Effects of Vitamin D3 Treatment on Polycystic Ovary Symptoms: A Prospective Double-Blind Two-Phase Randomized Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects
- Had post-baseline efficacy data regarding cycle length and number of menses cycles and were willing to complete all the study visits and procedures.
- Did not become pregnant during the study.
- Had no signs of other disorders related to the menses cycle (e.g., metrorrhagia).
2.3. Intervention
2.4. Study-Specific Assessments of Ovarian Cycles
2.5. Assessment of Ovarian Morphology
2.6. Laboratory Tests
2.7. Other/Lifestyle
2.8. Statistical Analysis
3. Results
3.1. Serum Androgen and Estrogen Levels
3.2. Assessments of Ovulation
3.3. Ovarian Morphology
3.4. Safety Assessments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
25(OH)D | 25-hydroxyvitamin D |
AMH | Anti-Müllerian Hormone |
BL | baseline |
CL | cycle length |
E2 | 17β-estradiol |
FSH | Follicle-stimulating hormone |
ITT | Intention to Treat |
LH | Luteinizing Hormone |
NOM | normal ovarian morphology |
PA | Physical Activity assessment |
PCOM | polycystic ovarian morphology |
PCOS | polycystic ovary syndrome |
pPCO | unilateral/partial remission of polycystic ovarian morphology |
RCT | Randomized Controlled Trials |
SHBG | Sex hormone binding globulin |
T | Testosterone |
TVUS | Transvaginal ultrasonography |
UNL | Upper Normal Limit |
Vit D | vitamin D3 |
Appendix A
Appendix A.1
Treatment Duration/Patients | Age (Years) | BMI (kg/m2) | Calcium Intake, Dietary (mg/Day) | 25(OH)D Baseline (ng/mL) | Se Ca Baseline (mmol/L) | 25(OH)D Loaded (ng/mL) | Se Ca Loaded (mmol/L) | CA/CRE Loaded |
---|---|---|---|---|---|---|---|---|
12 weeks placebo + 12 weeks of Vitamin D administration | ||||||||
#210 | 30 | 26.2 | 887 | 25.1 | 2.49 | 65.6 | 2.48 | 0.13 |
#211 | 30.0 | 28.2 | 367 | 26.6 | 2.55 | 66.9 | 2.46 | 1.28 |
#310 | 23.0 | 17.7 | 657 | 15.4 | 2.44 | 68.4 | 2.37 | 0.10 |
#617 | 19.0 | 29.1 | 241 | 22.4 | 2.40 | 66.8 | 2.35 | 0.28 |
#807 | 37.0 | 19.1 | 1372 | 22.6 | 2.28 | 70.3 | 2.27 | 0.20 |
#809 | 30.0 | 25.6 | 1089 | 15.4 | 2.34 | 71.2 | 2.39 | 0.88 |
#840 | 31 | 21.9 | 636 | 27.4 | 2.32 | 67.7 | 2.32 | 0.15 |
12 + 12 weeks of Vitamin D administration | ||||||||
#612 | 18.0 | 19.1 | 541 | 21.8 | 2.32 | 61.7 | 2.45 | 0.22 |
Appendix A.2
Population | Dimension | Mean | ±SD | Min | Median | Max |
---|---|---|---|---|---|---|
Study population ITT (n = 84) | ||||||
Weekly workout | minutes | 114 | 90.6 | 0 | 90 | 420 |
Average regular PA at screening | Score (%) | 20.3 | 16.9 | 0.0 | 18.8 | 80.6 |
Treatment arm “D12” group (n = 44) | ||||||
Weekly workout at the depleted baseline | minutes | 95.5 | 77.9 | 0 | 120 | 300 |
Weekly workout post-treatment | minutes | 85.5 | 72.7 | 0 | 80 | 240 |
Average regular PA at the depleted baseline | Score (%) | 15.8 | 13.8 | 0.0 | 12.9 | 48.4 |
Average regular PA post-treatment | Score (%) | 14.4 | 13.3 | 0.0 | 12.9 | 54.8 |
Treatment arm “D24” group (n = 40) | ||||||
Weekly workout at the repleted baseline | minutes | 113 | 80.5 | 0 | 120 | 360 |
Weekly workout post-treatment | minutes | 119 | 90 | 0 | 120 | 300 |
