Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID
Abstract
:1. Introduction
2. Medications
2.1. Addressing Long COVID Pain
2.2. Emerging Treatment Options
- Montelukast: This leukotriene receptor antagonist is currently being evaluated in a phase 3 clinical trial to assess its efficacy in treating respiratory symptoms associated with long COVID. The trial involves administering 10 mg of Montelukast daily for 28 days to participants [6].
- Pirfenidone: This antifibrotic drug is being investigated for its potential to treat pulmonary fibrosis resulting from long COVID. Early reports suggest significant improvements in patients treated with pirfenidone [7].
- Nicotinamide riboside: This vitamin B complex compound is undergoing a phase 4 trial to evaluate its effects on cognitive and physical symptoms in long COVID patients (ClinicalTrials: NCT04809974) [8].
- Low-dose naltrexone (LDN): Originally developed for addiction treatment, LDN has shown potential benefits in alleviating symptoms such as fatigue and brain fog in long COVID patients, although it is not formally approved for this use yet [9].
- Paxlovid (nirmatrelvir/ritonavir): While primarily used for treating acute COVID-19, paxlovid is being tested for its efficacy in managing long COVID symptoms in clinical trials [10].
- Baricitinib: This immunosuppressant Janus kinase inhibitor drug, used in rheumatoid arthritis, may help manage chronic inflammation seen in long COVID lung symptoms based on recent research findings [13].
2.3. Commonly Prescribed Medications for Long COVID Symptoms
2.4. Substances with Prevalent Antinflammatory/Antioxidant Activity
2.4.1. N-Acetylcysteine
2.4.2. Mechanisms Underlying NAC Action on Pain
2.4.3. Curcumin
2.4.4. Berberine
2.5. Substances Acting on Membranes/Neurotransmitters and as Neuroprotectants
2.5.1. N-Acetyl-L-Carnitine
- Modulation of cholinergic neurons;
- Analgesic and anti-hyperalgesic activity;
- Complex modulation of different growth factors (details provided below).
2.5.2. Palmitoylethanolamide
2.5.3. B-Group Vitamins
2.6. Substances Acting on the Neuroimmune Response (Including Vagal Activity Modulation)
2.6.1. DHA/EPA
Specialized Pro-Resolving Mediators (SPMs) and Their Potential Role in Long COVID-19
The Role of the Vagus Nerve
2.6.2. Vitamin D
- Immune Modulation: Vitamin D enhances immune responses while metformin reduces inflammation, potentially leading to better overall management of COVID-19 symptoms.
- Genetic Variability: Individuals with genetic variants affecting vitamin D metabolism may benefit from metformin’s ability to improve VDR sensitivity, thereby enhancing vitamin D’s efficacy [176].
- Long COVID Prevention: Both compounds have shown potential in reducing the risk of long COVID, suggesting that their combined use could offer enhanced protection against persistent symptoms.
2.7. Probiotics
2.8. Pharmacoeconomic Aspect of Supplement Use Either as Standing Alone Intervention or Adjunctive Therapy
Cost of Supplements Versus Healthcare Savings
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Raja, A.; Khan, O.; Sagar, R.S.; Kumar, R.; Bhimani, P.D.; Bhimani, R.K.; Danial, M.; Raja, S.; Deepak, F.; Shafique, M.A.; et al. Insights into COVID-19 Mortality: A Comprehensive Study of Cardiovascular Sensitivity, Gender, Race, and Geography Trends in the United States (2020–2023). Curr. Probl. Cardiol. 2024, 49, 102435. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Herman, E.; Ahmed, A.; Anderson, J.; Selph, S.; Dana, T.; Williams, L.; Ivlev, I. Long COVID Definitions and Models of Care: A Scoping Review. Ann. Intern. Med. 2024, 177, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Nijs, J.; Neblett, R.; Polli, A.; Moens, M.; Goudman, L.; Shekhar Patil, M.; Knaggs, R.D.; Pickering, G.; Arendt-Nielsen, L. Phenotyping Post-COVID Pain as a Nociceptive, Neuropathic, or Nociplastic Pain Condition. Biomedicines 2022, 10, 2562. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-De-Las-Penas, C.; Pellicer-Valero, O.J.; Martín-Guerrero, J.D.; Hernández-Barrera, V.; Arendt-Nielsen, L. Investigating the Fluctuating Nature of Post-COVID Pain Symptoms in Previously Hospitalized COVID-19 Survivors: The LONG-COVID-EXP Multicenter Study. Pain Rep. 2024, 9, E1153. [Google Scholar] [CrossRef]
- Di Stefano, G.; Falco, P.; Galosi, E.; Di Pietro, G.; Leone, C.; Truini, A. A Systematic Review and Meta-Analysis of Neuropathic Pain Associated with Coronavirus Disease 2019. Eur. J. Pain 2023, 27, 44–53. [Google Scholar] [CrossRef]
- Cordero, F.M.; Monne, S.B.; Ortega, J.A.; García-Sangenís, A.; Puèrtolas, O.C.; Contreras-Martos, S.; Muñoz, G.A.; Escolà, R.M.; Joué, M.B.; Pedrós, R.M.; et al. Double-Blind Placebo-Controlled Randomized Clinical Trial to Assess the Efficacy of Montelukast in Mild to Moderate Respiratory Symptoms of Patients with Long COVID: E-SPERANZA COVID Project Study Protocol. Trials 2022, 23, 19. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, D.; Kong, X.; Wei, C.; LvQiu, S.; Wang, L.; Lin, Y.; Yin, Z.; Zhou, Z.; Luo, H. Case Report: Pirfenidone in the Treatment of Post-COVID-19 Pulmonary Fibrosis. Front. Med. 2022, 9, 925703. [Google Scholar] [CrossRef]
- Study Details | Clinical Trial of Niagen to Examine Recovery in People with Persistent Cognitive and Physical Symptoms After COVID-19 Illness (Long-COVID) | ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT04809974 (accessed on 30 January 2025).
- Isman, A.; Nyquist, A.; Strecker, B.; Harinath, G.; Lee, V.; Zhang, X.; Zalzala, S. Low-Dose Naltrexone and NAD+ for the Treatment of Patients with Persistent Fatigue Symptoms after COVID-19. Brain Behav. Immun.—Health 2024, 36, 100733. [Google Scholar] [CrossRef]
- McCarthy, M.W. Paxlovid as a Potential Treatment for Long COVID. Expert Opin. Pharmacother. 2023, 24, 1839–1843. [Google Scholar] [CrossRef]
- Salvucci, F.; Codella, R.; Coppola, A.; Zacchei, I.; Grassi, G.; Anti, M.L.; Nitisoara, N.; Luzi, L.; Gazzaruso, C. Antihistamines Improve Cardiovascular Manifestations and Other Symptoms of Long-COVID Attributed to Mast Cell Activation. Front. Cardiovasc. Med. 2023, 10, 1202696. [Google Scholar] [CrossRef]
- Chee, Y.J.; Fan, B.E.; Young, B.E.; Dalan, R.; Lye, D.C. Clinical Trials on the Pharmacological Treatment of Long COVID: A Systematic Review. J. Med. Virol. 2023, 95, e28289. [Google Scholar] [CrossRef] [PubMed]
- Assadiasl, S.; Fatahi, Y.; Mosharmovahed, B.; Mohebbi, B.; Nicknam, M.H. Baricitinib: From Rheumatoid Arthritis to COVID-19. J. Clin. Pharmacol. 2021, 61, 1274–1285. [Google Scholar] [CrossRef]
- Cazzola, M.; Page, C.P.; Wedzicha, J.A.; Celli, B.R.; Anzueto, A.; Matera, M.G. Use of Thiols and Implications for the Use of Inhaled Corticosteroids in the Presence of Oxidative Stress in COPD. Respir. Res. 2023, 24, 194. [Google Scholar] [CrossRef] [PubMed]
- Synmon, B.; Roy, S.; Majee, S.B.; Paul, M.; Dasgupta, S. Erdosteine: An Effective Antioxidant for Protecting Complete Freud’s Adjuvant Induced Arthritis in Rats. Asian J. Pharm. Clin. Res. 2021, 14, 71–75. [Google Scholar] [CrossRef]
- EP4398895A1—Erdosteine, Salts, Enantiomers or Metabolites Thereof for Use in the Treatment of Nociplastic and Neuropathic Pain States—Google Patents. Available online: https://patents.google.com/patent/EP4398895A1/en?q=(erdosteine+and+pain+and)&inventor=govoni&oq=erdosteine+and+pain+and+govoni.
- Study Details | Vagal Nerve Stimulation for Post COVID Fatigue | ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05445427?id=NCT05445427&rank=1 (accessed on 16 January 2025).
