in Brain Disorders. Nutrients 2022, 14, 4353. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Shi, H.; Su, S.; Harshfield, G.A.; Gutin, B.; Snieder, H.; Dong, Y. A Genome-Wide Methylation Study of Severe Vitamin D Deficiency in African American Adolescents. J. Pediatr. 2013, 162, 1004–1009.e1. [Google Scholar] [CrossRef]
- Fetahu, I.S.; Höbaus, J.; Kállay, E. Vitamin D and the epigenome. Front. Physiol. 2014, 5, 164. [Google Scholar] [CrossRef] [PubMed]
- Rhie, S.J.; Jung, E.-Y.; Shim, I. The role of neuroinflammation on pathogenesis of affective disorders. J. Exerc. Rehabil. 2020, 16, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Kim, B.S.; Im, H.-I. Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int. Neurourol. J. 2016, 20 (Suppl. S1), S2–S7. [Google Scholar] [CrossRef] [PubMed]
- Buckley, P.F. Neuroinflammation and Schizophrenia. Curr. Psychiatry Rep. 2019, 21, 72. [Google Scholar] [CrossRef]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef]
- Feng, T.; Tripathi, A.; Pillai, A. Inflammatory Pathways in Psychiatric Disorders: The Case of Schizophrenia and Depression. Curr. Behav. Neurosci. Rep. 2020, 7, 128–138. [Google Scholar] [CrossRef]
- Sæther, L.S.; Ueland, T.; Haatveit, B.; Maglanoc, L.A.; Szabo, A.; Djurovic, S.; Aukrust, P.; Roelfs, D.; Mohn, C.; Ormerod, M.B.E.G.; et al. Inflammation and cognition in severe mental illness: Patterns of covariation and subgroups. Mol. Psychiatry 2023, 28, 1284–1292. [Google Scholar] [CrossRef]
- Petruso, F.; Giff, A.E.; Milano, B.A.; De Rossi, M.M.; Saccaro, L.F. Inflammation and emotion regulation: A narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal. 2023, 7, NS20220077. [Google Scholar] [CrossRef] [PubMed]
- Martín Giménez, V.M.; Menéndez, S.G.; Holick, M.F.; Manucha, W. Vitamin D: A Repurposed Anti-inflammatory Drug at the CardiovascularLevel. CPPS 2023, 24, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; McGrath, J.J.; Burne, T.H.J.; Eyles, D.W. Vitamin D and schizophrenia: 20 years on. Mol. Psychiatry 2021, 26, 2708–2720. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Bukala, B.R.; Beck, K. Schizophrenia: From neurochemistry to circuits, symptoms and treatments. Nat. Rev. Neurol. 2024, 20, 22–35. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sadighi, G.; Nazeri Astaneh, A.; Tajabadi-Ebrahimi, M.; Dejam, T. Co-administration of probiotic and vitamin D significantly improves cognitive function in schizophrenic patients: A double-blinded randomized controlled trial. Neuropsychopharm Rep. 2024, 44, 389–398. [Google Scholar] [CrossRef]
- Wang, Y.; Miller, J.W.; Bello, N.T.; Shapses, S.A. Low-vitamin-D diet lowers cerebral serotonin concentration in mature female mice. Nutr. Res. 2020, 81, 71–80. [Google Scholar] [CrossRef]
- Alimohammadi-Kamalabadi, M.; Ziaei, S.; Hasani, M.; Mohammadi, S.; Mehrbod, M.; Morvaridi, M.; Persad, E.; Belančić, A.; Malekahmadi, M.; Estêvão, M.D.D.M.A.D.O.; et al. Does vitamin D supplementation impact serotonin levels? A systematic review and meta-analysis. Health Sci. Rep. 2024, 7, e2276. [Google Scholar] [CrossRef]
- Beckett, E.L.; Duesing, K.; Martin, C.; Jones, P.; Furst, J.; King, K.; Niblett, S.; Yates, Z.; Veysey, M.; Lucock, M. Relationship between methylation status of vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry. J. Nutr. Intermed. Metab. 2016, 6, 8–15. [Google Scholar] [CrossRef]
- Tuo, L.-J.; Song, X.-Y.; Zhu, Y.-Y.; He, H.-N.; Song, Y.-P.; Chen, D.-Z.; Zheng, X.-M.; Zhang, H.; Xu, D.-X. Gestational folic acid supplement prevents vitamin D deficiency-induced depression-like behavior by reversing cortical DNA hypomethylation in adult offspring. J. Steroid Biochem. Mol. Biol. 2023, 231, 106313. [Google Scholar] [CrossRef]
- Payne, J.L.; Osborne, L.M.; Cox, O.; Kelly, J.; Meilman, S.; Jones, I.; Grenier, W.; Clark, K.; Ross, E.; McGinn, R.; et al. DNA methylation biomarkers prospectively predict both antenatal and postpartum depression. Psychiatry Res. 2020, 285, 112711. [Google Scholar] [CrossRef]
- Martínez-Iglesias, O.; Naidoo, V.; Corzo, L.; Pego, R.; Seoane, S.; Rodríguez, S.; Alcaraz, M.; Muñiz, A.; Cacabelos, N.; Cacabelos, R. DNA Methylation as a Biomarker for Monitoring Disease Outcome in Patients with Hypovitaminosis and Neurological Disorders. Genes 2023, 14, 365. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ahmed, H.; Abdel Aziz, K.; Al Ammari, A.; Galadari, M.; Alsaadi, A.; Alhassani, A.; Al Marzooqi, F.; AlAhbabi, M.; Alsheryani, H.; Bahayan, M.; et al. Prevalence and risk factors for metabolic syndrome in schizophrenia, schizoaffective, and bipolar disorder. Int. J. Psychiatry Clin. Pract. 2024, 28, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Mazereel, V.; Detraux, J.; Vancampfort, D.; Van Winkel, R.; De Hert, M. Impact of Psychotropic Medication Effects on Obesity and the Metabolic Syndrome in People with Serious Mental Illness. Front. Endocrinol. 2020, 11, 573479. [Google Scholar] [CrossRef]
- Zhou, Z.; Nagashima, T.; Toda, C.; Kobayashi, M.; Suzuki, T.; Nagayasu, K.; Shirakawa, H.; Asai, S.; Kaneko, S. Vitamin D supplementation is effective for olanzapine-induced dyslipidemia. Front. Pharmacol. 2023, 14, 1135516. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.-L.; Brito, A.; Guéant, J.-L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.-H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef]
- Markun, S.; Gravestock, I.; Jäger, L.; Rosemann, T.; Pichierri, G.; Burgstaller, J.M. Effects of Vitamin B12 Supplementation on Cognitive Function, Depressive Symptoms, and Fatigue: A Systematic Review, Meta-Analysis, and Meta-Regression. Nutrients 2021, 13, 923. [Google Scholar] [CrossRef]
