Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SWH | Social Welfare Home |
CRI-I | Castelli’s Risk Index I |
CRI-II | Castelli’s Risk Index II |
TG | Triacylglycerols |
TC | Total cholesterol |
HDL-C | High-density lipoprotein cholesterol fraction |
LDL-C | Low-density lipoprotein cholesterol fraction |
BMI | Body Mass Index |
WC | Waist circumference |
HC | Hip circumference |
WHR | Waist-to-hip ratio |
WHtR | Waist-to-height ratio |
FA | Fatty acids |
GPR120 | G protein-coupled receptor 120 |
R27OH | Variant of the GPR120 gene |
HOMA-IR | Homeostatic Model Assessment |
References
- Kahl, K.G. Direct and indirect effects of psychopharmacological treatment on the cardiovascular system. Horm. Mol. Biol. Clin. Investig. 2018, 36, 20180054. [Google Scholar] [CrossRef]
- Dayabandara, M.; Hanwella, R.; Ratnatunga, S.; Seneviratne, S.; Suraweera, C.; de Silva, V.A. Antipsychotic-associated weight gain: Management strategies and impact on treatment adherence. Neuropsychiatr. Dis. Treat. 2017, 13, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.P.; Hardoon, S.; Omar, R.Z.; Holt, R.I.; King, M.; Larsen, J.; Marston, L.; Morris, R.W.; Nazareth, I.; Walters, K.; et al. Cardiovascular risk prediction models for people with severe mental illness: Results from the prediction and management of cardiovascular risk in people with severe mental illnesses (PRIMROSE) research program. JAMA Psychiatry 2015, 72, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.; Fugiel, J.; Sadowska, J. Assessing Effects of Diet Alteration on Carbohydrate-Lipid Metabolism of Antipsychotic-Treated Schizophrenia Patients in Interventional Study. Nutrients 2023, 15, 1871. [Google Scholar] [CrossRef]
- Friedrich, M.E.; Fugiel, J.; Bruszkowska, M. Assessing effects of diet alteration on selected parameters of chronically mentally ill residents of a 24-hour Nursing Home. Part I: Effects of diet modification on carbohydrate-lipid metabolism. Psychiatr. Pol. 2020, 54, 915–933. [Google Scholar] [CrossRef]
- Friedrich, M.; Fugiel, J.; Goluch, Z.; Dziaduch, I. Assessing effects of diet alteration on selected parameters of chronically mentally ill residents of a 24-hour Nursing Home. Part 2. Effects of nutritional changes on anthropometric parameters and composition of the body. Psychiatr. Pol. 2022, 56, 1365–1380. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.E.; Fugiel, J.; Dziaduch, I. Assessing effects of diet alteration on selected parameters of chronically mentally ill residents of a 24-hour Nursing Home. Part 3: Effects of diet modification on selected health indicators. Psychiatr. Pol. 2023, 57, 1195–1211. [Google Scholar] [CrossRef]
- Raaj, I.; Thalamati, M.; Gowda, V.; Rao, A. The Role of the Atherogenic Index of Plasma and the Castelli Risk Index I and II in Cardiovascular Disease. Cureus 2024, 16, e74644. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Rodriguez Polanco, S.; Bousvarou, M.D.; Papakonstantinou, E.J.; Peña Genao, E.; Guzman, E.; Kostara, C.E. The Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio as a Risk Marker for Metabolic Syndrome and Cardiovascular Disease. Diagnostics 2023, 13, 929. [Google Scholar] [CrossRef]