- El-Tallawy, S.N.; Perglozzi, J.V.; Ahmed, R.S.; Kaki, A.M.; Nagiub, M.S.; LeQuang, J.A.K.; Hadarah, M.M. Pain Management in the Post-COVID Era—An Update: A Narrative Review. Pain Ther. 2023, 12, 423–448. [Google Scholar] [CrossRef]
- García-Azorín, D.; García-Ruiz, C.; Sierra-Mencía, Á.; González-Osorio, Y.; Recio-García, A.; González-Celestino, A.; García-Iglesias, C.; Planchuelo-Gómez, Á.; Íñiguez, A.E.; Guerrero-Peral, Á.L. Acute and Preventive Treatment of COVID-19-Related Headache: A Series of 100 Patients. Life 2024, 14, 910. [Google Scholar] [CrossRef]
- Caronna, E.; Ballvé, A.; Llauradó, A.; Gallardo, V.J.; María Ariton, D.; Lallana, S.; Maza, S.L.; Gadea, M.O.; Quibus, L.; Restrepo, J.L.; et al. Headache: A Striking Prodromal and Persistent Symptom, Predictive of COVID-19 Clinical Evolution. Cephalalgia 2020, 40, 1410–1421. [Google Scholar] [CrossRef]
- Caronna, E.; Pozo-Rosich, P. Headache as a Symptom of COVID-19: Narrative Review of 1-Year Research. Curr. Pain Headache Rep. 2021, 25, 73. [Google Scholar] [CrossRef]
- Birkinshaw, H.; Friedrich, C.M.; Cole, P.; Eccleston, C.; Serfaty, M.; Stewart, G.; White, S.; Moore, R.A.; Phillippo, D.; Pincus, T. Antidepressants for Pain Management in Adults with Chronic Pain: A Network Meta-Analysis. Cochrane Database Syst. Rev. 2023, 5, CD014682. [Google Scholar] [CrossRef]
- Tana, C.; Bentivegna, E.; Cho, S.J.; Harriott, A.M.; García-Azorín, D.; Labastida-Ramirez, A.; Ornello, R.; Raffaelli, B.; Beltrán, E.R.; Ruscheweyh, R.; et al. Long COVID Headache. J. Headache Pain 2022, 23, 93. [Google Scholar] [CrossRef]
- Kushner, P.; McCarberg, B.H.; Grange, L.; Kolosov, A.; Haveric, A.L.; Zucal, V.; Petruschke, R.; Bissonnette, S. The Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in COVID-19. NPJ Prim. Care Respir. Med. 2022, 32, 35. [Google Scholar] [CrossRef] [PubMed]
- Dono, F.; Consoli, S.; Evangelista, G.; D’Apolito, M.; Russo, M.; Carrarini, C.; Calisi, D.; De Rosa, M.; Di Pietro, M.; De Angelis, M.V.; et al. New Daily Persistent Headache after SARS-CoV-2 Infection: A Report of Two Cases. Neurol. Sci. 2021, 42, 3965–3968. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Shah, N.D. Post-Infectious New Daily Persistent Headache May Respond to Intravenous Methylprednisolone. J. Headache Pain 2010, 11, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; Mcnicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for Neuropathic Pain in Adults: A Systematic Review and Meta-Analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Attal, N.; Cruccu, G.; Baron, R.; Haanpää, M.; Hansson, P.; Jensen, T.S.; Nurmikko, T. EFNS Guidelines on the Pharmacological Treatment of Neuropathic Pain: 2010 Revision. Eur. J. Neurol. 2010, 17, 1113-e88. [Google Scholar] [CrossRef]
- Attal, N.; Martinez, V.; Bouhassira, D. Potential for Increased Prevalence of Neuropathic Pain after the COVID-19 Pandemic. Pain Rep. 2021, 6, e884. [Google Scholar] [CrossRef]
- Cooper, T.E.; Derry, S.; Wiffen, P.J.; Moore, R.A. Gabapentin for Fibromyalgia Pain in Adults. Cochrane Database Syst. Rev. 2017, 2017, CD012188. [Google Scholar] [CrossRef]
- Ryabkova, V.A.; Churilov, L.P.; Shoenfeld, Y. Neuroimmunology: What Role for Autoimmunity, Neuroinflammation, and Small Fiber Neuropathy in Fibromyalgia, Chronic Fatigue Syndrome, and Adverse Events after Human Papillomavirus Vaccination? Int. J. Mol. Sci. 2019, 20, 5164. [Google Scholar] [CrossRef]
- Natoli, S.; Carpenedo, R.; Chinè, E.; Vannicola, F.; Leonardis, F.; Dauri, M. Should We Be Concerned When COVID-19-Positive Patients Take Opioids to Control Their Pain? Insights from a Pharmacological Point of View. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4854–4867. [Google Scholar] [CrossRef]
- Sadowska, A.M.; Verbraecken, J.; Darquennes, K.; De Backer, W.A. Role of N-Acetylcysteine in the Management of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2006, 1, 425–434. [Google Scholar] [CrossRef]
- Elbini Dhouib, I.; Jallouli, M.; Annabi, A.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. A Minireview on N-Acetylcysteine: An Old Drug with New Approaches. Life Sci. 2016, 151, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Licata, A.; Minissale, M.G.; Stankevičiūtė, S.; Sanabria-Cabrera, J.; Lucena, M.I.; Andrade, R.J.; Almasio, P.L. N-Acetylcysteine for Preventing Acetaminophen-Induced Liver Injury: A Comprehensive Review. Front. Pharmacol. 2022, 13, 828565. [Google Scholar] [CrossRef] [PubMed]
- Aluigi, M.G.; De Flora, S.; D’Agostini, F.; Albini, A.; Fassina, G. Antiapoptotic and Antigenotoxic Effects of N-Acetylcysteine in Human Cells of Endothelial Origin. Anticancer Res. 2000, 20, 3183–3187. [Google Scholar]
- Jin, H.M.; Zhou, D.C.; Gu, H.F.; Qiao, Q.Y.; Fu, S.K.; Liu, X.L.; Pan, Y. Antioxidant N-Acetylcysteine Protects Pancreatic β-Cells Against Aldosterone-Induced Oxidative Stress and Apoptosis in Female Db/Db Mice and Insulin-Producing MIN6 Cells. Endocrinology 2013, 154, 4068–4077. [Google Scholar] [CrossRef]
- Qian, H.-R.; Yang, Y. Neuron Differentiation and Neuritogenesis Stimulated by N-Acetylcysteine (NAC). Acta Pharmacol. Sin. 2009, 30, 907–912. [Google Scholar] [CrossRef]
- Santus, P.; Signorello, J.C.; Danzo, F.; Lazzaroni, G.; Saad, M.; Radovanovic, D. Anti-Inflammatory and Anti-Oxidant Properties of N-Acetylcysteine: A Fresh Perspective. J. Clin. Med. 2024, 13, 4127. [Google Scholar] [CrossRef]
- Watson, J.J.; Allen, S.J.; Dawbarn, D. Targeting Nerve Growth Factor in Pain What Is the Therapeutic Potential ? BioDrugs 2008, 22, 349–359. [Google Scholar] [CrossRef]
- Honda, T.; Yasuda, T.; Tanaka, T.; Hagiwara, K.; Arai, T.; Yoshino, T. Functional Expression of Full-Length TrkA in the Prokaryotic Host Magnetospirillum Magneticum AMB-1 by Using a Magnetosome Display System. Appl. Environ. Microbiol. 2015, 81, 1472–1476. [Google Scholar] [CrossRef]
- Govoni, S.; Fantucci, P.; Marchesi, N.; Vertemara, J.; Pascale, A.; Allegri, M.; Calvillo, L.; Vanoli, E. N-Acetylcysteine Antagonizes NGF Activation of TrkA through Disulfide Bridge Interaction, an Effect Which May Contribute to Its Analgesic Activity. Int. J. Mol. Sci. 2024, 25, 206. [Google Scholar] [CrossRef]
- Wilson, P.R.; Bridges, K.H.; Scofield, M.; Wilson, S.H. Perioperative N-Acetylcysteine: Evidence and Indications. Pain Manag. 2024, 14, 385–396. [Google Scholar] [CrossRef]
- Parisien, M.; Lima, L.V.; Dagostino, C.; El-Hachem, N.; Drury, G.L.; Grant, A.V.; Huising, J.; Verma, V.; Meloto, C.B.; Silva, J.R.; et al. Acute Inflammatory Response via Neutrophil Activation Protects against the Development of Chronic Pain. Sci. Transl. Med. 2022, 14, eabj9954. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.H.; Sirianni, J.M.; Bridges, K.H.; Wolf, B.J.; Valente, I.E.; Scofield, M.D. The Impact of Intraoperative N-Acetylcysteine on Opioid Consumption Following Spine Surgery: A Randomized Pilot Trial. Pain Manag. 2023, 13, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Fantucci, P.; Govoni, S.; Pascale, A.A.; Marchesi, N.; Allegr, M.; Vanoli, I.; Calvillo, L.; Reggian, P.; Pace, V. N-Acetyl Cysteine for Neuraxial Use as a TrkA Tyrosine Kinase Receptor Inhibitor for the Treatment of Acute and Chronic Pain. WO2022223590A1, 22 July 2022. [Google Scholar]
- Marchesi, N.; Govoni, S.; Allegri, M. Non-Drug Pain Relievers Active on Non-Opioid Pain Mechanisms. Pain Pract. 2022, 22, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.J. N-Acetylcysteine in Severe COVID-19: The Possible Mechanism. Int. J. Infect. 2020, 74, 3. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine Release Syndrome in Severe COVID-19: Interleukin-6 Receptor Antagonist Tocilizumab May Be the Key to Reduce Mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef]
- Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020, 35, 266–271. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Tardiolo, G.; Bramanti, P.; Mazzon, E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules 2018, 23, 3305. [Google Scholar] [CrossRef]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The Multifaceted Nature of IL-10: Regulation, Role in Immunological Homeostasis and Its Relevance to Cancer, COVID-19 and Post-COVID Conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef]
- Smail, S.W.; Babaei, E.; Amin, K.; Abdulahad, W.H. Serum IL-23, IL-10, and TNF-α Predict in-Hospital Mortality in COVID-19 Patients. Front. Immunol. 2023, 14, 1145840. [Google Scholar] [CrossRef]
- Palacio, J.R.; Markert, U.R.; Martínez, P. Anti-Inflammatory Properties of N-Acetylcysteine on Lipopolysaccharide- Activated Macrophages. Inflamm. Res. 2011, 60, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Rocksén, D.; Lilliehöök, B.; Larsson, R.; Johansson, T.; Bucht, A. Differential Anti-Inflammatory and Anti-Oxidative Effects of Dexamethasone and N-Acetylcysteine in Endotoxin-Induced Lung Inflammation. Clin. Exp. Immunol. 2008, 122, 249–256. [Google Scholar] [CrossRef]
- Jena, D.; Sahoo, J.; Barman, A.; Dalai, A.; Patel, S. Neuropathic Pain in Hospitalized Patients With COVID-19: A Prospective Case Series. Arch. Rehabil. Res. Clin. Transl. 2022, 4, 100188. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, H.; Quach, T.C.; Tiwari, A.; Bonilla, A.E.; Miglis, M.; Yang, P.C.; Eggert, L.E.; Sharifi, H.; Horomanski, A.; Subramanian, A.; et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Is Common in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC): Results from a Post-COVID-19 Multidisciplinary Clinic. Front. Neurol. 2023, 14, 1090747. [Google Scholar] [CrossRef]
- Fesharaki-Zadeh, A.; Lowe, N.; Arnsten, A.F.T. Clinical Experience with the A2A-Adrenoceptor Agonist, Guanfacine, and N-Acetylcysteine for the Treatment of Cognitive Deficits in “Long-COVID19”. Neuroimmunol. Rep. 2023, 3, 100154. [Google Scholar] [CrossRef]
- Akanchise, T.; Angelova, A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants 2023, 12, 393. [Google Scholar] [CrossRef]