- Bottiglieri, T. Folate, Vitamin B12, and Neuropsychiatric Disorders. Nutr. Rev. 2009, 54, 382–390. [Google Scholar] [CrossRef]
- Fraguas, D.; Díaz-Caneja, C.M.; Ayora, M.; Hernández-Álvarez, F.; Rodríguez-Quiroga, A.; Recio, S.; Leza, J.C.; Arango, C. Oxidative Stress and Inflammation in First-Episode Psychosis: A Systematic Review and Meta-analysis. Schizophr. Bull. 2019, 45, 742–751. [Google Scholar] [CrossRef]
- Nilsson, K.; Gustafson, L.; Hultberg, B. Plasma homocysteine—A marker of vascular disease in elderly patients with mental illness. Clin. Biochem. 2010, 43, 1056–1059. [Google Scholar] [CrossRef]
- Quadros, E.V. Folate and Other B Vitamins in Brain Health and Disease. Nutrients 2023, 15, 2525. [Google Scholar] [CrossRef]
- Gilbody, S.; Lightfoot, T.; Sheldon, T. Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J. Epidemiol. Community Health 2007, 61, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.; Hagan, K.E.; Kingston, N. The association of folate and depression: A meta-analysis. J. Psychiatr. Res. 2017, 95, 9–18. [Google Scholar] [CrossRef]
- Mathew, S.J.; Lijffijt, M. Neurometabolic Abnormalities in Treatment-Resistant Depression. Am. J. Psychiatry 2017, 174, 3–5. [Google Scholar] [CrossRef]
- Baltrusch, S. The Role of Neurotropic B Vitamins in Nerve Regeneration. BioMed Res. Int. 2021, 2021, 9968228. [Google Scholar] [CrossRef]
- Garcia, A. Homocysteine and cognitive function in elderly people. Can. Med. Assoc. J. 2004, 171, 897–904. [Google Scholar] [CrossRef]
- Jakubowski, H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 8095. [Google Scholar] [CrossRef]
- Ostrakhovitch, E.A.; Tabibzadeh, S. Homocysteine and age-associated disorders. Ageing Res. Rev. 2019, 49, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.; Liu, T.; Peter, I.; Buel, J.; Arsenault, L.; Scott, T.; Qiu, W.W. The Homocysteine Hypothesis of Depression. Am. J. Psychiatry 2007, 164, 861–867. [Google Scholar] [CrossRef]
- Stanger, O.; Fowler, B.; Piertzik, K.; Huemer, M.; Haschke-Becher, E.; Semmler, A.; Lorenzl, S.; Linnebank, M. Homocysteine, folate and vitamin B 12 in neuropsychiatric diseases: Review and treatment recommendations. Expert Rev. Neurother. 2009, 9, 1393–1412. [Google Scholar] [CrossRef]
- Young, L.M.; Pipingas, A.; White, D.J.; Gauci, S.; Scholey, A. A Systematic Review and Meta-Analysis of B Vitamin Supplementation on Depressive Symptoms, Anxiety, and Stress: Effects on Healthy and ‘At-Risk’ Individuals. Nutrients 2019, 11, 2232. [Google Scholar] [CrossRef]
- Syed, E.U.; Wasay, M.; Awan, S. Vitamin B12 Supplementation in Treating Major Depressive Disorder: A Randomized Controlled Trial. Open Neurol. J. 2013, 7, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Musazadeh, V.; Keramati, M.; Ghalichi, F.; Kavyani, Z.; Ghoreishi, Z.; Alras, K.A.; Albadawi, N.; Salem, A.; Albadawi, M.I.; Salem, R.; et al. Vitamin D protects against depression: Evidence from an umbrella meta-analysis on interventional and observational meta-analyses. Pharmacol. Res. 2023, 187, 106605. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; Carney, S.M.; Goodwin, G.M.; Geddes, J.R. Folate for Depressive Disorders: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Psychopharmacol. 2004, 18, 251–256. [Google Scholar] [CrossRef]
- Borges-Vieira, J.G.; Cardoso, C.K.S. Efficacy of B-vitamins and vitamin D therapy in improving depressive and anxiety disorders: A systematic review of randomized controlled trials. Nutr. Neurosci. 2023, 26, 187–207. [Google Scholar] [CrossRef]
- Sahu, P.; Thippeswamy, H.; Chaturvedi, S.K. Neuropsychiatric manifestations in vitamin B12 deficiency. Vitam. Horm. 2022, 119, 457–470. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0083672922000012 (accessed on 21 March 2025).
- Tsiglopoulos, J.; Pearson, N.; Mifsud, N.; Allott, K.; O’Donoghue, B. The association between vitamin D and symptom domains in psychotic disorders: A systematic review. Schizophr. Res. 2021, 237, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Blom, J.D. Hallucinations and Vitamin B12 Deficiency: A Systematic Review. Psychopathology 2024, 57, 492–503. [Google Scholar] [CrossRef]
- Etgen, T.; Sander, D.; Bickel, H.; Sander, K.; Förstl, H. Vitamin D Deficiency, Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis. Dement. Geriatr. Cogn. Disord. 2012, 33, 297–305. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Stojanovska, L.; Tangalakis, K.; Bosevski, M.; Apostolopoulos, V. Cognitive decline: A vitamin B perspective. Maturitas 2016, 93, 108–113. [Google Scholar] [CrossRef]
- Fond, G.; Godin, O.; Schürhoff, F.; Berna, F.; Bulzacka, E.; Andrianarisoa, M.; Brunel, L.; Aouizerate, B.; Capdevielle, D.; Chereau, I.; et al. Hypovitaminosis D is associated with depression and anxiety in schizophrenia: Results from the national FACE-SZ cohort. Psychiatry Res. 2018, 270, 104–110. [Google Scholar] [CrossRef]
- Bagheri, S.; Saghazade, A.R.; Abbaszadeh-Mashkani, S.; Banafshe, H.R.; Ghoreishi, F.S.; Mesdaghinia, A.; Ghaderi, A. The effect of vitamin D supplementation on tobacco-related disorders in individuals with a tobacco use disorder: A randomized clinical trial. J. Addict. Dis. 2022, 40, 382–393. [Google Scholar] [CrossRef]
- Landaas, E.T.; Aarsland, T.I.M.; Ulvik, A.; Halmøy, A.; Ueland, P.M.; Haavik, J. Vitamin levels in adults with ADHD. BJPsych Open 2016, 2, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Köhler-Forsberg, O.; Turner, M.; Penninx, B.W.J.H.; Wrobel, A.; Firth, J.; Loughman, A.; Reavley, N.J.; McGrath, J.J.; Momen, N.C.; et al. Comorbidity between major depressive disorder and physical diseases: A comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023, 22, 366–387. [Google Scholar] [CrossRef]