- Zuccoli, G.S.; Saia-Cereda, V.M.; Nascimento, J.M.; Martins-de-Souza, D. The Energy Metabolism Dysfunction in Psychiatric Disorders Postmortem Brains: Focus on Proteomic Evidence. Front. Neurosci. 2017, 11, 493. [Google Scholar] [CrossRef]
- Andreassen, O.A.; Djurovic, S.; Thompson, W.K.; Schork, A.J.; Kendler, K.S.; O’Donovan, M.C.; Rujescu, D.; Werge, T.; van de Bunt, M.; Morris, A.P.; et al. Improved Detection of Common Variants Associated with Schizophrenia by Leveraging Pleiotropy with Cardiovascular-Disease Risk Factors. Am. J. Hum. Genet. 2013, 92, 197–209. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Kwan, A.T.H.; Rosenblat, J.D.; Teopiz, K.M.; Mansur, R.B. Psychotropic Drug-Related Weight Gain and Its Treatment. Am. J. Psychiatry 2024, 181, 26–38. [Google Scholar] [CrossRef]
- Ho-Palma, A.C.; Toro, P.; Rotondo, F.; Romero, M.D.M.; Alemany, M.; Remesar, X.; Fernández-López, J.A. Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis. Nutrients 2019, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Siafis, S.; Tzachanis, D.; Samara, M.; Papazisis, G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr. Neuropharmacol. 2018, 16, 1210–1223. [Google Scholar] [CrossRef] [PubMed]
- Raben, A.T.; Marshe, V.S.; Chintoh, A.; Gorbovskaya, I.; Müller, D.J.; Hahn, M.K. The Complex Relationship between Antipsychotic-Induced Weight Gain and Therapeutic Benefits: A Systematic Review and Implications for Treatment. Front. Neurosci. 2018, 11, 741. [Google Scholar] [CrossRef]
- Hudson, B.D.; Shimpukade, B.; Milligan, G.; Ulven, T. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J. Biol. Chem. 2014, 289, 20345–20358. [Google Scholar] [CrossRef]
- Konno, Y.; Ueki, S.; Takeda, M.; Kobayashi, Y.; Tamaki, M.; Moritoki, Y.; Oyamada, H.; Itoga, M.; Kayaba, H.; Omokawa, A.; et al. Functional analysis of free fatty acid receptor GPR120 in human eosinophils: Implications in metabolic homeostasis. PLoS ONE 2015, 10, e0120386. [Google Scholar] [CrossRef]
- Rog, J.; Błażewicz, A.; Juchnowicz, D.; Ludwiczuk, A.; Stelmach, E.; Kozioł, M.; Karakula, M.; Niziński, P.; Karakula-Juchnowicz, H. The Role of GPR120 Receptor in Essential Fatty Acids Metabolism in Schizophrenia. Biomedicines 2020, 8, 243. [Google Scholar] [CrossRef]
- Vestmar, M.A.; Andersson, E.A.; Christensen, C.R.; Hauge, M.; Glümer, C.; Linneberg, A.; Witte, D.R.; Jørgensen, M.E.; Christensen, C.; Brandslund, I.; et al. Functional and genetic epidemiological characterisation of the FFAR4 (GPR120) p.R270H variant in the Danish population. J. Med. Genet. 2016, 53, 616–623. [Google Scholar] [CrossRef]
- Satapati, S.; Qian, Y.; Wu, M.S.; Petrov, A.; Dai, G.; Wang, S.P.; Zhu, Y.; Shen, X.; Muise, E.S.; Chen, Y.; et al. GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy. J. Lipid Res. 2017, 58, 1561–1578. [Google Scholar] [CrossRef]
- Bonnefond, A.; Lamri, A.; Leloire, A.; Vaillant, E.; Roussel, R.; Lévy-Marchal, C.; Weill, J.; Galan, P.; Hercberg, S.; Ragot, S.; et al. Contribution of the low-frequency, loss-of-function p.R270H mutation in FFAR4 (GPR120) to increased fasting plasma glucose levels. J. Med. Genet. 2015, 52, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D.; Kheirandish-Gozal, L.; Carreras, A.; Khalyfa, A.; Peris, E. Obstructive sleep apnea and obesity are associated with reduced GPR 120 plasma levels in children. Sleep 2014, 37, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Karakuła-Juchnowicz, H.; Róg, J.; Juchnowicz, D.; Morylowska-Topolska, J. GPR120: Mechanism of action, role and potential for medical applications. Postep. Hig. Med. Dosw. (Online) 2017, 71, 942–953. [Google Scholar] [CrossRef]