- Henrotin, Y.; Lambert, C.; Couchourel, D.; Ripoll, C.; Chiotelli, E. Nutraceuticals: Do They Represent a New Era in the Management of Osteoarthritis?—A Narrative Review from the Lessons Taken with Five Products. Osteoarthr. Cartil. 2011, 19, 1–21. [Google Scholar] [CrossRef]
- Akuri, M.C.; Barbalho, S.M.; Val, R.M.; Guiguer, E.L. Reflections about Osteoarthritis and Curcuma longa. Pharmacogn. Rev. 2017, 11, 8–12. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-Term Effects of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Prospective Study. J. Orthop. Sci. 2014, 19, 933–939. [Google Scholar] [CrossRef]
- Liou, A.P.; Paziuk, M.; Luevano, J.M.; Machineni, S.; Turnbaugh, P.J.; Kaplan, L.M. Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Sci. Transl. Med. 2013, 5, 178ra41. [Google Scholar] [CrossRef]
- Lee, A.S.; Ellman, M.B.; Yan, D.; Kroin, J.S.; Cole, B.J.; van Wijnen, A.J.; Im, H.J. A Current Review of Molecular Mechanisms Regarding Osteoarthritis and Pain. Gene 2013, 527, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Kongkam, P.; Khongkha, W.; Lopimpisuth, C.; Chumsri, C.; Kosarussawadee, P.; Phutrakool, P.; Khamsai, S.; Sawanyawisuth, K.; Sura, T.; Phisalprapa, P.; et al. Comparable Efficacy of Curcumin and Proton Pump Inhibitor for Functional Dyspepsia: A Randomized Double-Blind Controlled Trial. medRxiv 2022, 28, 399–406. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, G.; Zhou, G.; Hong, K.; Yang, W.; Liu, J.; Zeng, L. Efficacy and Safety of Curcumin Therapy for Knee Osteoarthritis: A Bayesian Network Meta-Analysis. J. Ethnopharmacol. 2024, 321, 117493. [Google Scholar] [CrossRef]
- Kim, Y.; You, Y.; Yoon, H.G.; Lee, Y.H.; Kim, K.; Lee, J.; Kim, M.S.; Kim, J.C.; Jun, W. Hepatoprotective Effects of Fermented Curcuma longa L. on Carbon Tetrachloride-Induced Oxidative Stress in Rats. Food Chem. 2014, 151, 148–153. [Google Scholar] [CrossRef]
- Černý, D.; Lekić, N.; Váňová, K.; Muchová, L.; Hořínek, A.; Kmoníčková, E.; Zídek, Z.; Kameníková, L.; Farghali, H. Hepatoprotective Effect of Curcumin in Lipopolysaccharide/D-Galactosamine Model of Liver Injury in Rats: Relationship to HO-1/CO Antioxidant System. Fitoterapia 2011, 82, 786–791. [Google Scholar] [CrossRef]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M.C. Curcumin and Health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef]
- Baxla, S.L.; Gora, R.H.; Kerketta, P.; Kumar, N.; Roy, B.K.; Patra, P.H. Hepatoprotective Effect of Curcuma longa against Lead Induced Toxicity in Wistar Rats. Vet. World 2013, 6, 664–667. [Google Scholar] [CrossRef]
- Salama, S.M.; Abdulla, M.A.; AlRashdi, A.S.; Ismail, S.; Alkiyumi, S.S.; Golbabapour, S. Hepatoprotective Effect of Ethanolic Extract of Curcuma longa on Thioacetamide Induced Liver Cirrhosis in Rats. BMC Complement. Altern. Med. 2013, 13, 56. [Google Scholar] [CrossRef]
- Wu, S.J.; Tam, K.W.; Tsai, Y.H.; Chang, C.C.; Chao, J.C.J. Curcumin and Saikosaponin A Inhibit Chemical-Induced Liver Inflammation and Fibrosis in Rats. Am. J. Chin. Med. 2010, 38, 99–111. [Google Scholar] [CrossRef]
- Sarkar, A.; De, R.; Mukhopadhyay, A.K. Curcumin as a Potential Therapeutic Candidate for Helicobacter Pylori Associated Diseases. World J. Gastroenterol. 2016, 22, 2736. [Google Scholar] [CrossRef]
- Yadav, S.; Sah, A.K.; Jha, R.; Sah, P.; Shah, D. Turmeric (Curcumin) Remedies Gastroprotective Action. Pharmacogn. Rev. 2013, 7, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Kali, A.; Charles, M.V.P.; Kali, A.; Charles, M.V.P. Curcumin as a Promising Therapy for COVID-19: A Review. Glob. J. Med. Pharm. Biomed. Updat. 2024, 19, 2. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Abbasifard, M.; Rahimi-Bashar, F.; Guest, P.C.; Majeed, M.; Mohammadi, A.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022, 14, 256. [Google Scholar] [CrossRef] [PubMed]
- Rattis, B.A.C.; Ramos, S.G.; Celes, M.R.N. Curcumin as a Potential Treatment for COVID-19. Front. Pharmacol. 2021, 12, 675287. [Google Scholar] [CrossRef]
- Nicoliche, T.; Bartolomeo, C.S.; Lemes, R.M.R.; Pereira, G.C.; Nunes, T.A.; Oliveira, R.B.; Nicastro, A.L.M.; Soares, É.N.; da Cunha Lima, B.F.; Rodrigues, B.M.; et al. Antiviral, Anti-Inflammatory and Antioxidant Effects of Curcumin and Curcuminoids in SH-SY5Y Cells Infected by SARS-CoV-2. Sci. Rep. 2024, 14, 10696. [Google Scholar] [CrossRef]
- Valizadeh, H.; Abdolmohammadi-vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; et al. Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients. Int. Immunopharmacol. 2020, 89, 107088. [Google Scholar] [CrossRef]
- Hashemzaei, M.; Rezaee, R. A Review on Pain-Relieving Activity of Berberine. Phytother. Res. 2021, 35, 2846–2853. [Google Scholar] [CrossRef]
- He, M.; Chen, Y.X.; Feng, P.P.; Chen, J.; Xu, C.; Zhou, S.T.; Liu, B.Y.; He, X.F.; Shao, X.M.; Fang, J.Q.; et al. Berberine Alleviates Chronic Pain-Induced Anxiety-like Behaviors by Inhibiting the Activation of VLT-Projecting CACC (Cg2) Neurons. Commun. Biol. 2024, 7, 1651. [Google Scholar] [CrossRef]
- Yang, S.; Yu, Z.; Sun, W.; Jiang, C.; Ba, X.; Zhou, Q.; Xiong, D.; Xiao, L.; Deng, Q.; Hao, Y. The Antiviral Alkaloid Berberine Ameliorates Neuropathic Pain in Rats with Peripheral Nerve Injury. Acta Neurol. Belg. 2020, 120, 557–564. [Google Scholar] [CrossRef]
- Kim, H.J. Berberine Ameliorates Allodynia Induced by Chronic Constriction Injury of the Sciatic Nerve in Rats. J. Med. Food 2015, 18, 909–915. [Google Scholar] [CrossRef]
- Singh, J.; Saha, L.; Singh, N.; Kumari, P.; Bhatia, A.; Chakrabarti, A. Study of Nuclear Factor-2 Erythroid Related Factor-2 Activator, Berberine, in Paclitaxel Induced Peripheral Neuropathy Pain Model in Rats. J. Pharm. Pharmacol. 2019, 71, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, R.; Monemi, A.; Bonjar, M.A.S.; Hashemzaei, M. Berberine Alleviates Paclitaxel-Induced Neuropathy. J. Pharmacopunct. 2019, 22, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zuo, Z.; Yan, W.; Liu, W.; Zheng, Q.; Liu, X. Berberine Ameliorates Diabetic Neuropathic Pain in a Rat Model: Involvement of Oxidative Stress, Inflammation, and μ-Opioid Receptors. Naunyn. Schmiedebergs. Arch. Pharmacol. 2019, 392, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Zan, Y.; Kuai, C.X.; Qiu, Z.X.; Huang, F. Berberine Ameliorates Diabetic Neuropathy: TRPV1 Modulation by PKC Pathway. Am. J. Chin. Med. 2017, 45, 1709–1723. [Google Scholar] [CrossRef]
- Zhou, G.; Yan, M.; Guo, G.; Tong, N. Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions. Dose-Response 2019, 17, 1559325819862449. [Google Scholar] [CrossRef]
- Meng, J.; Qiu, S.; Zhang, L.; You, M.; Xing, H.; Zhu, J. Berberine Alleviate Cisplatin-Induced Peripheral Neuropathy by Modulating Inflammation Signal via TRPV1. Front. Pharmacol. 2022, 12, 774795. [Google Scholar] [CrossRef]
- Chen, C.; Lu, M.; Pan, Q.; Fichna, J.; Zheng, L.; Wang, K.; Yu, Z.; Li, Y.; Li, K.; Song, A.; et al. Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Symptoms in an Opioid-Receptor Dependent Manner. PLoS ONE 2015, 10, e0145556. [Google Scholar] [CrossRef]
- Babalghith, A.O.; Al-kuraishy, H.M.; Al-Gareeb, A.I.; De Waard, M.; Al-Hamash, S.M.; Jean-Marc, S.; Negm, W.A.; Batiha, G.E.S. The Role of Berberine in COVID-19: Potential Adjunct Therapy. Inflammopharmacology 2022, 30, 2003. [Google Scholar] [CrossRef]
- Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M.M.; Smesny, S.; Sen, Z.D.; Guo, A.C.; Oler, E.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551. [Google Scholar] [CrossRef]
- Pascale, A.; Milano, S.; Corsico, N.; Lucchi, L.; Battani, F.; Martelli, E.A.; Trabucchi, M.; Govoni, S. Protein Kinase C Activation and Anti-Amnesic Effect of Acetyl-L-Carnitine: In Vitro and in Vivo Studies. Eur. J. Pharmacol. 1994, 265, 1–7. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, M.L.; Huang, B.; Zhao, F.R.; Li, Y.; Cui, X.T.; Lin, R. Acetylcarnitine Is Associated With Cardiovascular Disease Risk in Type 2 Diabetes Mellitus. Front. Endocrinol. 2021, 12, 806819. [Google Scholar] [CrossRef] [PubMed]
- Johri, A.M.; Hétu, M.F.; Heyland, D.K.; Herr, J.E.; Korol, J.; Froese, S.; Norman, P.A.; Day, A.G.; Matangi, M.F.; Michos, E.D.; et al. Progression of Atherosclerosis with Carnitine Supplementation: A Randomized Controlled Trial in the Metabolic Syndrome. Nutr. Metab. 2022, 19, 26. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Giorgi, V.; Di Lascio, S.; Fornasari, D. Acetyl-L-Carnitine in Chronic Pain: A Narrative Review. Pharmacol. Res. 2021, 173, 105874. [Google Scholar] [CrossRef]
- Carta, A.; Calvani, M.; Bravi, D.; Bhuchalla, S.N. Acetyl-L-Carnitine and Alzheimer’s Disease: Pharmacological Considerations beyond the Cholinergic Sphere. Ann. N. Y. Acad. Sci. 1993, 695, 324–326. [Google Scholar] [CrossRef]
- Szabó, K.; Nagy, Z.; Juhász, V.; Zolnerciks, J.K.; Csorba, A.; Tímár, Z.; Molnár, É.; Pádár, P.; Johnson, W.; Beéry, E.; et al. Species Specificity Profiling of Rat and Human Organic Cation/Carnitine Transporter Slc22a5/SLC22A5 (Octn2/OCTN2). Drug Metab. Pharmacokinet. 2017, 32, 165–171. [Google Scholar] [CrossRef]
- Rebouche, C.J. Kinetics, Pharmacokinetics, and Regulation of l-Carnitine and Acetyl-l-Carnitine Metabolism. Ann. N. Y. Acad. Sci. 2004, 1033, 30–41. [Google Scholar] [CrossRef]
- Helbing, D.L.; Dommaschk, E.M.; Danyeli, L.V.; Liepinsh, E.; Refisch, A.; Sen, Z.D.; Zvejniece, L.; Rocktäschel, T.; Stabenow, L.K.; Schiöth, H.B.; et al. Conceptual Foundations of Acetylcarnitine Supplementation in Neuropsychiatric Long COVID Syndrome: A Narrative Review. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1829–1845. [Google Scholar] [CrossRef]
- Vaziri-harami, R.; Delkash, P. Can L-Carnitine Reduce Post-COVID-19 Fatigue? Ann. Med. Surg. 2021, 73, 103145. [Google Scholar] [CrossRef]