- Hoepner, C.; McIntyre, R.; Papakostas, G. Impact of Supplementation and Nutritional Interventions on Pathogenic Processes of Mood Disorders: A Review of the Evidence. Nutrients 2021, 13, 767. [Google Scholar] [CrossRef]
- Halaris, A.; Sohl, E.; Whitham, E.A. Treatment-Resistant Depression Revisited: A Glimmer of Hope. J. Pers. Med. 2021, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Majd, M.; Saunders, E.F.H.; Engeland, C.G. Inflammation and the dimensions of depression: A review. Front. Neuroendocrinol. 2020, 56, 100800. [Google Scholar] [CrossRef]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef]
- Fornaro, M.; Caiazza, C.; Billeci, M.; Berk, M.; Marx, W.; Balanzá-Martinez, V.; De Prisco, M.; Pezone, R.; De Simone, G.; Solini, N.; et al. Nutraceuticals and phytoceuticals in the treatment of schizophrenia: A systematic review and network meta-analysis “Nutra NMA SCZ”. Mol. Psychiatry 2024. [Google Scholar] [CrossRef]
Schizophrenia | All | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
Hypovitaminosis D | OR a (95% CI b) or Standardized Betas | p-Value Adjusted | ||||
No | Yes | p-Value | ||||
n = 463 | n = 371 (80.1%) | n = 92 (19.9%) | ||||
Sociodemograhics | ||||||
Sex | ||||||
Women | 124 (26.8%) | 99 (26.7%) | 25 (27.2%) | |||
Men | 339 (73.2%) | 272 (73.3%) | 67 (72.8%) | 1.000 | ||
Age (years) | 34.30 (11.61) | 33.58 (11.23) | 35.24 (10.28) | 0.197 | ||
65 years old and older | 3 (0.6%) | 3 (0.8%) | 0 (0%) | 1.000 | ||
Labor force status | 54 (11.9%) | 51 (14.0%) | 3 (3.3%) | 0.002 | 0.205 (0.062–0.673) | 0.009 |
Single | 392 (86.2%) | 316 (86.8%) | 76 (83.5%) | 0.401 | ||
Education level | 166 (65.1%) | 137 (64.6%) | 29 (67.4%) | 0.861 | ||
Psychiatric comorbidities | ||||||
ADHD c | 3 (0.7%) | 3 (0.7%) | 0 (0%) | 1.000 | ||
Agoraphobia | 60 (13.0%) | 36 (9.7%) | 24 (26.7%) | <0.001 | 3.417 (1.908–6.119) | <0.001 |
Generalized anxiety disorder | 79 (17.2%) | 59 (15.9%) | 20 (22.2%) | 0.163 | 1.506 (0.851–2.666) | 0.160 |
Panic disorder | 63 (13.7%) | 51 (13.8%) | 12 (13.3%) | 1.000 | ||
Social phobia | 54 (11.7%) | 40 (74.1%) | 14 (15.6%) | 0.206 | ||
PTSD d | 7 (1.5%) | 7 (1.9%) | 0 (0%) | 0.215 | ||
Addictive comorbidities | ||||||
Tobacco smoking | 260 (56.4%) | 198 (53.7%) | 62 (67.4%) | 0.019 | 1.856 (1.139–3.025) | 0.013 |
Tobacco (packs per year) | 11.07 (14.20) | 10.37 (13.83) | 12.93 (14.53) | 0.167 | 0.041 (−1.978–4.691) | 0.424 |
Cannabis consumption | 85 (18.4%) | 66 (17.8%) | 19 (20.7%) | 0.549 | ||
Alcohol use disorder | 59 (12.9%) | 44 (12.0%) | 15 (16.3%) | 0.296 | ||
Clinical characteristics | ||||||
CDSS e score | 4.27 (4.79) | 3.84 (4.48) | 5.88 (5.48) | 0.003 | 0.175 (0.879–3.233) | 0.001 |
Depression (CDSS e cutoff) | 110 (29.3%) | 79 (26.5%) | 31 (40.3%) | 0.024 | 1.894 (1.118–3.208) | 0.018 |
SQoL-18 f Index | 54.10 (18.33) | 54.16 (18.59) | 50.25 (17.95) | 0.084 | −0.082 (−8.136–0.751) | 0.103 |
Fagerström score | 5.08 (2.49) | 4.84 (2.60) | 5.70 (2.26) | 0.055 | 0.104 (−0.210–1.532) | 0.136 |
GAF g score | 51.47 (15.70) | 52.61 (15.04) | 45.51 (14.76) | <0.001 | −0.184 (−10.531–−3.354) | <0.001 |
Functionally remitted (GAF g) | 97 (23.4%) | 83 (25.3%) | 14 (16.3%) | 0.087 | 0.582 (0.311–1.088) | 0.090 |
STAI-YA h score | 46.00 (14.49) | 50.08 (11.40) | 42.33 (15.50) | 0.334 | ||
MARS i score | 6.45 (2.27) | 6.37 (2.19) | 6.54 (2.24) | 0.507 | ||
SF-36 j physical health score | 48.37 (9.59) | 47.94 (9.03) | 45.86 (13.82) | 0.582 | ||
SF-36 j mental health score | 32.54 (11.92) | 32.43 (10.39) | 34.35 (12.49) | 0.660 | ||
SBQ-R k score | 7.67 (4.64) | 7.59 (4.60) | 8.60 (5.04) | 0.111 | 0.088 (−0.257–2.222) | 0.120 |
SBQ-R k cutoff | 143 (46.1%) | 103 (43.5%) | 40 (54.8%) | 0.107 | 1.570 (0.921–2.674) | 0.097 |
CGI l score | 4.23 (1.15) | 4.20 (1.11) | 4.48 (1.08) | 0.040 | 0.098 (0.009–0.540) | 0.043 |
UKU I m | 4.82 (3.87) | 4.77 (3.79) | 5.59 (4.25) | 0.138 | 0.091 (−0.235–1.922) | 0.125 |
UKU II m | 1.22 (1.50) | 1.13 (1.42) | 1.47 (1.46) | 0.091 | 0.103 (−0.049–0.743) | 0.085 |
UKU III m | 2.46 (2.50) | 2.46 (2.46) | 2.58 (2.30) | 0.726 | ||
UKU IV m | 3.26 (3.62) | 3.35 (3.88) | 3.30 (3.07) | 0.935 | ||
Treatments | ||||||
Chlorpromazine-equivalent dose | 790.84 (756.36) | 789.96 (719.19) | 814.05 (826.50) | 0.780 | ||
Atypical antipsychotics | 401 (86.6%) | 324 (87.3%) | 77 (83.7%) | 0.392 | ||
Typical antipsychotics | 73 (15.8%) | 59 (15.9%) | 14 (15.2%) | 1.000 | ||
Antipsychotics (typical and atypical) | 417 (90.1%) | 335 (90.3%) | 82 (89.1%) | 0.700 | ||
Antidepressants | 128 (27.6%) | 94 (25.3%) | 34 (37.0%) | 0.037 | 1.700 (1.046–2.762) | 0.032 |
Benzodiazepines | 134 (28.9%) | 106 (28.6%) | 28 (30.4%) | 0.797 | ||
Mood stabilizers | 42 (9.1%) | 34 (9.2%) | 8 (8.7%) | 1.000 | ||
Physical health | ||||||
Body mass index | 25.87 (5.22) | 25.62 (5.04) | 26.90 (5.94) | 0.060 | 0.086 (−0.055–2.307) | 0.062 |
Obesity | 99 (21.4%) | 71 (19.1%) | 28 (30.4%) | 0.023 | 1.789 (1.064–3.007) | 0.028 |
Total cholesterol | 5.40 (8.59) | 5.54 (10.50) | 5.40 (1.29) | 0.902 | ||
LDL n cholesterol | 3.11 (1.03) | 3.05 (0.98) | 3.50 (1.22) | <0.001 | 0.156 (0.161–0.648) | 0.001 |
HDL o cholesterol | 1.40 (0.60) | 1.44 (0.60) | 1.33 (0.65) | 0.149 | −0.080 (−0.259–0.013) | 0.077 |
hsCRP p | 2.35 (2.31) | 2.16 (2.18) | 2.67 (2.53) | 0.078 | 0.079 (−0.098–1.015) | 0.106 |