Average regular PA at the repleted baseline | Score (%) | 22.0 | 16.6 | 0.0 | 19.4 | 80.6 |
Average regular PA post-treatment | Score (%) | 22.2 | 14.8 | 0.0 | 20.4 | 80.6 |
References
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Masjedi, F.; Keshtgar, S.; Zal, F.; Talaei-Khozani, T.; Sameti, S.; Fallahi, S.; Kazeroni, M. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries. J. Steroid Biochem. Mol. Biol. 2020, 197, 105521. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Policola, C.; Prioletta, A.; Sorice, G.; Mezza, T.; Lassandro, A.; Della Casa, S.; Pontecorvi, A.; Giaccari, A. Low levels of 25(OH)D and insulin-resistance: 2 unrelated features or a cause-effect in PCOS? Clin. Nutr. 2012, 31, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Abootorabi, M.S.; Ayremlou, P.; Behroozi-Lak, T.; Nourisaeidlou, S. The effect of vitamin D supplementation on insulin resistance, visceral fat and adiponectin in vitamin D deficient women with polycystic ovary syndrome: A randomized placebo-controlled trial. Gynecol. Endocrinol. 2018, 34, 489–494. [Google Scholar] [CrossRef]
- Tehrani, H.G.; Mostajeran, F.; Shahsavari, S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with poly cystic ovarian syndrome. J. Res. Med. Sci. 2014, 19, 875–880. [Google Scholar] [PubMed]
- Wojtusik, J.; Johnson, P.A. Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol. Reprod. 2012, 86, 91. [Google Scholar] [CrossRef]
- He, C.; Lin, Z.; Robb, S.W.; Ezeamama, A.E. Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 4555–4577. [Google Scholar] [CrossRef]
- Joham, A.E.; Teede, H.J.; Cassar, S.; Stepto, N.K.; Strauss, B.J.; Harrison, C.L.; Boyle, J.; de Courten, B. Vitamin D in polycystic ovary syndrome: Relationship to obesity and insulin resistance. Mol. Nutr. Food Res. 2016, 60, 110–118. [Google Scholar] [CrossRef]
- Li, H.W.R.; Brereton, R.E.; Anderson, R.A.; Wallace, A.M.; Ho, C.K. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism 2011, 60, 1475–1481. [Google Scholar] [CrossRef]
- Wehr, E.; Pieber, T.R.; Obermayer-Pietsch, B. Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: A pilot study. J. Endocrinol. Investig. 2011, 34, 757–763. [Google Scholar]
- Davis, E.M.; Peck, J.D.; Hansen, K.R.; Neas, B.R.; Craig, L.B. Associations between vitamin D levels and polycystic ovary syndrome phenotypes. Minerva Endocrinol. 2019, 44, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Thill, M.; Becker, S.; Fischer, D.; Cordes, T.; Hornemann, A.; Diedrich, K.; Salehin, D.; Friedrich, M. Expression of prostaglandin metabolising enzymes COX-2 and 15-PGDH and VDR in human granulosa cells. Anticancer. Res. 2009, 29, 3611–3618. [Google Scholar]
- Viganò, P.; Lattuada, D.; Mangioni, S.; Ermellino, L.; Vignali, M.; Caporizzo, E.; Panina-Bordignon, P.; Besozzi, M.; Di Blasio, A.M. Cycling and early pregnant endometrium as a site of regulated expression of the vitamin D system. J. Mol. Endocrinol. 2006, 36, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Agic, A.; Xu, H.; Altgassen, C.; Noack, F.; Wolfler, M.M.; Diedrich, K.; Friedrich, M.; Taylor, R.N.; Hornung, D. Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod. Sci. 2007, 14, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Weisman, Y.; Fattal, A.; Eisenberg, Z.; Harel, S.; Spirer, Z.; Harell, A. Decreased serum 24,25-dihydroxy vitamin D concentrations in children receiving chronic anticonvulsant therapy. BMJ 1979, 2, 521–523. [Google Scholar] [CrossRef]