- Matsui, H.; Einama, T.; Shichi, S.; Kanazawa, R.; Shibuya, K.; Suzuki, T.; Matsuzawa, F.; Hashimoto, T.; Homma, S.; Yamamoto, J.; et al. L-Carnitine Supplementation Reduces the General Fatigue of Cancer Patients during Chemotherapy. Mol. Clin. Oncol. 2018, 8, 413–416. [Google Scholar] [CrossRef]
- Marx, W.; Teleni, L.; Opie, R.S.; Kelly, J.; Marshall, S.; Itsiopoulos, C.; Isenring, E. Efficacy and Effectiveness of Carnitine Supplementation for Cancer-Related Fatigue: A Systematic Literature Review and Meta-Analysis. Nutrients 2017, 9, 1224. [Google Scholar] [CrossRef]
- Malaguarnera, M. Carnitine Derivatives: Clinical Usefulness. Curr. Opin. Gastroenterol. 2012, 28, 166–176. [Google Scholar] [CrossRef] [PubMed]
- AbuMoh’d, M.F.; Obeidat, G.; Alsababha, W. Effect of Oral Supplementation with L-Carnitine on Performance Time in a 5000 m Race and Responses of Free Fatty Acid and Carnitine Concentrations in Trained-Endurance Athletes. Montenegrin J. Sport. Sci. Med. 2021, 10, 5–11. [Google Scholar] [CrossRef]
- Scaturro, D.; Vitagliani, F.; Di Bella, V.E.; Falco, V.; Tomasello, S.; Lauricella, L.; Mauro, G.L. The Role of Acetyl-Carnitine and Rehabilitation in the Management of Patients with Post-COVID Syndrome: Case-Control Study. Appl. Sci. 2022, 12, 4084. [Google Scholar] [CrossRef]
- Naureen, Z.; Dautaj, A.; Nodari, S.; Fioretti, F.; Dhuli, K.; Anpilogov, K.; Lorusso, L.; Paolacci, S.; Michelini, S.; Guda, T.; et al. Proposal of a Food Supplement for the Management of Post-COVID Syndrome. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 67–73. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Afshin-Majd, S.; Bashiri, K.; Kiasalari, Z.; Baluchnejadmojarad, T.; Sedaghat, R.; Roghani, M. Acetyl-l-Carnitine Protects Dopaminergic Nigrostriatal Pathway in 6-Hydroxydopamine-Induced Model of Parkinson’s Disease in the Rat. Biomed. Pharmacother. 2017, 89, 1–9. [Google Scholar] [CrossRef]
- Ali Shah, F.; Li, S.; Samin, A.; Tariq Al Kury, L.; Hussain, S.; Imran Khan, M.; Alattar, A.; Alshaman, R.; Aamir, M. Acetyl-L-Carnitine Protects against LPS Induced Depression via PPAR-γ Induced Inhibition of NF-ΚB/NLRP3 Pathway. Arch. Med. Sci. 2021, 18. [Google Scholar] [CrossRef]
- Kazak, F.; Yarim, G.F. Neuroprotective Effects of Acetyl-l-Carnitine on Lipopolysaccharide-Induced Neuroinflammation in Mice: Involvement of Brain-Derived Neurotrophic Factor. Neurosci. Lett. 2017, 658, 32–36. [Google Scholar] [CrossRef]
- Kocsis, K.; Frank, R.; Szabó, J.; Knapp, L.; Kis, Z.; Farkas, T.; Vécsei, L.; Toldi, J. Acetyl-l-Carnitine Restores Synaptic Transmission and Enhances the Inducibility of Stable LTP after Oxygen-Glucose Deprivation. Neuroscience 2016, 332, 203–211. [Google Scholar] [CrossRef]
- Traina, G.; Federighi, G.; Brunelli, M.; Scuri, R. Cytoprotective Effect of Acetyl-L-Carnitine Evidenced by Analysis of Gene Expression in the Rat Brain. Mol. Neurobiol. 2009, 39, 101–106. [Google Scholar] [CrossRef]
- Nasca, C.; Xenos, D.; Barone, Y.; Caruso, A.; Scaccianoce, S.; Matrisciano, F.; Battaglia, G.; Mathé, A.A.; Pittaluga, A.; Lionetto, L.; et al. L-Acetylcarnitine Causes Rapid Antidepressant Effects through the Epigenetic Induction of MGlu2 Receptors. Proc. Natl. Acad. Sci. USA. 2013, 110, 4804–4809. [Google Scholar] [CrossRef]
- Hiskens, M.I.; Li, K.M.; Schneiders, A.G.; Fenning, A.S. Repetitive Mild Traumatic Brain Injury-Induced Neurodegeneration and Inflammation Is Attenuated by Acetyl-L-Carnitine in a Preclinical Model. Front. Pharmacol. 2023, 14, 1254382. [Google Scholar] [CrossRef]
- Smeland, O.B.; Meisingset, T.W.; Borges, K.; Sonnewald, U. Chronic Acetyl-L-Carnitine Alters Brain Energy Metabolism and Increases Noradrenaline and Serotonin Content in Healthy Mice. Neurochem. Int. 2012, 61, 100–107. [Google Scholar] [CrossRef]
- Lin, T.N.; Cheung, W.M.; Wu, J.S.; Chen, J.J.; Lin, H.; Chen, J.J.; Liou, J.Y.; Shyue, S.K.; Wu, K.K. 15d-Prostaglandin J2 Protects Brain from Ischemia-Reperfusion Injury. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 481–487. [Google Scholar] [CrossRef]
- Scaturro, D.; Vitagliani, F.; Tomasello, S.; Sconza, C.; Respizzi, S.; Letizia Mauro, G. Combined Rehabilitation with Alpha Lipoic Acid, Acetyl-L-Carnitine, Resveratrol, and Cholecalciferolin Discogenic Sciatica in Young People: A Randomized Clinical Trial. Medicina 2023, 59, 2197. [Google Scholar] [CrossRef]
- Raciti, L.; Arcadi, F.A.; Calabrò, R.S. Could Palmitoylethanolamide Be an Effective Treatment for Long-COVID-19? Hypothesis and Insights in Potential Mechanisms of Action and Clinical Applications. Innov. Clin. Neurosci. 2022, 19, 19. [Google Scholar]
- Clayton, P.; Hill, M.; Bogoda, N.; Subah, S.; Venkatesh, R. Palmitoylethanolamide: A Natural Compound for Health Management. Int. J. Mol. Sci. 2021, 22, 5305. [Google Scholar] [CrossRef]
- Steels, E.; Venkatesh, R.; Steels, E.; Vitetta, G.; Vitetta, L. A Double-Blind Randomized Placebo Controlled Study Assessing Safety, Tolerability and Efficacy of Palmitoylethanolamide for Symptoms of Knee Osteoarthritis. Inflammopharmacology 2019, 27, 475–485. [Google Scholar] [CrossRef]
- Mallard, A.; Briskey, D.; Richards, A.; Mills, D.; Rao, A. The Effect of Orally Dosed Levagen+TM (Palmitoylethanolamide) on Exercise Recovery in Healthy Males-A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2020, 12, 596. [Google Scholar] [CrossRef]
- Colizzi, M.; Bortoletto, R.; Colli, C.; Bonomo, E.; Pagliaro, D.; Maso, E.; Di Gennaro, G.; Balestrieri, M. Therapeutic Effect of Palmitoylethanolamide in Cognitive Decline: A Systematic Review and Preliminary Meta-Analysis of Preclinical and Clinical Evidence. Front. Psychiatry 2022, 13, 1038122. [Google Scholar] [CrossRef]
- Schweiger, V.; Schievano, C.; Martini, A.; Polati, L.; Del Balzo, G.; Simari, S.; Milan, B.; Finco, G.; Varrassi, G.; Polati, E. Extended Treatment with Micron-Size Oral Palmitoylethanolamide (PEA) in Chronic Pain: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1653. [Google Scholar] [CrossRef] [PubMed]
- Raciti, L.; De Luca, R.; Raciti, G.; Arcadi, F.A.; Calabrò, R.S. The Use of Palmitoylethanolamide in the Treatment of Long COVID: A Real-Life Retrospective Cohort Study. Med. Sci. 2022, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- De Luca, P.; Camaioni, A.; Marra, P.; Salzano, G.; Carriere, G.; Ricciardi, L.; Pucci, R.; Montemurro, N.; Brenner, M.J.; Di Stadio, A. Effect of Ultra-Micronized Palmitoylethanolamide and Luteolin on Olfaction and Memory in Patients with Long COVID: Results of a Longitudinal Study. Cells 2022, 11, 2552. [Google Scholar] [CrossRef]
- Versace, V.; Ortelli, P.; Dezi, S.; Ferrazzoli, D.; Alibardi, A.; Bonini, I.; Engl, M.; Maestri, R.; Assogna, M.; Ajello, V.; et al. Co-Ultramicronized Palmitoylethanolamide/Luteolin Normalizes GABAB-Ergic Activity and Cortical Plasticity in Long COVID-19 Syndrome. Clin. Neurophysiol. 2023, 145, 81–88. [Google Scholar] [CrossRef]
- Klok, F.A.; Boon, G.J.A.M.; Barco, S.; Endres, M.; Miranda Geelhoed, J.J.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status Scale: A Tool to Measure Functional Status over Time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef]
- Di Stadio, A.; D’Ascanio, L.; Vaira, L.A.; Cantone, E.; De Luca, P.; Cingolani, C.; Motta, G.; De Riu, G.; Vitelli, F.; Spriano, G.; et al. Ultramicronized Palmitoylethanolamide and Luteolin Supplement Combined with Olfactory Training to Treat Post-COVID-19 Olfactory Impairment: A Multi-Center Double-Blinded Randomized Placebo- Controlled Clinical Trial. Curr. Neuropharmacol. 2022, 20, 2001–2012. [Google Scholar] [CrossRef]
- Versace, V.; Sebastianelli, L.; Ferrazzoli, D.; Romanello, R.; Ortelli, P.; Saltuari, L.; D’Acunto, A.; Porrazzini, F.; Ajello, V.; Oliviero, A.; et al. Intracortical GABAergic Dysfunction in Patients with Fatigue and Dysexecutive Syndrome after COVID-19. Clin. Neurophysiol. 2021, 132, 1138–1143. [Google Scholar] [CrossRef]
- Roncati, L.; Marra, C.; Gravina, D.; Di Massa, G.; Della Rosa, N.; Adani, R. Ultramicronized Palmitoylethanolamide and Luteolin: Drug Candidates in Post-COVID-19 Critical Illness Neuropathy and Positioning-Related Peripheral Nerve Injury of the Upper Extremity. J. Hand Microsurg. 2024, 16, 100028. [Google Scholar] [CrossRef]
- Abbas, Z.G.; Swai, A.B. Evaluation of the Efficacy of Thiamine and Pyridoxine in the Treatment of Symptomatic Diabetic Peripheral Neuropathy. East Afr. Med. J. 1997, 74, 803–808. [Google Scholar]
- Sun, Y.; Lai, M.-S.; Lu, C.-J. Effectiveness of Vitamin B12 on Diabetic Neuropathy: Systematic Review of Clinical Controlled Trials. Acta Neurol. Taiwan. 2005, 14, 48–54. [Google Scholar]
- Jolivalt, C.G.; Mizisin, L.M.; Nelson, A.; Cunha, J.M.; Ramos, K.M.; Bonke, D.; Calcutt, N.A. B Vitamins Alleviate Indices of Neuropathic Pain in Diabetic Rats. Eur. J. Pharmacol. 2009, 612, 41–47. [Google Scholar] [CrossRef]
- Geller, M.; Oliveira, L.; Nigri, R.; Mezitis, S.G.; Goncalves Ribeiro, M.; Souza da Fonseca, A.d.; Guimaraes, O.R.; Kaufman, R.; Wajnsztajn, F. B Vitamins for Neuropathy and Neuropathic Pain. Vitam. Miner. 2017. [Google Scholar] [CrossRef]
- Batista, K.S.; Cintra, V.M.; Lucena, P.A.F.; Manhães-De-Castro, R.; Toscano, A.E.; Costa, L.P.; Queiroz, M.E.B.S.; De Andrade, S.M.; Guzman-Quevedo, O.; Aquino, J.D.S. The Role of Vitamin B12 in Viral Infections: A Comprehensive Review of Its Relationship with the Muscle-Gut-Brain Axis and Implications for SARS-CoV-2 Infection. Nutr. Rev. 2022, 80, 561–578. [Google Scholar] [CrossRef]
- Cassiano, L.M.G.; Cavalcante-Silva, V.; Oliveira, M.S.; Prado, B.V.O.; Cardoso, C.G.; Salim, A.C.M.; Franco, G.R.; D’Almeida, V.; Francisco, S.C.; Coimbra, R.S. Vitamin B12 Attenuates Leukocyte Inflammatory Signature in COVID-19 via Methyl-Dependent Changes in Epigenetic Markings. Front. Immunol. 2023, 14, 1048790. [Google Scholar] [CrossRef]
- Schloss, J.V. Nutritional Deficiencies That May Predispose to Long COVID. Inflammopharmacology 2023, 31, 573–583. [Google Scholar] [CrossRef]