Elevated hsCRP p | 258 (62.6%) | 208 (61.9%) | 50 (65.8%) | 0.600 | ||
TSH q | 2.32 (1.31) | 2.30 (1.37) | 2.50 (1.26) | 0.212 | ||
Prolactin | 618.89 (877.87) | 660.52 (963.73) | 539.67 (612.89) | 0.280 | ||
Vitamin B12 | 353.78 (128.00) | 356.96 (125.27) | 348.46 (146.30) | 0.697 | ||
Vitamin B9 | 14.41 (6.87) | 14.42 (7.15) | 12.99 (5.45) | 0.227 | ||
High blood pressure, diagnosed | 17 (3.7%) | 13 (3.5%) | 4 (4.3%) | 0.452 | ||
Diabetes | 14 (3.0%) | 10 (2.7%) | 4 (4.3%) | 0.300 | ||
High blood pressure, measured | 177 (38.4%) | 132 (35.8%) | 45 (48.9%) | 0.023 | 1.688 (1.057–2.697) | 0.028 |
Hyperglycemia | 54 (11.7%) | 39 (10.5%) | 15 (16.3%) | 0.146 | 1.587 (0.824–3.054) | 0.167 |
Hypertriglyceridemia | 124 (27.0%) | 88 (23.9%) | 36 (39.1%) | 0.006 | 2.171 (1.315–3.586) | 0.002 |
Low HDL o cholesterol | 122 (27.1%) | 88 (24.4%) | 34 (37.8%) | 0.017 | 2.003 (1.217–3.295) | 0.006 |
High abdominal perimeter | 282 (61.7%) | 223 (60.9%) | 59 (64.8%) | 0.548 | ||
Metabolic syndrome | 120 (26.1%) | 86 (23.3%) | 34 (37.8%) | 0.007 | 1.969 (1.200–3.231) | 0.007 |
Major Depressive Disorder | All | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
Hypovitaminosis D | OR a (95% CI b) or Standardized Betas | p-Value Adjusted | ||||
No | Yes | p-Value | ||||
n = 427 | n = 377 (88.3%) | n = 50 (11.7%) | ||||
Sociodemograhics | ||||||
Sex | ||||||
Women | 237 (55.5%) | 211 (56.0%) | 26 (52.0%) | |||
Men | 190 (44.5%) | 166 (44.0%) | 24 (48.0%) | 0.651 | ||
Age | 43.50 (15.06) | 43.57 (15.00) | 45.97 (15.80) | 0.314 | ||
65 years old and older | 36 (8.4%) | 31 (8.2%) | 5 (10.0%) | 0.595 | ||
Labor force status | 116 (27.6%) | 111 (29.9%) | 5 (10.2%) | 0.003 | 0.270 (0.104–0.701) | 0.007 |
Single | 193 (45.8%) | 172 (46.2%) | 21 (42.9%) | 0.761 | ||
Education level | 239 (64.8%) | 209 (64.7%) | 30 (65.2%) | 1.000 | ||
Psychiatric comorbidities | ||||||
ADHD c | 59 (13.8%) | 57 (15.1%) | 2 (4.0%) | 0.018 | 0.232 (0.053–1.011) | 0.052 |
Agoraphobia | 80 (18.8%) | 62 (16.5%) | 18 (36.0%) | 0.002 | 2.930 (1.540–5.573) | 0.001 |
Generalized anxiety disorder | 215 (50.7%) | 194 (51.7%) | 21 (42.9%) | 0.288 | ||
Panic disorder | 117 (27.5%) | 99 (26.4%) | 18 (36.0%) | 0.177 | 1.588 (0.850–2.968) | 0.147 |
Social phobia | 83 (19.5%) | 69 (18.4%) | 14 (28.0%) | 0.128 | 1.807 (0.914–3.572) | 0.089 |
PTSD d | 45 (10.6%) | 41 (10.9%) | 4 (8.0%) | 0.366 | ||
Addictive comorbidities | ||||||
Tobacco smoking | 181 (47.5%) | 163 (47.9%) | 18 (43.9%) | 0.741 | ||
Tobacco (packs per year) | 18.59 (15.77) | 17.80 (15.73) | 15.35 (13.80) | 0.508 | ||
Cannabis consumption | 65 (16.8%) | 61 (17.7%) | 4 (9.8%) | 0.143 | 0.477 (0.158–1.437) | 0.188 |
Alcohol use disorder | 64 (16.8%) | 59 (17.4%) | 5 (12.2%) | 0.511 | ||
Clinical characteristics | ||||||
CDSS e score | 9.61 (5.56) | 9.78 (5.58) | 9.14 (5.57) | 0.580 | ||
Depression (CDSS e cutoff) | 105 (73.4%) | 85 (74.6%) | 20 (60.9%) | 0.638 | ||
SQoL-18 f index | 42.52 (18.61) | 42.61 (19.02) | 43.48 (20.61) | 0.819 | ||
Fagerström score | 4.36 (3.23) | 4.31 (3.10) | 4.75 (3.60) | 0.558 | ||
GAF g score | 55.06 (15.33) | 54.76 (14.65) | 55.49 (18.17) | 0.807 | ||
Functionally remitted (GAF g) | 77 (30.8%) | 62 (30.0%) | 15 (34.9%) | 0.587 | ||
STAI-YA h score | 50.30 (13.04) | 50.28 (12.90) | 49.81 (14.85) | 0.830 | ||
MARS i score | 5.81 (2.32) | 5.75 (2.30) | 6.57 (2.41) | 0.028 | 0.117 (0.044–1.482) | 0.038 |
SF-36 j physical health score | 47.12 (13.37) | 48.53 (13.17) | 42.50 (14.11) | 0.014 | −0.150 (−10.781–−1.321) | 0.012 |
SF-36 j mental health score | 27.88 (13.54) | 27.75 (13.47) | 31.54 (15.71) | 0.130 | 0.088 (1.307–8.546) | 0.149 |
SBQ-R k score | 9.73 (5.31) | 9.79 (5.25) | 9.13 (5.57) | 0.468 | ||
SBQ-R k cutoff | 141 (60.3%) | 119 (61.3%) | 22 (55.0%) | 0.481 | ||
CGI l score | 4.21 (1.25) | 4.24 (1.24) | 4.14 (1.32) | 0.653 | ||
UKU I m | 6.74 (6.04) | 6.82 (6.43) | 5.94 (4.72) | 0.455 | ||
UKU II m | 1.17 (1.71) | 0.97 (1.59) | 1.85 (1.91) | 0.018 | 0.201 (0.252–1.510) | 0.006 |
UKU III m | 3.29 (3.06) | 3.22 (2.90) | 3.21 (2.58) | 0.995 | ||
UKU IV m | 4.26 (4.71) | 4.16 (4.99) | 4.12 (3.58) | 0.963 | ||
Treatments | ||||||
Chlorpromazine-equivalent dose | 80.04 (228.83) | 80.42 (227.27) | 92.10 (284.12) | 0.741 | ||
Atypical antipsychotics | 68 (15.9%) | 59 (15.6%) | 9 (18.0%) | 0.681 | ||
Typical antipsychotics | 16 (3.7%) | 14 (3.7%) | 2 (4.0%) | 1.000 | ||
Antipsychotics (typical and atypical) | 79 (18.5%) | 69 (18.3%) | 10 (20.0%) | 0.846 | ||
Antidepressants | 278 (65.1%) | 244 (64.7%) | 34 (68.0%) | 0.753 | ||
Benzodiazepines | 135 (31.6%) | 119 (31.6%) | 16 (32.0%) | 1.000 | ||
Mood stabilizers | 15 (3.5%) | 15 (4.0%) | 0 (0%) | 0.149 | ||
Physical health | ||||||
Body mass index | 25.45 (5.99) | 25.23 (5.57) | 26.81 (7.02) | 0.133 | 0.083 (−0.203–3.191) | 0.084 |
Obesity | 76 (17.9%) | 64 (17.1%) | 12 (24.0%) | 0.240 | ||
Total cholesterol | 5.20 (1.16) | 5.20 (1.17) | 5.47 (1.22) | 0.130 | 0.059 (−0.109–0.542) | 0.191 |
LDL n cholesterol | 3.16 (1.06) | 3.15 (1.00) | 3.31 (1.39) | 0.458 | ||
HDL o cholesterol | 1.53 (0.47) | 1.55 (0.46) | 1.61 (0.55) | 0.458 | ||
hsCRP p | 2.11 (2.26) | 1.90 (2.07) | 2.94 (3.07) | 0.034 | 0.148 (0.356–1.741) | 0.003 |
Elevated hsCRP p | 213 (53.7%) | 188 (53.3%) | 25 (56.8%) | 0.749 | ||
TSH q | 2.15 (1.66) | 2.05 (1.16) | 2.26 (1.60) | 0.244 | ||
Prolactin | 340.79 (365.05) | 333.50 (368.12) | 379.24 (386.20) | 0.438 | ||
Vitamin B12 | 336.63 (138.91) | 337.29 (138.99) | 323.54 (130.47) | 0.641 | ||
Vitamin B9 | 16.22 (9.27) | 16.51 (9.38) | 11.66 (3.72) | <0.001 | −0.146 (−8.398–−1.131) | 0.010 |