- Pérez-Fernandez, R.; Alonso, M.; Segura, C.; Muñoz, I.; Garcia-Caballero, T.; Diéguez, C. Vitamin D receptor gene expression in human pituitary gland. Life Sci. 1997, 60, 35–42. [Google Scholar] [CrossRef]
- Merhi, Z.; Doswell, A.; Krebs, K.; Cipolla, M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J. Clin. Endocrinol. Metab. 2014, 99, E1137–E1145. [Google Scholar] [CrossRef]
- Karadağ, C.; Yoldemir, T.; Yavuz, D.G. Effects of vitamin D supplementation on insulin sensitivity and androgen levels in vitamin-D-deficient polycystic ovary syndrome patients. J. Obstet. Gynaecol. Res. 2018, 44, 270–277. [Google Scholar] [CrossRef]
- Jia, X.; Wang, Y.; Zhang, N.; Guo, L.; Zhen, X.; Li, H.; Wei, L. Effect of vitamin D on clinical and biochemical parameters in polycystic ovary syndrome women: A meta-analysis. J. Obstet. Gynaecol. Res. 2015, 41, 1791–1802. [Google Scholar] [CrossRef]
- Jamilian, M.; Foroozanfard, F.; Rahmani, E.; Talebi, M.; Bahmani, F.; Asemi, Z. Effect of Two Different Doses of Vitamin D Supplementation on Metabolic Profiles of Insulin-Resistant Patients with Polycystic Ovary Syndrome. Nutrients 2017, 9, 1280. [Google Scholar] [CrossRef]
- Pal, L.; Zhang, H.; Williams, J.; Santoro, N.F.; Diamond, M.P.; Schlaff, W.D.; Coutifaris, C.; Carson, S.A.; Steinkampf, M.P.; Carr, B.R.; et al. Vitamin D Status Relates to Reproductive Outcome in Women With Polycystic Ovary Syndrome: Secondary Analysis of a Multicenter Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2016, 101, 3027–3035. [Google Scholar] [CrossRef] [PubMed]
- Kotsa, K.; Yavropoulou, M.P.; Anastasiou, O.; Yovos, J.G. Role of vitamin D treatment in glucose metabolism in polycystic ovary syndrome. Fertil. Steril. 2009, 92, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Raja-Khan, N.; Shah, J.; Stetter, C.M.; Lott, M.E.; Kunselman, A.R.; Dodson, W.C.; Legro, R.S. High-dose vitamin D supplementation and measures of insulin sensitivity in polycystic ovary syndrome: A randomized, controlled pilot trial. Fertil. Steril. 2014, 101, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Münzker, J.; Pilz, S.; Pieber, T.R.; Heijboer, A.C.; Obermayer-Pietsch, B.; Lerchbaum, E. Effects of vitamin D supplementation on metabolic and endocrine parameters in healthy premenopausal women: A randomized controlled trial. Clin. Nutr. 2020, 39, 718–726. [Google Scholar] [CrossRef]
- Rashidi, B.; Haghollahi, F.; Shariat, M.; Zayerii, F. The effects of calcium-vitamin D and metformin on polycystic ovary syndrome: A pilot study. Taiwan. J. Obstet. Gynecol. 2009, 48, 142–147. [Google Scholar] [CrossRef]
- Kadoura, S.; Alhalabi, M.; Nattouf, A.H. Effect of Calcium and Vitamin D Supplements as an Adjuvant Therapy to Metformin on Menstrual Cycle Abnormalities, Hormonal Profile, and IGF-1 System in Polycystic Ovary Syndrome Patients: A Randomized, Placebo-Controlled Clinical Trial. Adv. Pharmacol. Sci. 2019, 2019, 9680390. [Google Scholar] [CrossRef]