- Manzanares, W.; Hardy, G. Vitamin B12: The Forgotten Micronutrient for Critical Care. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 662–668. [Google Scholar] [CrossRef]
- Manzanares, W.; Hardy, G. Vitamin B12 Pharmaconutrition for COVID-19. Rev. Nutr. Clínica Metab. 2020, 4, 65–69. [Google Scholar]
- Tengelmann, C.; Joos, S.; Kaußner, Y.; Malzahn, U.; Lunden, L.; Klug, A.; Häusler, K.G.; Escales, C.; Maetzler, W.; Hügen, K.; et al. Feasibility, Safety and Effectiveness of Prednisolone and Vitamin B1, B6, and B12 in Patients with Post-COVID-19-Syndrome (PreVitaCOV)—Protocol of a Randomised, Double-Blind, Placebo-Controlled Multicentre Trial in Primary Care (Phase IIIb). BMC Infect. Dis. 2024, 24, 56. [Google Scholar] [CrossRef]
- Kalogerou, M.; Ioannou, S.; Kolovos, P.; Prokopiou, E.; Potamiti, L.; Kyriacou, K.; Panagiotidis, M.; Ioannou, M.; Fella, E.; Worth, E.P.; et al. Omega-3 Fatty Acids Promote Neuroprotection, Decreased Apoptosis and Reduced Glial Cell Activation in the Retina of a Mouse Model of OPA1-Related Autosomal Dominant Optic Atrophy. Exp. Eye Res. 2022, 215, 108901. [Google Scholar] [CrossRef]
- Chang, P.K.Y.; Khatchadourian, A.; McKinney, A.A.; Maysinger, D. Docosahexaenoic Acid (DHA): A Modulator of Microglia Activity and Dendritic Spine Morphology. J. Neuroinflamm. 2015, 12, 34. [Google Scholar] [CrossRef]
- Georgieva, M.; Wei, Y.; Dumitrascuta, M.; Pertwee, R.; Finnerup, N.B.; Huang, W. Fatty Acid Suppression of Glial Activation Prevents Central Neuropathic Pain after Spinal Cord Injury. Pain 2019, 160, 2724–2742. [Google Scholar] [CrossRef]
- Redivo, D.D.B.; Jesus, C.H.A.; Sotomaior, B.B.; Gasparin, A.T.; Cunha, J.M. Acute Antinociceptive Effect of Fish Oil or Its Major Compounds, Eicosapentaenoic and Docosahexaenoic Acids on Diabetic Neuropathic Pain Depends on Opioid System Activation. Behav. Brain Res. 2019, 372, 111992. [Google Scholar] [CrossRef]
- Park, J.; Roh, J.; Pan, J.; Kim, Y.H.; Park, C.K.; Jo, Y.Y. Role of Resolvins in Inflammatory and Neuropathic Pain. Pharmaceuticals 2023, 16, 1366. [Google Scholar] [CrossRef]
- Yorek, M.A. The Potential Role of Fatty Acids in Treating Diabetic Neuropathy. Curr. Diab. Rep. 2018, 18, 86. [Google Scholar] [CrossRef]
- Lamon-Fava, S.; So, J.; Mischoulon, D.; Ziegler, T.R.; Dunlop, B.W.; Kinkead, B.; Schettler, P.J.; Nierenberg, A.A.; Felger, J.C.; Maddipati, K.R.; et al. Dose- and Time-Dependent Increase in Circulating Anti-Inflammatory and pro-Resolving Lipid Mediators Following Eicosapentaenoic Acid Supplementation in Patients with Major Depressive Disorder and Chronic Inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2021, 164, 102219. [Google Scholar] [CrossRef]
- Serhan, C.N.; Libreros, S.; Nshimiyimana, R. E-Series Resolvin Metabolome, Biosynthesis and Critical Role of Stereochemistry of Specialized pro-Resolving Mediators (SPMs) in Inflammation-Resolution: Preparing SPMs for Long COVID-19, Human Clinical Trials, and Targeted Precision Nutrition. Semin. Immunol. 2022, 59, 101597. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Serhan, C.N.; Bazinet, R.P. The Need for Precision Nutrition, Genetic Variation and Resolution in COVID-19 Patients. Mol. Aspects Med. 2021, 77, 100943. [Google Scholar] [CrossRef]
- Gracia Aznar, A.; Moreno Egea, F.; Gracia Banzo, R.; Gutierrez, R.; Rizo, J.M.; Rodriguez-Ledo, P.; Nerin, I.; Regidor, P.A. Pro-Resolving Inflammatory Effects of a Marine Oil Enriched in Specialized Pro-Resolving Mediators (SPMs) Supplement and Its Implication in Patients with Post-COVID Syndrome (PCS). Biomedicines 2024, 12, 2221. [Google Scholar] [CrossRef]
- Fang, Y.T.; Lin, Y.T.; Tseng, W.L.; Tseng, P.; Hua, G.L.; Chao, Y.J.; Wu, Y.J. Neuroimmunomodulation of Vagus Nerve Stimulation and the Therapeutic Implications. Front. Aging Neurosci. 2023, 15, 1173987. [Google Scholar] [CrossRef]
- Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front. Psychiatry 2018, 9, 44. [Google Scholar] [CrossRef]
- Han, Y.; Wang, B.; Gao, H.; He, C.; Hua, R.; Liang, C.; Zhang, S.; Wang, Y.; Xin, S.; Xu, J. Vagus Nerve and Underlying Impact on the Gut Microbiota-Brain Axis in Behavior and Neurodegenerative Diseases. J. Inflamm. Res. 2022, 15, 6213. [Google Scholar] [CrossRef]
- Capilupi, M.J.; Kerath, S.M.; Becker, L.B. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb. Perspect. Med. 2020, 10, a034173. [Google Scholar] [CrossRef]
- Young, H.A.; Benton, D. Heart-Rate Variability: A Biomarker to Study the Influence of Nutrition on Physiological and Psychological Health? Behav. Pharmacol. 2018, 29, 140–151. [Google Scholar] [CrossRef]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef]
- Caravaca, A.S.; Gallina, A.L.; Tarnawski, L.; Shavva, V.S.; Colas, R.A.; Dalli, J.; Malin, S.G.; Hult, H.; Arnardottir, H.; Olofsson, P.S. Vagus Nerve Stimulation Promotes Resolution of Inflammation by a Mechanism That Involves Alox15 and Requires the A7nAChR Subunit. Proc. Natl. Acad. Sci. USA 2022, 119, e2023285119. [Google Scholar] [CrossRef]
- Holick, M.F.; Chen, T.C. Vitamin D Deficiency: A Worldwide Problem with Health Consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Tuohimaa, P. Neurosteroid Hormone Vitamin D and Its Utility in Clinical Nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 12–19. [Google Scholar] [CrossRef]
- Eyles, D.W.; Smith, S.; Kinobe, R.; Hewison, M.; McGrath, J.J. Distribution of the Vitamin D Receptor and 1α-Hydroxylase in Human Brain. J. Chem. Neuroanat. 2005, 29, 21–30. [Google Scholar] [CrossRef]
- Feldman, D.; Krishnan, A.; Moreno, J.; Swami, S.; Peehl, D.M.; Srinivas, S. Vitamin D Inhibition of the Prostaglandin Pathway as Therapy for Prostate Cancer. Nutr. Rev. 2007, 65, S113–S115. [Google Scholar] [CrossRef]
- Richardson, J.D.; Vasko, M.R. Cellular Mechanisms of Neurogenic Inflammation. J. Pharmacol. Exp. Ther. 2002, 302, 839–845. [Google Scholar] [CrossRef]
- Helde-Frankling, M.; Björkhem-Bergman, L. Vitamin D in Pain Management. Int. J. Mol. Sci. 2017, 18, 2170. [Google Scholar] [CrossRef] [PubMed]
- Motti, M.L.; Tafuri, D.; Donini, L.; Masucci, M.T.; De Falco, V.; Mazzeo, F. The Role of Nutrients in Prevention, Treatment and Post-Coronavirus Disease-2019 (COVID-19). Nutrients 2022, 14, 1000. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Grant, W.B.; Frias-Toral, E.; Sarno, G.; Vetrani, C.; Ceriani, F.; Garcia-Velasquez, E.; Contreras-Briceño, J.; Savastano, S.; et al. Vitamin D: A Role Also in Long COVID-19? Nutrients 2022, 14, 1625. [Google Scholar] [CrossRef]
- Agoncillo, M.; Yu, J.; Gunton, J.E. The Role of Vitamin D in Skeletal Muscle Repair and Regeneration in Animal Models and Humans: A Systematic Review. Nutrients 2023, 15, 4377. [Google Scholar] [CrossRef]
- di Filippo, L.; Frara, S.; Nannipieri, F.; Cotellessa, A.; Locatelli, M.; Querini, P.R.; Giustina, A. Low Vitamin D Levels Are Associated With Long COVID Syndrome in COVID-19 Survivors. J. Clin. Endocrinol. Metab. 2023, 108, e1106–e1116. [Google Scholar] [CrossRef]
- Evcik, D. Musculoskeletal Involvement: COVID-19 and Post COVID 19. Turkish J. Phys. Med. Rehabil. 2023, 69, 1–7. [Google Scholar] [CrossRef]
- Xie, Y.; Farrell, S.F.; Armfield, N.; Sterling, M. Serum Vitamin D and Chronic Musculoskeletal Pain: A Cross-Sectional Study of 349,221 Adults in the UK. J. Pain 2024, 25, 104557. [Google Scholar] [CrossRef]
- Hikmet, R.G.; Wejse, C.; Agergaard, J. Effect of Vitamin D in Long COVID Patients. Int. J. Environ. Res. Public Health 2023, 20, 7058. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Z.; Pan, F.; Zheng, S.; Parameswaran, V.; Blizzard, L.; Ding, C.; Antony, B. Long-Term Effects of Vitamin D Supplementation and Maintaining Sufficient Vitamin D on Knee Osteoarthritis over 5 Years. Arthritis Res. Ther. 2023, 25, 178. [Google Scholar] [CrossRef]
- Pludowski, P.; Takacs, I.; Boyanov, M.; Belaya, Z.; Diaconu, C.C.; Mokhort, T.; Zherdova, N.; Rasa, I.; Payer, J.; Pilz, S. Clinical Practice in the Prevention, Diagnosis and Treatment of Vitamin D Deficiency: A Central and Eastern European Expert Consensus Statement. Nutrients 2022, 14, 1483. [Google Scholar] [CrossRef]
- Giustina, A.; Bilezikian, J.P.; Adler, R.A.; Banfi, G.; Bikle, D.D.; Binkley, N.C.; Bollerslev, J.; Bouillon, R.; Brandi, M.L.; Casanueva, F.F.; et al. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr. Rev. 2024, 45, 625–654. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, A.A.; Abdel-Wadood, Y.A.; Thabet, R.H.; Gomaa, G.A. Pharmacological Evaluation of Vitamin D in COVID-19 and Long COVID-19: Recent Studies Confirm Clinical Validation and Highlight Metformin to Improve VDR Sensitivity and Efficacy. Inflammopharmacology 2023, 32, 249–271. [Google Scholar] [CrossRef] [PubMed]
- Gaylis, N.B.; Kreychman, I.; Sagliani, J.; Mograbi, J.; Gabet, Y. The Results of a Unique Dietary Supplement (Nutraceutical Formulation) Used to Treat the Symptoms of Long-Haul COVID. Front. Nutr. 2022, 9, 1034169. [Google Scholar] [CrossRef] [PubMed]
- Mácová, L.; Bicíková, M.; Hampl, R. Impaired Vitamin D Sensitivity. Physiol. Res. 2018, 67, S391–S400. [Google Scholar] [CrossRef]
- Hampl, R.; Vondra, K. Peripheral Sensitivity to Steroids Revisited. Physiol. Res. 2017, 66, S295–S303. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, Y.J.; Zhou, Y.X.; Ding, J.; Liu, J.Y. Metformin in Therapeutic Applications in Human Diseases: Its Mechanism of Action and Clinical Study. Mol. Biomed. 2022, 3, 41. [Google Scholar] [CrossRef]
- Wiernsperger, N.; Al-Salameh, A.; Cariou, B.; Lalau, J.D. Protection by Metformin against Severe COVID-19: An in-Depth Mechanistic Analysis. Diabetes Metab. 2022, 48, 101359. [Google Scholar] [CrossRef]
- Erickson, S.M.; Fenno, S.L.; Barzilai, N.; Kuchel, G.; Bartley, J.M.; Justice, J.N.; Buse, J.B.; Bramante, C.T. Metformin for Treatment of Acute COVID-19: Systematic Review of Clinical Trial Data Against SARS-CoV-2. Diabetes Care 2023, 46, 1432–1442. [Google Scholar] [CrossRef]