High blood pressure, diagnosed | 48 (11.3%) | 39 (10.4%) | 9 (18.0%) | 0.148 | 1.725 (0.732–4.064) | 0.213 |
Diabetes | 19 (4.5%) | 14 (3.7%) | 5 (10.0%) | 0.059 | 2.679 (0.909–7.893) | 0.074 |
High blood pressure, measured | 156 (36.7%) | 132 (35.2%) | 24 (48.0%) | 0.087 | 1.589 (0.850–2.972) | 0.147 |
Hyperglycemia | 49 (11.6%) | 44 (11.8%) | 5 (10.2%) | 1.000 | ||
Hypertriglyceridemia | 75 (17.9%) | 60 (16.2%) | 15 (30.6%) | 0.018 | 2.251 (1.135–4.463) | 0.020 |
Low HDL o cholesterol | 65 (15.6%) | 56 (15.2%) | 9 (18.4%) | 0.534 | ||
High abdominal perimeter | 261 (63.5%) | 227 (62.5%) | 34 (70.8%) | 0.338 | ||
Metabolic syndrome | 75 (18.0%) | 62 (16.8%) | 13 (27.1%) | 0.108 | 1.761 (0.859–3.610) | 0.122 |
Bipolar Disorder | All | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
Hypovitaminosis D | OR a (95% CI b) or Standardized Betas | p-Value Adjusted | ||||
No | Yes | p-Value | ||||
n = 113 | n = 103 (91.2%) | n = 10 (8.8%) | ||||
Sociodemographics | ||||||
Sex | ||||||
Women | 65 (57.5%) | 59 (57.3%) | 6 (60.0%) | |||
Men | 48 (42.5%) | 44 (42.7%) | 4 (40.0%) | 0.572 | ||
Age | 45.37 (14.10) | 44.92 (14.13) | 55.03 (11.55) | 0.031 | 0.202 (0.890–19.196) | 0.032 |
65 years old and older | 10 (8.8%) | 8 (7.8%) | 2 (20.0%) | 0.216 | ||
Labor force status | 26 (23.0%) | 25 (24.3%) | 1 (10.0%) | 0.279 | ||
Single | 49 (43.4%) | 46 (44.7%) | 3 (30.0) | 0.292 | ||
Education level | 65 (66.3%) | 57 (64.0%) | 8 (88.9%) | 0.126 | 7.934 (0.873–72.135) | 0.066 |
Psychiatric comorbidities | ||||||
ADHD c | 10 (8.8%) | 10 (9.7%) | 0 (0%) | 0.380 | ||
Agoraphobia | 28 (25.7%) | 24 (24.0%) | 4 (44.4%) | 0.170 | 3.220 (0.733–14.143) | 0.121 |
Generalized anxiety disorder | 49 (45.0%) | 44 (44.0%) | 5 (55.6%) | 0.373 | ||
Panic disorder | 28 (25.7%) | 26 (26.0%) | 2 (22.2%) | 0.581 | ||
Social phobia | 33 (30.3%) | 31 (31.0% | 2 (22.2%) | 0.450 | ||
PTSD d | 9 (8.3%) | 9 (9.0%) | 0 (0%) | 0.446 | ||
Addictive comorbidities | ||||||
Tobacco smoking | 58 (57.4%) | 54 (59.3%) | 4 (40.0%) | 0.201 | ||
Tobacco (packs per year) | 20.07 (14.94) | 16.88 (12.91) | 38.00 (18.42) | 0.004 | 0.547 (0.135–2.212) | 0.398 |
Cannabis consumption | 21 (21.2%) | 20 (22.5%) | 1 (10.0%) | 0.327 | ||
Alcohol use disorder | 19 (19.6%) | 19 (21.8%) | 0 (0%) | 0.100 | <0.001 (–) | - |
Clinical characteristics | ||||||
CDSS e score | 7.21 (5.95) | 7.66 (6.03) | 10.00 (0.00) | 0.017 | 0.161 (−4.546–13.465) | 0.323 |
Depression (CDSS e cutoff) | 25 (58.1%) | 23 (56.1%) | 2 (100%) | 0.332 | ||
SQoL-18 f index | 43.62 (21.68) | 43.79 (22.65) | 28.72 (6.55) | 0.002 | −0.190 (−36.820–4.498) | 0.123 |
Fagerström score | 4.81 (3.23) | 4.77 (3.28) | 7.00 (2.71) | 0.190 | 0.215 (−0.665–6.268) | 0.111 |
GAF g score | 58.37 (14.43) | 58.71 (14.45) | 52.29 (13.16) | 0.261 | ||
Functionally remitted (GAF g) | 35 (43.8%) | 33 (45.2%) | 2 (28.6%) | 0.333 | ||
STAI-YA h score | 47.92 (16.09) | 49.65 (15.27) | 46.63 (15.90) | 0.595 | ||
MARS i score | 6.10 (2.32) | 5.93 (2.59) | 6.50 (2.80) | 0.468 | ||
SF-36 j physical health score | 45.91 (13.61) | 46.35 (15.02) | 41.26 (8.01) | 0.349 | ||
SF-36 j mental health score | 29.73 (15.30) | 29.45 (15.63) | 26.71 (14.99) | 0.636 | ||
SBQ-R k score | 10.01 (5.40) | 10.15 (5.24) | 9.57 (7.12) | 0.787 | ||
SBQ-R k cutoff | 53 (66.2%) | 49 (67.1%) | 4 (57.1%) | 0.439 | ||
CGI l score | 3.96 (1.19) | 3.92 (1.19) | 4.38 (1.06) | 0.300 | ||
UKU I m | 6.21 (4.98) | 6.40 (5.15) | 5.80 (4.92) | 0.803 | ||
UKU II m | 1.00 (1.27) | 1.04 (1.34) | 0.80 (0.84) | 0.699 | ||
UKU III m | 3.30 (3.10) | 3.48 (3.28) | 3.40 (2.19) | 0.957 | ||
UKU IV m | 4.95 (4.66) | 4.98 (4.77) | 6.80 (5.81) | 0.427 | ||
Treatments | ||||||
Chlorpromazine-equivalent dose | 175.16 (345.90) | 170.15 (365.35) | 282.50 (324.05) | 0.351 | ||
Atypical antipsychotics | 35 (31.0%) | 29 (28.2%) | 6 (60.0%) | 0.047 | 4.512 (1.114–18.275) | 0.035 |
Typical antipsychotics | 3 (2.7%) | 2 (1.9%) | 1 (10.0%) | 0.245 | ||
Antipsychotics (typical and atypical) | 36 (31.9%) | 30 (29.1%) | 6 (60.0%) | 0.054 | 4.391 (1.088–17.731) | 0.038 |
Antidepressants | 71 (62.8%) | 64 (62.1%) | 7 (70.0%) | 0.451 | ||
Benzodiazepines | 39 (34.5%) | 33 (32.0%) | 6 (60.0%) | 0.079 | 2.745 (0.695–10.852) | 0.150 |
Mood stabilizers | 42 (37.2%) | 38 (36.9%) | 4 (40.0%) | 0.549 | ||
Physical health | ||||||
Body mass index | 25.52 (5.45) | 25.42 (5.09) | 27.33 (6.15) | 0.291 | ||
Obesity | 22 (20.2%) | 18 (18.0%) | 4 (44.4%) | 0.079 | 2.972 (0.700–12.610) | 0.140 |
Total cholesterol | 5.33 (1.10) | 5.31 (1.07) | 5.72 (1.62) | 0.270 | ||
LDL n cholesterol | 3.18 (1.02) | 3.17 (0.92) | 3.56 (2.13) | 0.672 | ||
HDL o cholesterol | 1.53 (0.50) | 1.54 (0.50) | 1.50 (0.55) | 0.802 | ||
hsCRP p | 1.92 (1.95) | 1.87 (1.89) | 2.62 (2.10) | 0.242 | ||
Elevated hsCRP p | 56 (54.9%) | 48 (52.2%) | 8 (80.0%) | 0.087 | 2.806 (0.546–14.415) | 0.217 |
TSH q | 2.30 (1.41) | 2.21 (1.21) | 2.20 (1.46) | 0.984 | ||
Prolactin | 269.61 (209.20) | 254.46 (180.25) | 240.11 (146.41) | 0.818 | ||
Vitamin B12 | 353.84 (164.66) | 364.40 (172.31) | 322.67 (160.15) | 0.570 | ||
Vitamin B9 | 17.28 (8.71) | 17.85 (9.09) | 12.17 (5.27) | 0.137 | −0.191 (−13.811–1.265) | −0.191 |
High blood pressure, diagnosed | 8 (7.1%) | 8 (7.8%) | 0 (0%) | 0.461 | ||
Diabetes | 2 (1.8%) | 2 (2.0%) | 0 (0%) | 0.829 | ||
High blood pressure, measured | 40 (35.4%) | 35 (34.0%) | 5 (50.0%) | 0.321 | ||
Hyperglycemia | 9 (8.0%) | 8 (7.8%) | 1 (10.0%) | 0.580 | ||
Hypertriglyceridemia | 26 (23.2%) | 24 (23.5%) | 2 (20.0%) | 0.579 | ||
Low HDL o cholesterol | 23 (20.7%) | 20 (19.8%) | 3 (30.0%) | 0.342 | ||