- Firouzabadi, R.D.; Aflatoonian, A.; Modarresi, S.; Sekhavat, L.; MohammadTaheri, S. Therapeutic effects of calcium & vitamin D supplementation in women with PCOS. Complement. Ther. Clin. Pr. 2012, 18, 85–88. [Google Scholar] [CrossRef]
- Dravecká, I.; Figurová, J.; Javorský, M.; Petríková, J.; Vaľková, M.; Lazúrová, I. The effect of alfacalcidiol and metformin on phenotype manifestations in women with polycystic ovary syndrome—A preliminary study. Physiol. Res. 2016, 65, 815–822. [Google Scholar] [CrossRef]
- Bonakdaran, S.; Rokni, H. Diabetic CVD—Focus on Vitamin D. Cardiovasc. Hematol. Agents Med. Chem. 2012, 10, 241–250. [Google Scholar] [CrossRef]
- Asemi, Z.; Foroozanfard, F.; Hashemi, T.; Bahmani, F.; Jamilian, M.; Esmaillzadeh, A. Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clin. Nutr. 2015, 34, 586–592. [Google Scholar] [CrossRef]
- Shahrokhi, S.Z.; Ghaffari, F.; Kazerouni, F. Role of vitamin D in female reproduction. Clin. Chim. Acta 2016, 455, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Altieri, B.; de Angelis, C.; Palomba, S.; Pivonello, R.; Colao, A.; Orio, F. Shedding new light on female fertility: The role of vitamin D. Rev. Endocr. Metab. Disord. 2017, 18, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.; Haselhorst, U.; Tan, S.; Quadbeck, B.; Schmidt, M.; Roesler, S.; Kimmig, R.; Mann, K.; Janssen, O. Low serum 25-hydroxyvitamin D concentrations are associated with insulin resistance and obesity in women with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 2006, 114, 577–583. [Google Scholar] [CrossRef]
- van Etten, E.; Mathieu, C. Immunoregulation by 1,25-dihydroxyvitamin D3: Basic concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Mitri, J.; Mathieu, C.; Badenhoop, K.; Tamer, G.; Orio, F.; Mezza, T.; Vieth, R.; Colao, A.; Pittas, A. Mechanisms in endocrinology: Vitamin D as a potential contributor in endocrine health and disease. Eur. J. Endocrinol. 2014, 171, R101–R110. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Altieri, B.; Penna-Martinez, M.; Badenhoop, K. Focus on vitamin D and the adrenal gland. Horm. Metab. Res. 2015, 47, 239–246. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Altieri, B.; Annweiler, C.; Balercia, G.; Pal, H.B.; Boucher, B.J.; Cannell, J.J.; Foresta, C.; Grübler, M.R.; Kotsa, K.; et al. Vitamin D and chronic diseases: The current state of the art. Arch. Toxicol. 2017, 91, 97–107. [Google Scholar] [CrossRef]
- Lerchbaum, E.; Obermayer-Pietsch, B. Vitamin D and fertility: A systematic review. Eur. J. Endocrinol. 2012, 166, 765–778. [Google Scholar] [CrossRef]
- Bikle, D. Nonclassic Actions of Vitamin D. J. Clin. Endocrinol. Metab. 2009, 94, 26–34. [Google Scholar] [CrossRef]
- Parikh, G.; Varadinova, M.; Suwandhi, P.; Araki, T.; Rosenwaks, Z.; Poretsky, L.; Seto-Young, D. Vitamin D regulates steroidogenesis and insulin-like growth factor binding protein-1 (IGFBP-1) production in human ovarian cells. Horm. Metab. Res. 2010, 42, 754–757. [Google Scholar] [CrossRef]