- Ganesh, A.; Randall, M.D. Does Metformin Affect Outcomes in COVID-19 Patients with New or Pre-Existing Diabetes Mellitus? A Systematic Review and Meta-Analysis. Br. J. Clin. Pharmacol. 2022, 88, 2642–2656. [Google Scholar] [CrossRef]
- Ma, Z.; Krishnamurthy, M. Is Metformin Use Associated with Low Mortality in Patients with Type 2 Diabetes Mellitus Hospitalized for COVID-19? A Multivariable and Propensity Score-Adjusted Meta-Analysis. PLoS ONE 2023, 18, e0282210. [Google Scholar] [CrossRef]
- Pedrosa, A.R.; Martins, D.C.; Rizzo, M.; Silva-Nunes, J. Metformin in SARS-CoV-2 Infection: A Hidden Path—From Altered Inflammation to Reduced Mortality. A Review from the Literature. J. Diabetes Complicat. 2023, 37, 108391. [Google Scholar] [CrossRef]
- Bramante, C.T.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.K.; Anderson, B.J.; Huling, J.D.; Tignanelli, C.J.; et al. Outpatient Treatment of COVID-19 and Incidence of Post-COVID-19 Condition over 10 Months (COVID-OUT): A Multicentre, Randomised, Quadruple-Blind, Parallel-Group, Phase 3 Trial. Lancet. Infect. Dis. 2023, 23, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Giovanetti, M.; Pannella, G.; Altomare, A.; Rocchi, G.; Guarino, M.; Ciccozzi, M.; Riva, E.; Gherardi, G. Exploring the Interplay between COVID-19 and Gut Health: The Potential Role of Prebiotics and Probiotics in Immune Support. Viruses 2024, 16, 370. [Google Scholar] [CrossRef]
- Ojala, T.; Kankuri, E.; Kankainen, M. Understanding Human Health through Metatranscriptomics. Trends Mol. Med. 2023, 29, 376–389. [Google Scholar] [CrossRef]
- Athanasopoulou, K.; Adamopoulos, P.G.; Scorilas, A. Unveiling the Human Gastrointestinal Tract Microbiome: The Past, Present, and Future of Metagenomics. Biomedicines 2023, 11, 827. [Google Scholar] [CrossRef]
- Mańkowska-Wierzbicka, D.; Zuraszek, J.; Wierzbicka, A.; Gabryel, M.; Mahadea, D.; Baturo, A.; Zakerska-Banaszak, O.; Slomski, R.; Skrzypczak-Zielinska, M.; Dobrowolska, A. Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot Study of Whole Hypervariable 16S rRNA Gene Sequencing. Biomedicines 2023, 11, 367. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Wang, Y.; Dai, T.; Qin, Z.; Zhou, F.; Zhang, L. Alterations in Microbiota of Patients with COVID-19: Potential Mechanisms and Therapeutic Interventions. Signal Transduct. Target. Ther. 2022, 7, 143. [Google Scholar] [CrossRef]
- Xavier-Santos, D.; Padilha, M.; Fabiano, G.A.; Vinderola, G.; Gomes Cruz, A.; Sivieri, K.; Costa Antunes, A.E. Evidences and Perspectives of the Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Prevention and Treatment of COVID-19: A Bibliometric Analysis and Systematic Review. Trends Food Sci. Technol. 2022, 120, 174–192. [Google Scholar] [CrossRef]
- Kazemian, N.; Kao, D.; Pakpour, S. Fecal Microbiota Transplantation during and Post-COVID-19 Pandemic. Int. J. Mol. Sci. 2021, 22, 3004. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Mak, J.W.Y.; Chow, K.M.; Lui, G.; Li, T.C.M.; Wong, C.K.; Chan, P.K.S.; Ching, J.Y.L.; Fujiwara, Y.; et al. Gut Microbiota-Derived Synbiotic Formula (SIM01) as a Novel Adjuvant Therapy for COVID-19: An Open-Label Pilot Study. J. Gastroenterol. Hepatol. 2022, 37, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Zhang, L.; Ching, J.Y.L.; Mak, J.W.Y.; Huang, J.; Wang, S.; Mok, C.K.P.; Wong, A.; Chiu, O.L.; Fung, Y.T.; et al. Effects of Gut Microbiome Modulation on Reducing Adverse Health Outcomes among Elderly and Diabetes Patients during the COVID-19 Pandemic: A Randomised, Double-Blind, Placebo-Controlled Trial (IMPACT Study). Nutrients 2023, 15, 1982. [Google Scholar] [CrossRef] [PubMed]
- Lau, R.I.; Su, Q.; Lau, I.S.F.; Ching, J.Y.L.; Wong, M.C.S.; Lau, L.H.S.; Tun, H.M.; Mok, C.K.P.; Chau, S.W.H.; Tse, Y.K.; et al. A Synbiotic Preparation (SIM01) for Post-Acute COVID-19 Syndrome in Hong Kong (RECOVERY): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet. Infect. Dis. 2024, 24, 256–265. [Google Scholar] [CrossRef]
- Marinoni, B.; Rimondi, A.; Bottaro, F.; Ciafardini, C.; Amoroso, C.; Muià, M.; Caridi, B.; Noviello, D.; Bandera, A.; Gori, A.; et al. The Role of VSL#3® in the Treatment of Fatigue and Other Symptoms in Long COVID-19 Syndrome: A Randomized, Double-Blind, Placebo-Controlled Pilot Study (DELong#3). medRxiv 2023, 28, 2023-06. [Google Scholar] [CrossRef]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, Validation and Norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef]
- Alam, M.S.; Hasan, M.N.; Maowa, Z.; Khatun, F.; Nazir, K.H.M.N.H.; Alam, M.Z. N-Acetylcysteine Reduces Severity and Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. J. Adv. Vet. Anim. Res. 2023, 10, 157. [Google Scholar] [CrossRef]
- Sadeghizadeh, M.; Asadollahi, E.; Jahangiri, B.; Yadollahzadeh, M.; Mohajeri, M.; Afsharpad, M.; Najafi, F.; Rezaie, N.; Eskandari, M.; Tavakoli-Ardakani, M.; et al. Promising Clinical Outcomes of Nano-Curcumin Treatment as an Adjunct Therapy in Hospitalized COVID-19 Patients: A Randomized, Double-Blinded, Placebo-Controlled Trial. Phytother. Res. 2023, 37, 3631–3644. [Google Scholar] [CrossRef]
- Pawar, K.S.; Mastud, R.N.; Pawar, S.K.; Pawar, S.S.; Bhoite, R.R.; Bhoite, R.R.; Kulkarni, M.V.; Deshpande, A.R. Oral Curcumin With Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Front. Pharmacol. 2021, 12, 669362. [Google Scholar] [CrossRef]
- Charoenporn, V.; Tungsukruthai, P.; Teacharushatakit, P.; Hanvivattanakul, S.; Sriyakul, K.; Sukprasert, S.; Kamalashiran, C.; Tungsukruthai, S.; Charernboon, T. Effects of an 8-Week High-Dose Vitamin D Supplementation on Fatigue and Neuropsychiatric Manifestations in Post-COVID Syndrome: A Randomized Controlled Trial. Psychiatry Clin. Neurosci. 2024, 78, 595–604. [Google Scholar] [CrossRef]
- Pal, R.; Banerjee, M.; Bhadada, S.K.; Shetty, A.J.; Singh, B.; Vyas, A. Vitamin D Supplementation and Clinical Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J. Endocrinol. Investig. 2021, 45, 53. [Google Scholar] [CrossRef]
- Decramer, M.; Rutten-Van Mölken, M.; Dekhuijzen, P.N.R.; Troosters, T.; Van Herwaarden, C.; Pellegrino, R.; Van Schayck, C.P.O.; Olivieri, D.; Del Donno, M.; De Backer, W.; et al. Effects of N-Acetylcysteine on Outcomes in Chronic Obstructive Pulmonary Disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): A Randomised Placebo-Controlled Trial. Lancet 2005, 365, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Chandran, B.; Goel, A. A Randomized, Pilot Study to Assess the Efficacy and Safety of Curcumin in Patients with Active Rheumatoid Arthritis. Phyther. Res. 2012, 26, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Sima, A.A.F.; Calvani, M.; Mehra, M.; Amato, A. Acetyl-L-Carnitine Improves Pain, Nerve Regeneration, and Vibratory Perception in Patients with Chronic Diabetic Neuropathy: An Analysis of Two Randomized Placebo-Controlled Trials. Diabetes Care 2005, 28, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Keppel Hesselink, J.M.; Costagliola, C.; Fakhry, J.; Kopsky, D.J. Palmitoylethanolamide, a Natural Retinoprotectant: Its Putative Relevance for the Treatment of Glaucoma and Diabetic Retinopathy. J. Ophthalmol. 2015, 2015, 430596. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Demirtas, H.; Li, J.; Mao, G.; Huo, Y.; Sun, N.; Liu, L.; Xu, X. Efficacy of Folic Acid Supplementation in Stroke Prevention: A Meta-Analysis. Lancet 2007, 369, 1876–1882. [Google Scholar] [CrossRef]
- Grosso, G.; Galvano, F.; Marventano, S.; Malaguarnera, M.; Bucolo, C.; Drago, F.; Caraci, F. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms. Oxid. Med. Cell. Longev. 2014, 2014, 313570. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef]
- Hempel, S.; Newberry, S.J.; Maher, A.R.; Wang, Z.; Miles, J.N.V.; Shanman, R.; Johnsen, B.; Shekelle, P.G. Probiotics for the Prevention and Treatment of Antibiotic-Associated Diarrhea: A Systematic Review and Meta-Analysis. JAMA 2012, 307, 1959–1969. [Google Scholar] [CrossRef]
Drug | Post-COVID-19 Painful Conditions | Side Effects Specifically if Reported | References |
---|---|---|---|
Tricyclic antidepressants amitriptyline and duloxetine, venlafaxine or mirtazapine | Nociplastic pain Prophylactic treatment for tension-type headache Mild cases of chest pain | [18]—not reported [19]—not reported [20]—not reported [21]—not reported [22]—There was very low-certainty evidence for all safety outcomes (adverse events, serious adverse events, and withdrawal) across all antidepressants. Authors were not able to draw reliable conclusions from the Network Meta Analysis for these outcomes | [18,19,20,21] [22] |
Non-steroidal anti-inflammatory drugs with analgesic properties, including (first choice) prevalently analgesic medications such as those containing paracetamol and combinations of paracetamol + caffeine | Acute treatment of headache Joint pain and muscular inflammatory pain | [18]—not reported [23]—not reported [18]—not reported [24]—not reported | [18,23] [18,24] |
Triptans | Acute headache treatment | [20]—not reported [21]—not reported | [20,21] |
Glucocorticoids | Long COVID headache, in terms of reductions in headache frequency and symptom intensity and muscular inflammatory diseases | [25]—fear of gastrointestinal effects [26]—not reported | [25,26] |
Gabapentoids, antidepressants, tramadol, and topical agents (lidocaine plasters, capsaicin patches or botulinum toxin) | Neuropathic pain Fibromyalgia/nociplastic pain | [27]—not reported [28]—referral to usual antidepressant side effects list [29]—not reported [30]—Nineteen participants discontinued the study because of adverse events: 12 in the gabapentin group (16%) and 7 in the placebo group (9%) (very low quality). The number of serious adverse events were not reported, and no deaths were reported (very low quality). [31]—not reported | [27,28,29] [30,31] |