High abdominal perimeter | 67 (61.5%) | 60 (60.6%) | 7 (70.0%) | 0.414 | ||
Metabolic syndrome | 16 (14.2%) | 13 (12.6%) | 3 (30.0%) | 0.150 | 2.298 (0.504–10.478) | 0.282 |
Schizophrenia | All | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
Hypovitaminosis B9 | OR a (95% CI b) or Standardized Betas | p-Value Adjusted | ||||
No | Yes | p-Value | ||||
n = 302 | n = 220 (72.8%) | n = 82 (27.2%) | ||||
Sociodemographics | ||||||
Sex | ||||||
Women | 80 (26.5%) | 66 (30.0%) | 14 (17.1%) | |||
Men | 222 (73.5%) | 154 (70.0%) | 68 (82.9%) | 0.015 | 0.498 (0.261–0.951) | 0.035 |
Age | 34.30 (11.61) | 10.82 (0.73) | 30.73 (10.03) | 0.158 | −0.068 (−4.348–1.086) | 0.238 |
65 years old and older | 2 (0.7%) | 2 (0.9%) | 0 (0%) | 0.530 | ||
Labor force status | 38 (12.6%) | 29 (13.2%) | 9 (11.1%) | 0.700 | ||
Single | 268 (88.7%) | 192 (87.3%) | 76 (92.7%) | 0.223 | ||
Education level | 129 (61.1%) | 102 (67.5%) | 27 (45.0%) | 0.003 | 0.401 (0.213–0.754) | 0.005 |
Psychiatric comorbidities | ||||||
ADHD c | 4 (1.3%) | 2 (0.9%) | 2 (2.5%) | 0.295 | ||
Agoraphobia | 40 (13.3%) | 33 (15.1%) | 7 (8.5%) | 0.181 | 0.514 (0.216–1.221) | 0.132 |
Generalized anxiety disorder | 55 (18.3%) | 45 (20.6%) | 10 (12.2%) | 0.097 | 0.564 (0.268–1.190) | 0.133 |
Panic disorder | 43 (14.3%) | 37 (17.0%) | 6 (7.3%) | 0.041 | 0.386 (0.155–0.958) | 0.040 |
Social phobia | 44 (14.7%) | 38 (17.4%) | 6 (7.3%) | 0.028 | 0.364 (0.147–0.904) | 0.029 |
PTSD d | 7 (2.3%) | 4 (1.8%) | 3 (3.7%) | 0.292 | ||
Addictive comorbidities | ||||||
Tobacco smoking | 163 (54.2%) | 114 (52.1%) | 49 (59.8%) | 0.245 | ||
Tobacco (packs per year) | 11.07 (14.20) | 8.74 (12.93) | 9.94 (9.89) | 0.554 | ||
Cannabis consumption | 60 (19.9%) | 43 (19.5%) | 17 (20.7%) | 0.871 | ||
Alcohol use disorder | 31 (10.4%) | 22 (10.1%) | 9 (11.2%) | 0.831 | ||
Clinical characteristics | ||||||
CDSS e score | 4.27 (4.79) | 4.45 (5.18) | 3.71 (4.31) | 0.328 | ||
Depression (CDSS e cutoff) | 67 (29.6%) | 53 (31.7%) | 14 (23.7%) | 0.320 | ||
SQoL-18 f index | 54.10 (18.33) | 52.58 (18.68) | 53.68 (18.27) | 0.683 | ||
Fagerström score | 5.08 (2.49) | 4.86 (2.38) | 4.91 (2.44) | 0.907 | ||
GAF g score | 51.47 (15.70) | 51.64 (15.67) | 53.15 (16.09) | 0.499 | ||
Functionally remitted (GAF g) | 69 (26.0%) | 49 (24.9%) | 20 (29.4%) | 0.522 | ||
STAI-YA h score | 46.00 (14.49) | 48.89 (12.32) | 43.00 (10.44) | 0.478 | ||
MARS i score | 6.45 (2.27) | 6.22 (2.33) | 6.47 (2.22) | 0.459 | ||
SF-36 j physical health score | 48.37 (9.59) | 49.55 (8.11) | 49.47 (8.15) | 0.977 | ||
SF-36 j mental health score | 32.54 (11.92) | 33.49 (13.04) | 32.31 (10.86) | 0.802 | ||
SBQ-R k score | 7.67 (4.64) | 8.10 (4.64) | 7.10 (5.06) | 0.236 | ||
SBQ-R k cutoff | 90 (47.6%) | 74 (49.7%) | 16 (40.0%) | 0.291 | ||
CGI l score | 4.23 (1.15) | 4.20 (1.14) | 4.31 (1.15) | 0.510 | ||
UKU I m | 4.82 (3.87) | 5.95 (3.87) | 4.60 (4.46) | 0.060 | −0.149 (−2.799–0.009) | 0.052 |
UKU II m | 1.22 (1.50) | 1.24 (1.52) | 1.24 (1.65) | 1.000 | ||
UKU III m | 2.46 (2.50) | 3.03 (2.56) | 2.57 (2.69) | 0.321 | ||
UKU IV m | 3.26 (3.62) | 4.68 (4.06) | 3.52 (3.84) | 0.106 | −0.122 (−2.543–0.291) | 0.119 |
Treatments | ||||||
Chlorpromazine-equivalent dose | 790.84 (756.36) | 729.10 (635.60) | 840.24 (867.42) | 0.292 | ||
Atypical antipsychotics | 258 (85.4%) | 158 (84.1%) | 73 (89.0%) | 0.360 | ||
Typical antipsychotics | 50 (16.6%) | 33 (15.0%) | 17 (20.7%) | 0.229 | ||
Antipsychotics (typical and atypical) | 269 (89.1%) | 195 (88.6%) | 74 (90.2%) | 0.836 | ||
Antidepressants | 85 (28.1%) | 68 (30.9%) | 17 (20.7%) | 0.086 | 0.548 (0.296–1.015) | 0.056 |
Benzodiazepines | 90 (29.8%) | 66 (30.0%) | 24 (29.3%) | 1.000 | ||
Mood stabilizers | 39 (12.9%) | 27 (12.3%) | 12 (14.6%) | 0.568 | ||
Physical health | ||||||
Body mass index | 25.87 (5.22) | 25.43 (5.05) | 25.96 (6.11) | 0.444 | ||
Obesity | 60 (19.9%) | 42 (19.1%) | 18 (22.0%) | 0.627 | ||
Total cholesterol | 5.40 (8.59) | 4.97 (1.11) | 4.84 (1.22) | 0.383 | ||
LDL n cholesterol | 3.11 (1.03) | 3.06 (1.00) | 2.99 (1.04) | 0.619 | ||
HDL o cholesterol | 1.40 (0.60) | 3.06 (1.00) | 2.99 (1.04) | 0.619 | ||
hsCRP p | 2.35 (2.31) | 1.94 (1.86) | 2.38 (2.44) | 0.179 | 0.095 (−0.112–1.003) | 0.117 |
Elevated hsCRP p | 165 (59.4%) | 121 (58.2%) | 44 (62.9%) | 0.574 | ||
TSH q | 2.32 (1.31) | 2.31 (1.34) | 2.50 (1.47) | 0.294 | ||
Prolactin | 618.89 (877.87) | 618.15 (947.97) | 676.19 (831.35) | 0.633 | ||
Vitamin D | 52.57 (30.40) | 59.55 (32.28) | 59.72 (32.04) | 0.967 | ||
Vitamin B12 | 353.78 (128.00) | 366.16 (130.69) | 324.97 (109.37) | 0.008 | −0.140 (−72.334–−6.530) | 0.019 |
High blood pressure, diagnosed | 9 (3.0%) | 7 (3.2%) | 2 (2.5%) | 0.541 | ||
Diabetes | 11 (3.7%) | 10 (4.6%) | 1 (1.2%) | 0.152 | 0.294 (0.036–2.408) | 0.254 |
High blood pressure, measured | 109 (36.3%) | 82 (37.6%) | 27 (32.9%) | 0.502 | ||
Hyperglycemia | 33 (10.9%) | 25 (11.4%) | 8 (9.8%) | 0.836 | ||
Hypertriglyceridemia | 80 (26.8%) | 55 (25.1%) | 25 (31.2%) | 0.304 | ||
Low HDL o cholesterol | 87 (29.4%) | 59 (27.2%) | 28 (35.4%) | 0.194 | 1.494 (0.853–2.616) | 0.160 |
High abdominal perimeter | 168 (56.4%) | 122 (55.7%) | 46 (58.2%) | 0.791 | ||
Metabolic syndrome | 80 (26.6%) | 56 (25.5%) | 24 (29.6%) | 0.466 |
Major Depressive Disorder | All | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
Hypovitaminosis B9 | OR a (95% CI b) or Standardized Betas | p-Value Adjusted | ||||
No | Yes | p-Value | ||||
n = 315 | n = 227 (72.1%) | n = 88 (27.9%) | ||||
Sociodemographics | ||||||
Sex | ||||||
Women | 174 (55.2%) | 132 (58.1%) | 42 (47.7%) | |||