- Barrera, D.; Avila, E.; Hernández, G.; Halhali, A.; Biruete, B.; Larrea, F.; Díaz, L. Estradiol and progesterone synthesis in human placenta is stimulated by calcitriol. J. Steroid Biochem. Mol. Biol. 2007, 103, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Trummer, C.; Pilz, S.; Schwetz, V.; Obermayer-Pietsch, B.R.; Lerchbaum, E. Vitamin D, PCOS and androgens in men: A systematic review. Endocr. Connect. 2018, 7, R95–R113. [Google Scholar] [CrossRef] [PubMed]
- Pergialiotis, V.; Karampetsou, N.; Panagopoulos, P.; Trakakis, E.; Papantoniou, N. The effect of Vitamin D supplementation on hormonal and glycaemic profile of patients with PCOS: A meta-analysis of randomised trials. Int. J. Clin. Pr. 2017, 71, Z. [Google Scholar] [CrossRef]
- Menichini, D.; Facchinetti, F. Effects of vitamin D supplementation in women with polycystic ovary syndrome: A review. Gynecol. Endocrinol. 2020, 36, 1–5. [Google Scholar] [CrossRef]
- Takács, I.; Tóth, B.E.; Szekeres, L.; Szabó, B.; Bakos, B.; Lakatos, P. Randomized clinical trial to comparing efficacy of daily, weekly and monthly administration of vitamin D3. Endocrine 2017, 55, 60–65. [Google Scholar] [CrossRef]
- Toth, B.E.; Takacs, I.; Szekeres, L.; Szabo, B.; Bakos, B.; Lakatos, P. Safety and Efficacy of Weekly 30,000 IU Vitamin D Supplementation as a Slower Loading Dose Administration Compared to a Daily Maintenance Schedule in Deficient Patients: A Randomized, Controlled Clinical Trial. J. Pharmacovigil. 2017, 5, 233. [Google Scholar] [CrossRef]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef]
- Thys-Jacobs, S.; Donovan, D.; Papadopoulos, A.; Sarrel, P.; Bilezikian, J.P. Vitamin D and calcium dysregulation in the polycystic ovarian syndrome. Steroids 1999, 64, 430–435. [Google Scholar] [CrossRef]
- Mu, Y.; Cheng, D.; Yin, T.-L.; Yang, J. Vitamin D and Polycystic Ovary Syndrome: A Narrative Review. Reprod. Sci. 2021, 28, 2110–2117. [Google Scholar] [CrossRef]
- Chu, J.; Gallos, I.; Tobias, A.; Tan, B.; Eapen, A.; Coomarasamy, A. Vitamin D and assisted reproductive treatment outcome: A systematic review and meta-analysis. Hum. Reprod. 2018, 33, 65–80. [Google Scholar] [CrossRef]
- Cochrane, K.M.; Bone, J.N.; A Williams, B.; Karakochuk, C.D. Optimizing vitamin D status in polycystic ovary syndrome: A systematic review and dose–response meta-analysis. Nutr. Rev. 2024, 82, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Voulgaris, N.; Papanastasiou, L.; Piaditis, G.; Angelousi, A.; Kaltsas, G.; Mastorakos, G.; Kassi, E. Vitamin D and aspects of female fertility. Hormones 2017, 16, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Pilz, S.; Obermayer-Pietsch, B.; Trummer, C. Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Controlled Trial. Nutrients 2021, 13, 547. [Google Scholar] [CrossRef] [PubMed]
- Stańczak, N.A.; Grywalska, E.; Dudzińska, E. The latest reports and treatment methods on polycystic ovary syndrome. Ann. Med. 2024, 56, 2357737. [Google Scholar] [CrossRef]