Low-dose naltrexone (LDN) | Fatigue and brain fog | [9]—Treatment was generally safe, with mild adverse events previously reported for LDN, which could be managed with dose adjustments | [9] |
Strong opioids may be considered in refractory cases, but with caution, as there is a rapid tolerance | Nociceptive pain | [32]—no specific side effects reported but the authors underline the importance of taking in account pharmacokinetic problems between drugs considereing also pharmacogenetics. | [32] |
Substances with prevalent anti-inflammatory/antioxidant activity |
N-acetylcysteine Curcumin Berberine |
Substances also acting on membranes/neurotransmitters and as neuroprotectants N-acetyl-l-carnitine Palmitoylethanolamide B group vitamins |
Substances acting on the neuroimmune system (including vagal activity) DHA/EPA Vitamin D |
Substances | Hypothesized Mechanism of Action Linked To Pain | In Vitro/In Vivo (Models) and Clinical Studies | Treatments: Concentration or Dose/Route of Administration | Main Results | References/Notes |
---|---|---|---|---|---|
N-acetyl cysteine | Disulfide bridge-reducing agent inhibiting TrkA activation by NGF | In vitro (SH-SY5Y cells) | 20 mM NAC | NAC partially inhibits the activation (autophosphorylation) of TrkA by NGF | [42] |
Anti-inflammatory effect of NAC NAC modulates immune functions during the inflammatory response. | In vitro (using lipo-polysaccharide (LPS)-activated THP-1 macrophages) | 15 mM NAC | NAC inhibits the inflammatory cytokines TNFa, IL-1b and IL-6 production in LPS-activated macrophages under mild oxidative conditions | [55] | |
Anti-inflammatory and anti-oxidative effects of NAC | In vivo (female C57BL6J B) | Dexamethasone (10 mg/kg), NAC (500 mg/kg) | NAC only resulted in reductions in neutrophils when administered at a high dose (500 mg/kg) | [56] | |
Analgesic action | In vivo (C57BL6J) | Intrathecal NAC, 0.3 mg of NAC in 5 µl | Reduction in licking time | [46] | |
Analgesic perioperative action | Clinical trial: 20 adults scheduled for posterior spine surgery | Intraoperative Intravenous NAC (0, 50, 100, and 150 mg/kg) | Postoperative opioid consumption was reduced in the NAC group by 19.3% at 12 h and 20% at 18 and 36 h. After adjusting for intraoperative opioid administration, consumption was reduced by 22–24% at all time points | [45] | |
Curcumin | Anti-inflammatory action | In vitro (SH-SY5Y infected by SARS-CoV-2) | CUR (BIOVEA CURCUMIN bcm-95®) from 2.88 × 10−2 µg/mL to 90 µg/mL EXT (Curcuma longa) from 1.44 × 10−1 µg/mL to 90 µg/mL | CUR and EXT demonstrated an ability to decrease pro-inflammatory cytokines, such as IL-6, TNF-α, and IL-17, being released in the medium | [79] |
N-acetyl-l-carnitine | Neuroprotective effect | Male adult Wistar rats (Parkison’s Disease models) | Intraperitoneal injection; Sham + ALC (200 mg/kg); lesion group (6-hydroxydopamine: 6-OHDA), and lesion groups receiving ALC at doses of 100 or 200 mg/kg | Apomorphine-induced motor asymmetry was reduced and narrow beam tasks were improved by ALC pretreatment, which also had a neuroprotective effect on neuroinflammation, apoptosis, astrogliosis, and oxidative stress | [110] |
Inhibition of neuroinflammation and NLRP3 inflammasome Anti-depressant action | Male rats (LPS induced inflammation model) | LPS (500 μg/kg), LPS + ALC30 (ALC 30 mg/kg), 4) LPS + ALC 60 (ALC 60 mg/kg), and 5) LPS + FLU (fluoxetine 20 mg/kg). | ALC positively modulates PPAR-γ-dependent antioxidant and anti-inflammatory effects. Co-administering NF-κB inhibitor caffeic acid phenethyl ester (CAPE) with ALC also increased PPAR-γ expression significantly and decreased NF-κB and NLRP3 inflammasome | [111] | |
Contrast of neuroinflammation neurotoxicity, microglial activation and neuronal degeneration | 8–10 weeks old male Swiss Albino mice | ALC administered intraperitoneally in two different doses at 100 mg/kg/day (100A + LPS group) and 300 mg/kg/day (300A + LPS group) for 5 days. | 100 mg/kg/day of ALC-supported BDNF; the BDNF increase exerts a neuroprotective effect | [112] | |
Neuroprotective effect via PI3K/Akt signaling pathway | Hippocampal slice from male Wistar rats | ALC was applied for 25 min at the desired final concentration (125, 250 or 500 μM) in aCSF (aCSF: artificial cerebrospinal fluid) or OGD aCSF for the control (10 min) and the OGD period (15 min), respectively | ALC is neuroprotective against oxygen–glucose deprivation (OGD) in a dose-dependent manner on hippocampal slices. It is able to restore synaptic transmission and also the LTP inducibility | [113] | |
Neurotrophic, antioxidant actions and cytoprotective effect | Male Wistar rats (gene expression experiments) | Daily intraperitoneal injected for 21 days with ALC (100 mg/kg) | ALC induced in the rat brain up-regulation of the expression of prostaglandin D2 synthase, brain-specific Na+-dependent inorganic phosphate transporter, and cytochrome b oxidase. Down-regulating of the expression of the gene of ferritin-H | [114] | |
Antidepressant effect (via epigenetic mechanisms regulating mGlu2 receptors) | Flinders Sensitive Line rats and mice (model of depression) | Intraperitoneally injected ALC 100 mg/kg (+a single injection of the mGlu2/3 receptor antagonist LY341495) | The rapid and long-lasting antidepressant action of ALC in rodents strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action | [115] Note a | |
Neuroprotection through anti-inflammatory effects and via regulation of neuronal synaptic plasticity by counteracting post-trauma excitotoxicity | Adult male C57BL6J mice, repetitive mild traumatic brain injuries (rmTBI) | Subcutaneous injection ALC 600 mg/kg/day for 23 days | Gene expression in the cortex showed elevated mRNA levels of MAPT, TNF, and GFAP in the rmTBI group that were reduced by ALC treatment. ALC may mitigate damage inflicted in the various secondary neurodegenerative cascades and contribute to functional protection following rmTBI | [116] | |
Effect on the energy metabolits and altered monoamine neurotransmitter levels in the mouse brain | Old NMRI mice | Mice received drinking water containing ALCAR (1.5 g/L, pH adjusted to 6) and assumed a daily an ALC dose of 496 ± 21 mg/kg | Improvement of energy metabolism. Glucose saving in both the hippocampal formation (HF) and cortex. Increase in monoamines noradrenaline in cortex and 5-HT in the HF | [117] Note b | |
Palmitoylethanolamide | Anti-inflammatory effect Analgesic effect | Clinical study: 111 participants, studying knee-based symptoms (OA) | Participants randomized to PEA 300 mg and 600 mg per day for 8 weeks | Significant reduction in the total WOMAC score in both groups of treatments compared to placebo | [122] |
Aerobic energy metabolism | Clinical study: a double-blind, randomized, placebo-controlled study, 28 healthy young male patients | PEA (167.5 mg Levagen+ with 832.5 mg maltodextrin) or a matched placebo (1 g maltodextrin) drink | PEA reduced myoglobin and blood lactate concentrations and increased protein kinase B phosphorylation following exercise | [123] Note c | |
B group vitamins | Alleviation of allodynia | Female Sprague–Dawley rats with experimental diabetic neuropathy (induction of diabetes: single intraperitoneal (i.p.) injection of streptozotocin at 50 mg/kg dissolved in 0.9% sterile saline.) | Vitamin B cocktail at low-dose (B1:B6:B12 at 20:20:0.2 mg/kg, s.c.), medium-dose (B1:B6:B12 at 60:60:0.6 mg/kg, s.c.) or high-dose (B1:B6:B12 at 180:180:1.8 mg/kg, s.c.) For the comparison between cocktail and individual B vitamins, diabetic rats received either vitamin B1 at 180 mg/kg, s.c., B6 at 180 mg/kg, s.c., B12 at 1.8 mg/kg, s.c. or the combination of all 3 (B1:B6:B12 at 180:180:1.8 mg/kg, s.c.) | Vitamin B cocktail (B1, B6 and B12) did not significantly affect markers of oxidative stress (lipid and protein oxidation) and inflammation cyclooxygenase-2 and TNFα protein) in the nerve. In spite of negative results on the studied biomarkers, B vitamins had a positive effect on functional and behavioral disorders of diabetic rats, suggesting a potential for use in treating painful diabetic neuropathy | [135] |
Peripheral neuropathy | 200 diabetic patients | Two hundred patients were randomly assigned to receive daily treatment for 4 weeks with either: (Group A) a tablet containing thiamine 25 mg and pyridoxine 50 mg, or (Group B) a tablet containing thiamine 1 mg and pyridoxine 1 mg | The severity of signs of peripheral neuropathy decreased in 48.9% of patients in group A compared with 11.4% in group B | [133] | |
Control of Inflammation pathway after COVID-19 infection | In vitro blood samples from patients with moderate (MOD; n = 10) and severe (SEV; n = 16) forms of COVID-19, classified | Blood samples were esposed, in vitro, to 1 nM cyanocobalamin | Transcriptome analysis revealed that B12 attenuates the effects of COVID-19 on most inflammation-related pathways affected by the disease thought the modulation of epigenetic markings in leukocytes | [138] | |
DHA/EPA | Neuroprotective effects and suppression of apoptotic pathway | Male and female age-matched C57BL6 mice with ADOA and normal wild-type | A fish oil formulation containing 172 mg of EPA, 34 mg of DHA and 1.7 mg Vitamin E, administered daily by gavage administration | ω3-PUFA supplementation had neuroprotective effects on the retinas via blockade of microglia and astrocytes activation and suppression of Bax and caspase-3 | [143] Note d |
Control of neuroinflammation and microglia activity | Organotypic hippocampal slice cultures microglia from mice | LPS, 10 μg/mL; DHA, 25 μM; LPS + DHA were applied for 24 h | Microglia responded to LPS stimulation with a significant decrease in mitochondrial function, increased NO production, and an increase in the formation of large lipid bodies. LPS treatment led to a significant reduction in dendritic spine densities and synaptic electricical activity. DHA normalized the LPS-induced abnormalities in both neurons and microglia, as revealed by the restoration of synaptic structures and functions in hippocampal CA1 pyramidal neurons | [144] | |