Men | 141 (44.8%) | 95 (41.9%) | 46 (52.3%) | 0.102 | −0.063 (−0.196–0.056) | 0.275 |
Age | 43.50 (15.06) | 45.49 (16.13) | 36.66 (11.80) | <0.001 | −0.245 (−12.173–−4.742) | <0.001 |
65 years old and older | 28 (8.9%) | 27 (11.9%) | 1 (1.1%) | 0.001 | - | - |
Labor force status | 78 (25.0%) | 51 (22.5%) | 27 (31.8%) | 0.106 | 1.545 (0.871–2.741) | 0.137 |
Single | 144 (46.2%) | 90 (40.0%) | 54 (62.1%) | 0.001 | 1.312 (0.711–2.418) | 0.385 |
Education level | 174 (65.9%) | 126 (65.3%) | 48 (67.6%) | 0.771 | ||
Psychiatric comorbidities | ||||||
ADHD c | 44 (14.0%) | 23 (10.1%) | 21 (23.9%) | 0.003 | 2.082 (1.055–4.108) | 0.034 |
Agoraphobia | 60 (19.2%) | 42 (18.7%) | 18 (20.5%) | 0.750 | ||
Generalized anxiety disorder | 157 (50.3%) | 108 (48.0%) | 49 (56.3%) | 0.208 | ||
Panic disorder | 85 (27.2%) | 63 (28.0%) | 22 (25.0%) | 0.672 | ||
Social phobia | 60 (19.2%) | 45 (20.0%) | 15 (17.0%) | 0.633 | ||
PTSD d | 33 (10.5%) | 23 (10.2%) | 10 (11.4%) | 0.838 | ||
Addictive comorbidities | ||||||
Tobacco smoking | 127 (43.1%) | 85 (40.3%) | 42 (50.0%) | 0.152 | 1.257 (0.741–2.131) | 0.397 |
Tobacco (packs per year) | 18.59 (15.77) | 18.21 (17.37) | 15.15 (14.10) | 0.369 | ||
Cannabis consumption | 52 (17.3%) | 32 (14.9%) | 20 (23.5%) | 0.090 | 1.265 (0.655–2.442) | 0.484 |
Alcohol use disorder | 41 (13.9%) | 28 (13.3%) | 13 (15.5%) | 0.709 | ||
Clinical characteristics | ||||||
CDSS e score | 9.61 (5.56) | 9.11 (5.91) | 11.09 (4.91) | 0.293 | ||
Depression (CDSS e cutoff) | 61 (71.8%) | 51 (68.9%) | 10 (90.9%) | 0.121 | 2.803 (0.309–25.437) | 0.360 |
SQoL-18 f index | 42.52 (18.61) | 43.30 (19.62) | 41.41 (19.09) | 0.555 | ||
Fagerström score | 4.36 (3.23) | 4.16 (3.29) | 4.40 (3.12) | 0.687 | ||
GAF g score | 55.06 (15.33) | 57.31 (14.95) | 52.03 (13.86) | 0.069 | −0.099 (−9.806–2.250) | 0.218 |
Functionally remitted (GAFg) | 56 (32.0%) | 49 (34.3%) | 7 (21.9%) | 0.212 | ||
STAI-YA h score | 50.30 (13.04) | 47.81 (12.46) | 51.54 (13.07) | 0.073 | 0.117 (−0.714–7.792) | 0.102 |
MARS i score | 5.81 (2.32) | 5.90 (2.39) | 5.55 (2.39) | 0.350 | ||
SF-36 j physical health score | 47.12 (13.37) | 47.53 (16.29) | 49.86 (9.94) | 0.258 | ||
SF-36 j mental health score | 27.88 (13.53) | 30.08 (16.78) | 27.92 (11.12) | 0.428 | ||
SBQ-R k score | 9.73 (5.31) | 9.58 (5.14) | 10.28 (5.73) | 0.521 | ||
SBQ-R k cutoff | 93 (61.2%) | 74 (60.2%) | 19 (65.5%) | 0.675 | ||
CGI l score | 4.21 (1.25) | 4.12 (1.32) | 4.39 (0.97) | 0.270 | ||
UKU I m | 6.74 (6.04) | 7.81 (7.32) | 5.90 (4.90) | 0.259 | ||
UKU II m | 1.17 (1.71) | 1.25 (1.85) | 0.90 (1.34) | 0.425 | ||
UKU III m | 3.29 (3.06) | 3.74 (3.43) | 2.76 (3.03) | 0.230 | ||
UKU IV m | 4.26 (4.71) | 4.77 (4.50) | 5.05 (5.02) | 0.806 | ||
Treatments | ||||||
Chlorpromazine-equivalent dose | 80.04 (228.83) | 76.59 (221.48) | 69.66 (192.40) | 0.797 | ||
Atypical antipsychotics | 51 (16.2%) | 37 (16.3%) | 14 (15.9%) | 1.000 | ||
Typical antipsychotics | 9 (2.9%) | 5 (2.2%) | 4 (4.5%) | 0.222 | ||
Antipsychotics (typical and atypical) | 57 (18.1%) | 40 (17.6%) | 17 (19.3%) | 0.745 | ||
Antidepressants | 202 (64.1%) | 152 (67.0%) | 50 (56.8%) | 0.116 | 0.921 (0.538–1.576) | 0.764 |
Benzodiazepines | 91 (28.9%) | 66 (29.1%) | 25 (28.4%) | 1.000 | ||
Mood stabilizers | 8 (2.5%) | 8 (3.5%) | 0 (0%) | 0.070 | - | - |
Physical health | ||||||
Body mass index | 25.45 (5.99) | 25.34 (6.03) | 25.72 (6.54) | 0.630 | ||
Obesity | 62 (19.8%) | 42 (18.6%) | 20 (23.0%) | 0.429 | ||
Total cholesterol | 5.20 (1.16) | 5.21 (1.10) | 4.99 (1.20) | 0.134 | 0.013 (−0.243–0.307) | 0.821 |
LDL n cholesterol | 3.16 (1.06) | 3.17 (0.99) | 2.94 (1.13) | 0.084 | −0.015 (−0.292–0.221) | 0.785 |
HDL o cholesterol | 1.53 (0.47) | 3.17 (0.99) | 2.94 (1.13) | 0.084 | −0.081 (−0.194–0.026) | 0.132 |
hsCRP p | 2.11 (2.26) | 1.98 (2.27) | 2.08 (2.30) | 0.733 | ||
Elevated hsCRP p | 150 (51.2%) | 106 (49.5%) | 44 (55.7%) | 0.360 | ||
TSH q | 2.15 (1.66) | 1.99 (1.13) | 2.12 (1.13) | 0.342 | ||
Prolactin | 340.79 (365.05) | 317.38 (297.58) | 337.80 (261.21) | 0.596 | ||
Vitamin D | 64.96 (32.49) | 70.92 (30.26) | 63.44 (34.99) | 0.068 | −0.106 (−15.836–0.970) | 0.083 |
Vitamin B12 | 336.63 (138.91) | 350.69 (149.24) | 300.28 (104.49) | 0.005 | −0.150 (−82.782–−10.810) | 0.011 |
High blood pressure, diagnosed | 37 (11.8%) | 28 (12.3%) | 9 (10.3%) | 0.700 | ||
Diabetes | 15 (4.8%) | 11 (4.8%) | 4 (4.6%) | 0.595 | ||
High blood pressure, measured | 123 (39.3%) | 93 (41.2%) | 30 (34.5%) | 0.303 | ||
Hyperglycemia | 43 (13.7%) | 35 (15.4%) | 8 (9.2%) | 0.199 | 0.858 (0.357–2.057) | 0.731 |
Hypertriglyceridemia | 61 (19.7%) | 41 (18.1%) | 20 (23.8%) | 0.265 | ||
Low HDL o cholesterol | 52 (16.8%) | 31 (13.8%) | 21 (25.0%) | 0.026 | 1.914 (1.000–3.664) | 0.050 |
High abdominal perimeter | 182 (60.3%) | 139 (64.1%) | 43 (50.6%) | 0.037 | 0.912 (0.522–1.592) | 0.745 |
Metabolic syndrome | 60 (19.4%) | 45 (19.9%) | 15 (18.1%) | 0.871 |
Bipolar Disorder | All | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
Hypovitaminosis B9 | OR a (95% CI b) or Standardized Betas | p-Value Adjusted | ||||
No | Yes | p-Value | ||||
n = 84 | n = 65 (77.4%) | 19 (22.6%) | ||||
Sociodemographics | ||||||
Sex | ||||||
Women | 52 (61.9%) | 43 (66.2%) | 9 (47.4%) | |||
Men | 32 (38.1%) | 22 (33.8%) | 10 (47.4%) | 0.181 | 0.483 (0.170–1.371) | 0.172 |
Age | 45.37 (14.10) | 45.64 (14.58) | 42.37 (10.82) | 0.368 | ||
65 years old and older | 5 (6.0%) | 5 (7.7%) | 0 (0%) | 0.268 | ||
Labor force status | 18 (21.4%) | 13 (20.0%) | 5 (26.3%) | 0.540 | ||
Single | 39 (46.4%) | 31 (47.7%) | 8 (42.1%) | 0.795 | ||