- Abdelazim, I.; Alanwar, A.; AbuFaza, M.; Amer, O.; Bekmukhambetov, Y.; Zhurabekova, G.; Shikanova, S.; Karimova, B. Elevated and diagnostic androgens of polycystic ovary syndrome. Menopausal Rev. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef]
- Shojaeian, Z.; Sadeghi, R.; Latifnejad, R. Calcium and vitamin D supplementation effects on metabolic factors, menstrual cycles and follicular responses in women with polycystic ovary syndrome: A systematic review and meta-analysis. Casp. J. Intern. Med. 2019, 10, 359–369. [Google Scholar] [CrossRef]
- Iervolino, M.; Lepore, E.; Forte, G.; Laganà, A.; Buzzaccarini, G.; Unfer, V. Natural Molecules in the Management of Polycystic Ovary Syndrome (PCOS): An Analytical Review. Nutrients 2021, 13, 1677. [Google Scholar] [CrossRef]
- Pal, L.; Berry, A.; Coraluzzi, L.; Kustan, E.; Danton, C.; Shaw, J.; Taylor, H. Therapeutic implications of vitamin D and calcium in overweight women with polycystic ovary syndrome. Gynecol. Endocrinol. 2012, 28, 965–968. [Google Scholar] [CrossRef]
- Várbíró, S.; Takács, I.; Tűű, L.; Nas, K.; Sziva, R.E.; Hetthéssy, J.R.; Török, M. Effects of Vitamin D on Fertility, Pregnancy and Polycystic Ovary Syndrome—A Review. Nutrients 2022, 14, 1649. [Google Scholar] [CrossRef]
- Avelino, C.M.S.F.; de Araújo, R.F.F. Effects of vitamin D supplementation on oxidative stress biomarkers of Iranian women with polycystic ovary syndrome: A meta-analysis study. Rev. Bras. Hematol. Hemoter. 2024, 46, e-rbgo37. [Google Scholar] [CrossRef]
Population | Dimension | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
Study population ITT (n = 84) | ||||||
Age | year | 27.7 | 6.2 | 18 | 26.5 | 46 |
BMI | kg/m2 | 25.2 | 4.9 | 17.7 | 24.5 | 35.9 |
Cycle length (average *) | d | 48.2 | 30.3 | 23 | 38 | 180 |
Cycles/year | # | 8.4 | 3.1 | 2 | 9 | 13 |
17β-estradiol | pmol/L | 319.6 | 239.0 | 79.6 | 221.2 | 1214 |
Testosterone | nmol/L | 1.96 | 0.93 | 0.4 | 1.9 | 5.1 |
Androstenedione | nmol/L | 10.6 | 5.8 | 1.7 | 9.7 | 24.4 |
25(OH)D | ng/mL | 20.0 | 5.2 | 10.8 | 20.7 | 29.5 |
Dietary calcium intake | mg/d | 684.5 | 336.2 | 241 | 601.5 | 1892 |
Treatment arm “D12” group (n = 44) | ||||||
Age | year | 27.0 | 6.2 | 18 | 25.5 | 46 |
BMI | kg/m2 | 24.8 | 4.9 | 17.7 | 23.5 | 35.9 |
Cycle length (average *) | d | 51.5 | 36.0 | 23 | 40 | 180 |
Cycles/year | # | 8.3 | 3.2 | 2 | 8.5 | 13 |
Estradiol | pmol/L | 309.3 | 233.1 | 91.3 | 208.8 | 1214 |
Testosterone | nmol/L | 2.0 | 1.1 | 0.4 | 2.3 | 5.1 |
Androstenedione | nmol/L | 11.46 | 6.36 | 1.7 | 10.95 | 24.4 |
25(OH)D | ng/mL | 20.1 | 5.1 | 10.8 | 20.7 | 29.5 |
Dietary calcium intake | mg/d | 712.7 | 294.2 | 241 | 689 | 1178 |
Treatment arm “D24” group (n = 40) | ||||||
Age | year | 28.5 | 6.26 | 18 | 28 | 45 |
BMI | kg/m2 | 25.5 | 4.94 | 17.8 | 25.5 | 35.4 |
Cycle length (average *) | d | 44.9 | 23.22 | 26 | 36 | 150 |
Cycles/year | # | 8.5 | 2.96 | 2 | 9 | 12 |
Estradiol | pmol/L | 331.3 | 247.5 | 79.6 | 257.3 | 1074 |
Testosterone | nmol/L | 1.89 | 0.75 | 0.7 | 1.7 | 3.4 |
Androstenedione | nmol/L | 9.6 | 5.1 | 2 | 9.0 | 20.3 |
25(OH)D | ng/mL | 19.9 | 5.4 | 10.9 | 20.7 | 28.2 |
Dietary calcium intake | mg/d | 653.5 | 378.2 | 247 | 562 | 1892 |