Suppression of glial activation | Spinal cord injury (SCI) in a rat contusion model | DHA administration (250 nmol/kg) every three days (starting 30 min after injury and maintained for 6 weeks) | The treatment prevented SCI-CNP development in a clinically relevant rat contusion model and potently suppressed microglial and astrocyte activation | [145] | |
Reduction of diabetic neuropathic pain acting through the opioid system activation | Diabetes Male Wistar rats | Acute oral treatment: fish oil (0.5, 1 or 3 g/kg), EPA or DHA (100, 200 or 400 mg/kg), starting the 2nd or 4th week after STZ. CTOP intrathecal treatment: μ-opioid receptor antagonist 10 μg/rat | Acute treatment with ω-3 PUFAs exerts antinociceptive effect in diabetic neuropathic pain Sub-chronic treatment with ω-3 PUFAs induced a sustained antinociceptive effect μ-opioid receptors mediate the antinociceptive effect of ω-3 PUFAs as shown by the blockade using the opioid antagonist | [146] | |
EPA metabolism pro-resolving lipid mediators leading to resolvins | 61 major depressive disorder patients | EPA 1, 2, and 4 g/d | Treatment with a high concentration of EPA led to an increase in plasma EPA and 18-HEPE levels, associated with improved conversion to RvE2-3, and LXB4 levels | [149] | |
Vitamin D | Long-term effect of vitamin D supplementation on knee pain | 173 patients from the Hobart Centre of Vitamin D on osteoarthritis (VIDEO) trial (5 years) | Vitamin D supplementation (monthly vitamin D tablet of 50,000 IU) | Among participants who reported no knee surgery (KS), there was a significant improvement in WOMAC function Patients that maintained adequate vitamin D levels over 5 years had significantly less WOMAC knee pain | [173] Note e |
Substances | Hypothesized Mechanism of Action by the Authors | Clinical Findings | Related to Pain (Yes/No) | References (Number of Participating Patients) |
---|---|---|---|---|
N-acetylcysteine | ||||
Alone | ||||
Antioxidant | Reduction in severity and mortality in COVID-19 patients. | No | [200] (8 studies with 20,503 participants) | |
In combination | ||||
NAC+ guanfacine | restoring NMDR (glutamate receptors) neurotransmission reduces neuroinflammation by protecting mitochondria and deactivating microglia. | Restoration of prefrontal connectivity helps patients return to more normal lives. Improved cognitive abilities noted in 60% of the patients. The combination reported improved working memory, concentration, and executive functions, including a resumption of normal workloads. | No | [59] (12) |
Curcumin | ||||
Alone | ||||
Curcumin | antinflammatory antioxidant | Curcumin’s beneficial effects stem from a partial restoration of the pro-inflammatory/anti-inflammatory balance. | No | [77] (6 studies with 558 participants) |
Nano-curcumin | anti-inflammatory action | Nano-curcumin may be able to modulate the increased rate of inflammatory cytokines especially IL-1β and IL-6 mRNA expression and cytokine secretion in COVID-19 patients. | No | [80] (80) [201] (42) |
In combination | ||||
Curcumin + piperine | piperine (to optimize absorption) anti-inflammatory, antioxidant, antiviral, anti-thrombotic, and anti-proliferative action | Oral curcumin with piperine (as symptomatic adjuvant therapy) to prevent thrombolytic events, potentially reducing morbidity and mortality and easing logistical and supply burdens on the healthcare system. | No | [202] CTRI/2020/05/025482 (140) |
N-acetyl-l-carnitine | ||||
Alone | ||||
pain reduction | After a month of combining physical exercise and acetyl-l-carnitine supplementation, there was an improvement in quality of life, depressive complaints, and pain scores than with physical exercise alone. | Yes | [107] (60) | |
In combination | ||||
vitamin C, acetyl-l-carnitine, hydroxytyrosol, thiamine, vitamin B6, folic acid, vitamin D3 and vitamin B12 | energy metabolism antioxidant activity analgesic activity | After 2 weeks, there was a decrease in fatigue and an increase in subjective energy levels. | Yes | [108] (20) |
Palmitoylethanolamide | ||||
Alone | ||||
anti-inflammatory | Decrease in symptoms of persistent post-COVID syndrome (PPCS). | [126] (33) | ||
In combination | ||||
PEA-LUT | neuroprotective pathway anti-inflammatory | Improvement in the quantitative/qualitative measurement of olfactory dysfunction or relief from mental clouding in patients affected by long COVID. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) test. | No | [127] (69) |
PEA-LUT | restoration of intracortical GABAB-ergic neurotransmission measured by long-interval intracortical inhibition (LICI). | Restoration of GABAB neurotransmission and cortical plasticity. | Yes | [128] (39) |
PEA-LUT | neuroprotective, neurotrophic, and anti-inflammatory | Reduction in signs and symptoms of post-COVID-19 associated with positioning-related peripheral nerve injury. | Yes | [132] (1: a 71-year-old Italian man) |
B group vitamins | ||||
vitamin C, acetyl-L-carnitine, hydroxytyrosol, thiamine, vitamin B6, folic acid, vitamin D3 and vitamin B12 | energy metabolism antioxidant activity analgesic activity | After 2 weeks, there was a decrease in fatigue and an increase in subjective energy levels. | Yes | [108] (20) |
DHA/EPA and SPMs | ||||
marine oil enriched in specialized pro-resolving mediators (SPMs) | anti-inflammatory | Increase in the serum of the three monohydroxylated SPMs. Decrease in the ratio between the pro-inflammatory and pro-resolving mediators. Improvements in fatigue and dyspnea. | Yes | [152] (53) |
Vitamin D | ||||
Alone | ||||
fatigue and neuropsychiatric pathways | Reductions in fatigue, alleviating anxiety, and improvements in cognitive symptoms, with minimal side effects. | Yes | [203] (80) | |
anti-inflammatory pathways anti-thrombotic action | Improvements in clinical outcomes, especially when administered after the diagnosis of COVID-19. | No | [204] (13 studies: 10 observational, 3 randomized controlled trials (RCTs); pooling data retrieved from 2933 COVID-19 patients) | |
In combination | ||||
vitamin D and β-caryophyllene (βCP), pregnenolone, dehydroepiandrosterone (DHEA), bromelain, St. John’s wort extract, Boswellia serrata gum/resin extract (AKBA), quercetin, zinc compound, | immunomodulatory and anti-inflammatory properties | Decrease in the severity levels of all the 12 symptoms (including fatigue, weakness, cardiac and neurological symptoms, shortness of breath, gastrointestinal disorders, ageusia or anosmia, anxiety, joint pain, rash, cough, and insomnia). | Yes | [177] (51) |
Substance | Observation | Reference |
---|---|---|
N-acetylcysteine (NAC) | NAC has been studied for its antioxidant and anti-inflammatory properties, particularly in psychiatric and respiratory conditions. In bipolar disorder, adjunctive NAC reduced hospital admissions by 30% and improved symptom management, leading to estimated savings of USD 800 per patient per year due to fewer hospitalizations and emergency visits | [205] |
Curcumin | Curcumin has demonstrated cost-saving potential in chronic inflammatory conditions. In rheumatoid arthritis, adjunctive curcumin reduced the need for biologic agents, which can cost upwards of USD 20,000 annually, while improving disease activity scores | [206] |
N-acetyl-l-carnitine (ALC) | ALC has shown promise in reducing pain and improving neurological outcomes. In diabetic neuropathy, ALC supplementation reduced the need for additional pain medications, leading to an estimated annual saving of USD 500 per patient | [207] |
Palmitoylethanolamide (PEA) | PEA has been studied for its analgesic effects in chronic pain conditions. In fibromyalgia, PEA supplementation reduced opioid use by 40%, translating to an estimated annual saving of USD 1200 per patient in medication costs | [208] |
B-group vitamins | B-vitamin supplementation has been associated with reduced cardiovascular and neurological risks. In hyperhomocysteinemia, B-vitamins reduced stroke risk by 20%, potentially saving USD 10,000 per patient in long-term healthcare costs | [209] |
DHA/EPA | Omega-3 fatty acids have demonstrated significant cardiovascular and mental health benefits. In cardiovascular disease, omega-3 supplementation reduced myocardial infarction rates by 10%, leading to estimated savings of USD 300 per patient per year | [210] |
Vitamin D | Vitamin D supplementation has been shown to reduce fracture rates in osteoporosis by 30%, resulting in estimated savings of USD 200 per patient annually in healthcare utilization | [211] |
Probiotics | Probiotics have demonstrated potential cost-savings in gastrointestinal and infectious conditions. In intestinal bowel syndrome, probiotic supplementation reduced the need for additional medications, leading to estimated savings of USD 1000 per patient | [212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchesi, N.; Allegri, M.; Bruno, G.M.; Pascale, A.; Govoni, S. Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID. Nutrients 2025, 17, 1287. https://doi.org/10.3390/nu17071287
Marchesi N, Allegri M, Bruno GM, Pascale A, Govoni S. Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID. Nutrients. 2025; 17(7):1287. https://doi.org/10.3390/nu17071287
Chicago/Turabian StyleMarchesi, Nicoletta, Massimo Allegri, Giacomo Matteo Bruno, Alessia Pascale, and Stefano Govoni. 2025. "Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID" Nutrients 17, no. 7: 1287. https://doi.org/10.3390/nu17071287
APA StyleMarchesi, N., Allegri, M., Bruno, G. M., Pascale, A., & Govoni, S. (2025). Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID. Nutrients, 17(7), 1287. https://doi.org/10.3390/nu17071287