Education level | 51 (70.8%) | 38 (67.9%) | 13 (81.2%) | 0.238 | ||
Psychiatric comorbidities | ||||||
ADHD c | 4 (4.8%) | 2 (3.1%) | 2 (10.5%) | 0.219 | ||
Agoraphobia | 20 (24.4%) | 15 (23.4%) | 5 (27.8%) | 0.759 | ||
Generalized anxiety disorder | 37 (45.1%) | 29 (45.3%) | 8 (44.4%) | 1.000 | ||
Panic disorder | 20 (24.4%) | 14 (21.9%) | 6 (33.3%) | 0.358 | ||
Social phobia | 24 (29.3%) | 20 (31.2%) | 4 (22.2%) | 0.334 | ||
PTSD d | 6 (7.3%) | 6 (9.4%) | 0 (0%) | 0.214 | ||
Addictive comorbidities | ||||||
Tobacco smoking | 36 (48.0%) | 27 (46.6%) | 9 (52.9%) | 0.784 | ||
Tobacco (packs per year) | 20.07 (14.94) | 16.50 (13.25) | 10.29 (7.09) | 0.126 | −0.241 (−17.411–3.853) | 0.201 |
Cannabis consumption | 16 (21.9%) | 11 (19.3%) | 5 (31.2%) | 0.321 | ||
Alcohol use disorder | 14 (19.4%) | 10 (18.2%) | 4 (23.5%) | 0.431 | ||
Clinical characteristics | ||||||
CDSS e score | 7.21 (5.95) | 7.33 (6.64) | 5.38 (4.78) | 0.449 | ||
Depression (CDSS e cutoff) | 15 (46.9%) | 12 (50.0%) | 3 (37.5%) | 0.421 | ||
SQoL-18 f index | 43.62 (21.68) | 42.26 (19.71) | 48.53 (27.74) | 0.330 | ||
Fagerström score | 4.81 (3.23) | 5.06 (3.60) | 3.00 (2.45) | 0.115 | −0.264 (−4.910–0.457) | 0.101 |
GAF g score | 58.37 (14.43) | 59.80 (16.09) | 58.67 (12.10) | 0.820 | ||
Functionally remitted (GAF g) | 27 (46.6%) | 19 (41.3%) | 8 (66.7%) | 0.107 | 2.857 (0.705–11.580) | 0.141 |
STAI-YA h score | 47.92 (16.09) | 49.27 (13.73) | 47.86 (13.25) | 0.736 | ||
MARS i score | 6.10 (2.32) | 6.25 (2.19) | 5.82 (2.19) | 0.484 | ||
SF-36 j physical health score | 45.91 (13.61) | 44.15 (15.22) | 51.20 (15.12) | 0.120 | 0.164 (−3.141–15.100) | 0.195 |
SF-36 j mental health score | 29.73 (15.30) | 28.32 (16.86) | 33.38 (16.80) | 0.311 | ||
SBQ-R k score | 10.01 (5.40) | 10.09 (5.32) | 9.92 (5.73) | 0.922 | ||
SBQ-R k cutoff | 39 (68.4%) | 31 (68.9%) | 8 (66.7%) | 0.570 | ||
CGI l score | 3.96 (1.19) | 3.87 (1.33) | 3.67 (0.89) | 0.528 | ||
UKU I m | 6.21 (4.98) | 6.68 (5.69) | 5.67 (2.29) | 0.465 | ||
UKU II m | 1.00 (1.27) | 1.00 (0.87) | 1.00 (1.23) | 1.000 | ||
UKU III m | 3.30 (3.10) | 3.40 (3.42) | 3.22 (3.27) | 0.893 | ||
UKU IV m | 4.95 (4.66) | 6.60 (5.33) | 5.44 (4.45) | 0.566 | ||
Treatments | ||||||
Chlorpromazine-equivalent dose | 175.16 (345.90) | 215.77 (412.32) | 190.79 (295.48) | 0.806 | ||
Atypical antipsychotics | 30 (35.7%) | 23 (35.4%) | 7 (36.8%) | 1.000 | ||
Typical antipsychotics | 3 (3.6%) | 2 (3.1%) | 1 (5.3%) | 0.542 | ||
Antipsychotics (typical and atypical) | 31 (36.9%) | 24 (36.9%) | 7 (36.8%) | 1.000 | ||
Antidepressants | 49 (58.3%) | 37 (56.9%) | 12 (63.2%) | 0.792 | ||
Benzodiazepines | 26 (31.0%) | 21 (32.3%) | 5 (26.3%) | 0.780 | ||
Mood stabilizers | 34 (40.5%) | 26 (40.0%) | 8 (42.1%) | 1.000 | ||
Physical health | ||||||
Body mass index | 25.52 (5.45) | 25.56 (5.33) | 26.50 (4.19) | 0.492 | ||
Obesity | 17 (20.7%) | 12 (18.8%) | 5 (27.8%) | 0.511 | ||
Total cholesterol | 5.33 (1.10) | 5.34 (1.10) | 5.15 (1.22) | 0.538 | ||
LDL n cholesterol | 3.15 (1.02) | 3.32 (1.08) | 2.91 (1.11) | 0.283 | ||
HDL o cholesterol | 1.53 (0.50) | 3.32 (1.08) | 2.91 (1.11) | 0.283 | ||
hsCRP p | 1.92 (1.95) | 1.80 (1.81) | 2.17 (2.10) | 0.479 | ||
Elevated hsCRP p | 41 (53.2%) | 31 (50.8%) | 10 (62.5%) | 0.575 | ||
TSH q | 2.30 (1.41) | 2.43 (1.48) | 2.71 (1.44) | 0.472 | ||
Prolactin | 269.61 (209.20) | 269.90 (196.22) | 268.82 (171.67) | 0.984 | ||
Vitamin D | 59.21 (27.56) | 64.33 (26.74) | 53.88 (28.61) | 0.167 | −0.191 (−27.796–3.037) | 0.114 |
Vitamin B12 | 353.84 (164.66) | 365.35 (179.24) | 316.26 (104.37) | 0.260 | ||
High blood pressure, diagnosed | 6 (7.2%) | 6 (9.4%) | 0 (0%) | 0.199 | - | - |
Diabetes | 1 (1.2%) | 1 (1.6%) | 0 (0%) | 0.771 | ||
High blood pressure, measured | 29 (34.5%) | 21 (32.3%) | 8 (42.1) | 0.428 | ||
Hyperglycemia | 6 (7.2%) | 4 (6.2%) | 2 (11.1%) | 0.387 | ||
Hypertriglyceridemia | 22 (26.8%) | 14 (21.9%) | 8 (44.4%) | 0.073 | 2.390 (0.731–7.819) | 0.150 |
Low HDL o cholesterol | 20 (24.7%) | 13 (20.6%) | 7 (38.9%) | 0.130 | 2.430 (0.763–7.744) | 0.133 |
High abdominal perimeter | 54 (66.7%) | 41 (66.1%) | 13 (68.4%) | 1.000 | ||
Metabolic syndrome | 14 (16.9%) | 9 (13.8%) | 5 (27.8%) | 0.149 | 3.042 (0.788–11.747) | 0.107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faugere, M.; Maakaron, É.; Achour, V.; Verney, P.; Andrieu-Haller, C.; Obadia, J.; Fond, G.; Lançon, C.; Korchia, T. Vitamin D, B9, and B12 Deficiencies as Key Drivers of Clinical Severity and Metabolic Comorbidities in Major Psychiatric Disorders. Nutrients 2025, 17, 1167. https://doi.org/10.3390/nu17071167
Faugere M, Maakaron É, Achour V, Verney P, Andrieu-Haller C, Obadia J, Fond G, Lançon C, Korchia T. Vitamin D, B9, and B12 Deficiencies as Key Drivers of Clinical Severity and Metabolic Comorbidities in Major Psychiatric Disorders. Nutrients. 2025; 17(7):1167. https://doi.org/10.3390/nu17071167
Chicago/Turabian StyleFaugere, Mélanie, Éloïse Maakaron, Vincent Achour, Pierre Verney, Christelle Andrieu-Haller, Jade Obadia, Guillaume Fond, Christophe Lançon, and Théo Korchia. 2025. "Vitamin D, B9, and B12 Deficiencies as Key Drivers of Clinical Severity and Metabolic Comorbidities in Major Psychiatric Disorders" Nutrients 17, no. 7: 1167. https://doi.org/10.3390/nu17071167
APA StyleFaugere, M., Maakaron, É., Achour, V., Verney, P., Andrieu-Haller, C., Obadia, J., Fond, G., Lançon, C., & Korchia, T. (2025). Vitamin D, B9, and B12 Deficiencies as Key Drivers of Clinical Severity and Metabolic Comorbidities in Major Psychiatric Disorders. Nutrients, 17(7), 1167. https://doi.org/10.3390/nu17071167