Population Vit D-Depleted Patients | Vit D-Depleted Baseline | Post-Treatment 12 Weeks Vit D | CI Treatment | p-Value |
---|---|---|---|---|
Treatment, Group “D12” (n = 44) | Mean ±SD | Mean ±SD | CI 5–95% | |
25(OH)D (ng/mL) | 24.34 (±9.18) | 45.1 (±11.42) | 41.63–48.58 | <0.0001 |
Mean cycle length (days) | 51.10 (±30.29) | 40.42 (±15.98) | 35.5–45.3 | 0.031 |
Estradiol (pmol/L) | 464.4 (±494.6) | 474.1 (±477.4) | 325.3–622.8 | n.s. |
Testosterone (nmol/L) | 2.16 (±1.016) | 2.02 (±1.022) | 1.70–2.33 | n.s. |
Androstenedione (nmol/L) | 12.10 (±6.33) | 11.77 (±6.134) | 9.86–13.68 | n.s. |
FSH/LH* ratio | 2.38 (±1.36) | 2.41(±1.36) | 2.00–2.83 | n.s. |
Population Vit D-Repleted Patients | Vit D-Repleted Baseline | Post-Treatment 12 Weeks Vit D | CI Treatment | p-Value |
---|---|---|---|---|
Treatment, Group “D24” (n = 40) | Mean ±SD | Mean ±SD | CI 5–95% | |
25(OH)D (ng/mL) | 45.07 (±9.89) | 43.15 (±8.359] | 40.48–45.83 | n.s. |
Mean cycle length (days) | 47.93 (±21.91) | 38.75 (±15.03) | 33.28–43.03 | 0.004 |
Estradiol (pmol/L) | 448.8 (±352.9) | 445.1 (±281.5) | 355.1–535.2 | n.s. |
Testosterone (nmol/L) | 1.89 (±0.653) | 1.96 [±0.815) | 1.699–2.221 | n.s. |
Androstenedione (nmol/L) | 9.93 (±6.30) | 10.23 [±5.38] | 8.51–11.95 | n.s. |
FSH/LH* ratio | 2.303 (±1.426) | 2.342 (±1.455) | 1.877–2.807 | n.s. |
Visit | Intervention | Normal Ovarian Morphology | D12 Group (n = 44) | D24 Group (n = 40) |
---|---|---|---|---|
Screening | - | Yes | 2/44 (4.55%) | 1/40 (2.5%) |
- | No | 42/44 (95.45% | 39/40 (97.5%) | |
Week 12 | Placebo + calcium 12 weeks | Yes | 2/44 (4.55%) | - |
No | 42/44 (95.45% | - | ||
Week 12 | Vit D3 + calcium 12 weeks | Yes | - | 6/40 (15%) * |
No | - | 34/40 (85%) | ||
Week 24 | Vit D3 + calcium 12 weeks | Yes | 9/44 (20.45%) ** | 9/40 (22.5%) *** |
No | 35/44 (79.55%) | 31/40 (77.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, B.E.; Takács, I.; Valkusz, Z.; Jakab, A.; Fülöp, Z.; Kádár, K.; Putz, Z.; Kósa, J.P.; Lakatos, P. Effects of Vitamin D3 Treatment on Polycystic Ovary Symptoms: A Prospective Double-Blind Two-Phase Randomized Controlled Clinical Trial. Nutrients 2025, 17, 1246. https://doi.org/10.3390/nu17071246
Tóth BE, Takács I, Valkusz Z, Jakab A, Fülöp Z, Kádár K, Putz Z, Kósa JP, Lakatos P. Effects of Vitamin D3 Treatment on Polycystic Ovary Symptoms: A Prospective Double-Blind Two-Phase Randomized Controlled Clinical Trial. Nutrients. 2025; 17(7):1246. https://doi.org/10.3390/nu17071246
Chicago/Turabian StyleTóth, Béla E., István Takács, Zsuzsanna Valkusz, Attila Jakab, Zsanett Fülöp, Kristóf Kádár, Zsuzsanna Putz, János Pál Kósa, and Péter Lakatos. 2025. "Effects of Vitamin D3 Treatment on Polycystic Ovary Symptoms: A Prospective Double-Blind Two-Phase Randomized Controlled Clinical Trial" Nutrients 17, no. 7: 1246. https://doi.org/10.3390/nu17071246
APA StyleTóth, B. E., Takács, I., Valkusz, Z., Jakab, A., Fülöp, Z., Kádár, K., Putz, Z., Kósa, J. P., & Lakatos, P. (2025). Effects of Vitamin D3 Treatment on Polycystic Ovary Symptoms: A Prospective Double-Blind Two-Phase Randomized Controlled Clinical Trial. Nutrients, 17(7), 1246. https://doi.org/10.3390/nu17071246