- Friedrich, M. The effects of diet enrichment with a new hull-less oat cultivar on glucose, lipid, lipoprotein, fibrinogen and estradiol contents in the blood of post-mastectomy women. Pol. J. Food. Nutr. Sci. 2003, 12, 69–74. [Google Scholar]
- Yang, S.Y.; Kim, Y.S.; Lee, J.E.; Seol, J.; Song, J.H.; Chung, G.E.; Yim, J.Y.; Lim, S.H.; Kim, J.S. Dietary protein and fat intake in relation to risk of colorectal adenoma in Korean. Medicine 2016, 95, e5453. [Google Scholar] [CrossRef]
Trait | Women, n = 3 | |
---|---|---|
Before | After | |
Glucose (mmol/L) | 5.49 5.27 5.05 5.27 ± 0.22 | 4.11 3.66 4.38 4.05 ± 0.36 |
TG (mmol/L) | 0.61 0.63 0.91 0.72 ± 0.17 | 0.68 0.84 1.30 0.94 ± 0.32 |
TC (mmol/L) | 4.3 4.27 5.49 4.69 ± 0.70 | 5.10 5.36 5.83 5.44 ± 0.38 |
HDL-C (mmol/L) | 1.42 1.36 1.34 1.38 ± 0.04 | 1.27 1.25 1.36 1.30 ± 0.06 |
LDL-C (mmol/L) | 2.59 2.61 3.73 2.98 ± 0.65 | 3.39 3.78 4.22 3.80 ± 0.41 |
Trait | Women, n = 12 | Women, n = 3 | ||
---|---|---|---|---|
Before | After | Before | After | |
TC/HDL-C | 4.93 ± 1.66 b | 4.14 ± 1.52 a | 3.03 3.13 4.09 3.41 ± 0.59 | 4.0 4.29 4.30 4.19 ± 0.17 |
LDL-C/HDL-C | 3.25 ± 1.14 | 2.81 ± 0.79 | 1.82 1.92 2.79 2.17 ± 0.53 | 2.66 3.02 3.10 2.93 ± 0.23 |
TG/HDL-C | 4.24 ± 2.21 | 3.24 ± 2.05 | 0.98 1.06 1.56 1.20 ± 0.31 | 1.22 1.53 2.19 1.64 ± 0.49 |
Trait | Women, n = 3 | |
---|---|---|
Before | After | |
Body weight (kg) | 81.0 67.0 83.0 77.0 ± 8.72 | 80.5 70.5 82.4 76.8 ± 8.61 |
BMI (kg/m2) | 29.8 24.3 31.4 28.5 ± 3.72 | 29.6 25.6 31.2 28.8 ± 2.88 |
WC (cm) | 100 89 110 99.7 ± 10.5 | 92 91 109 97.3 ± 10.1 |
HC (cm) | 112 99 112 107.7 ± 7.51 | 106 98 102 102.0 ± 4.0 |
WHR | 0.89 0.90 0.98 0.92 ± 0.05 | 0.87 0.93 1.07 0.96 ± 0.10 |
WHtR | 0.61 0.54 0.68 0.61 ± 0.07 | 0.56 0.55 0.67 0.59 ± 0.07 |
Trait | Women, n = 12 | Women, n = 3 | ||
---|---|---|---|---|
Before | After | Before | After | |
Total body fat (%) | 47.2 ± 12.1 | 47.0 ± 10.2 | 63.5 62.3 55.7 60.5 ± 4.2 | 58.3 57.8 58.4 58.2 ± 0.32 |
Lean body mass (%) | 52.7 ± 12.0 | 53.0 ± 10.2 | 36.5 37.7 44.3 39.5 ± 4.2 | 41.7 42.2 41.6 41.8 ± 0.32 |
Total body water (%) | 47.9 ± 6.5 | 48.1 ± 4.5 | 43.5 45.2 47.8 45.5 ± 2.17 | 46.5 48.4 46.2 47.0 ± 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, M.; Sadowska, J. Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients. Nutrients 2025, 17, 1198. https://doi.org/10.3390/nu17071198
Friedrich M, Sadowska J. Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients. Nutrients. 2025; 17(7):1198. https://doi.org/10.3390/nu17071198
Chicago/Turabian StyleFriedrich, Mariola, and Joanna Sadowska. 2025. "Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients" Nutrients 17, no. 7: 1198. https://doi.org/10.3390/nu17071198
APA StyleFriedrich, M., & Sadowska, J. (2025). Assessing a Possibility of Divergent Metabolic Responses to Diet Adjustment and Changes of Eating Behaviours in Female Schizophrenia Patients. Nutrients, 17(7), 1198. https://doi.org/10.3390/nu17071198