Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin
Abstract
:1. Introduction
2. Experimental Section
Ingredient | −Gln diet | +Gln diet |
---|---|---|
g/kg diet | ||
Cornstarch | 542.4 | 562.1 |
Amino acid mixture | 190.1 | 170.4 |
Sucrose | 100 | 100 |
Soybean oil | 70 | 70 |
Fiber source (cellulose) | 50 | 50 |
Mineral mixture 3,4 | 35 | 35 |
Vitamin mixture 5 | 10 | 10 |
Choline bitartrate (41.1% choline) | 2.5 | 2.5 |
tert-Butylhydroquinone | 0.014 | 0.014 |
Amino acid | −Gln diet | +Gln diet |
---|---|---|
g/kg diet | ||
Nonessential | ||
L-Ala | 8.8 | 2.6 |
L-Asp | 18.5 | 3.9 |
L-Glu | 18.9 | 18.9 |
Gly | 6.8 | 2.2 |
L-Gln | - | 40.0 |
L-Pro | 26.0 | 3.4 |
L-Ser | 14.7 | 3.1 |
NEAA-N 2 | 11.52 | 11.52 |
Essential | ||
L-Arg | 6.4 | 6.4 |
L-Cys | 3.7 | 3.7 |
L-Phe | 8.8 | 8.8 |
L-His | 4.6 | 4.6 |
L-Ile | 8.5 | 8.5 |
L-Leu | 15.4 | 15.4 |
L-Lys | 16.2 | 16.2 |
L-Met | 4.6 | 4.6 |
L-Thr | 6.7 | 6.7 |
L-Tyr | 9.3 | 9.3 |
L-Trp | 2.1 | 2.1 |
L-Val | 10.0 | 10.0 |
EAA-N 2 | 12.94 | 12.94 |
NEAA-N:EAA-N ratio, g:g | 1.12 | 1.12 |
2.1. Serum Determinations
2.2. Tissue Determinations
2.3. Body Composition Determination
2.4. Statistical Analyses
3. Results
Experimental Groups | ||||||||
---|---|---|---|---|---|---|---|---|
Variable 1 | −Gln −BCG | –Gln +BCG | +Gln −BCG | +Gln +BCG | Pooled SD | Diet 2 | Infection 2 | Diet × Infection 2 |
Serum albumin (g/dL) | 3.26 | 3.23 | 3.44 | 3.39 | 0.04 | 0.025 | 0.537 | 0.892 |
Serum total protein (g/dL) | 4.11 | 4.27 | 4.34 | 4.19 | 0.05 | 0.487 | 0.994 | 0.140 |
Plasma glutamine (μmol/L) | 0.52 | 0.52 | 0.57 | 0.58 | 0.01 | 0.054 | 0.890 | 0.781 |
Serum iron (µg/dL) | 231.0 | 155.3 | 210.4 | 152.1 | 8.5 | 0.413 | <0.001 | 0.548 |
Serum IGF-1 (ng/mL) | 277.5 | 173.8 | 274.7 | 333.7 | 18.5 | 0.019 | 0.480 | 0.016 |
Serum corticosterone (ng/mL) | 92.5 | 94.9 | 112.3 | 96.5 | 6.2 | 0.659 | 0.387 | 0.299 |
Experimental Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable 1 | −Gln −BCG | −Gln +BCG | +Gln –BCG | +Gln +BCG | Pooled SD | Diet 2 | Infection 2 | Diet × Infection 2 | |
Carcass mass (g) | 18.38 | 16.16 | 19.81 | 16.08 | 2.57 | 0.359 | <0.001 | 0.302 | |
Lean mass (g) | 16.96 | 14.10 | 16.87 | 14.25 | 2.27 | 0.966 | 0.002 | 0.880 | |
Humidity (g) | 11.59 | 10.62 | 12.71 | 10.51 | 1.78 | 0.365 | 0.006 | 0.271 | |
Protein (g) | 3.34 | 2.93 | 3.34 | 2.77 | 0.55 | 0.619 | 0.007 | 0.644 | |
Fat (g) | 1.28 | 1.09 | 1.77 | 1.23 | 0.36 | 0.002 | 0.001 | 0.076 | |
Ashes (g) | 0.80 | 0.66 | 0.79 | 0.65 | 0.23 | 0.937 | 0.088 | 0.979 |
Experimental Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable 1 | −Gln −BCG | −Gln +BCG | +Gln −BCG | +Gln +BCG | Pooled SD | Diet 2 | Infection 2 | Diet × Infection 2 | |
Liver (g) | 1.03 | 1.07 | 1.17 | 1.17 | 0.05 | 0.032 | 0.685 | 0.602 | |
Gastrocnemius Muscle (g) | 0.071 | 0.070 | 0.085 | 0.067 | 0.010 | 0.175 | 0.041 | 0.055 | |
Spleen (g) | 0.12 | 0.27 | 0.14 | 0.29 | 0.08 | 0.321 | <0.001 | 0.894 | |
Liver Protein (mg/100 mg tissue) | 12.87 | 13.35 | 13.52 | 13.52 | 0.88 | 0.436 | 0.329 | 0.426 | |
Muscle Protein (mg/100 mg tissue) | 14.15 | 14.01 | 14.34 | 15.93 | 0.27 | 0.035 | 0.137 | 0.082 | |
Spleen Protein (mg/100 mg tissue) | 12.80 | 13.63 | 14.45 | 13.42 | 1.28 | 0.188 | 0.846 | 0.093 | |
Liver Protein/RNA ratio | 0.013 | 0.015 | 0.013 | 0.014 | 0.00 | 0.458 | 0.008 | 0.584 | |
Muscle Protein/RNA ratio | 0.051 | 0.060 | 0.057 | 0.063 | 0.01 | 0.336 | 0.018 | 0.804 | |
Spleen Protein/RNA ratio | 0.013 | 0.015 | 0.014 | 0.014 | 0.00 | 0.940 | 0.573 | 0.606 | |
Liver RNA (µg/g fresh tissue) | 1,023 | 913 | 1,076 | 977 | 107.88 | 0.186 | 0.021 | 0.977 | |
Muscle RNA (µg/g fresh tissue) | 278 | 242 | 254 | 254 | 31.89 | 0.750 | 0.144 | 0.177 | |
Spleen RNA (µg/g fresh tissue) | 991 | 940 | 1,080 | 984 | 105.20 | 0.179 | 0.136 | 0.373 | |
Muscle glutamine (µmol glutamine/g fresh tissue) | 3.91 | 3.94 | 4.16 | 3.76 | 0.12 | 0.904 | 0.453 | 0.389 | |
Liver Glutamine synthetase (nmol/h/mg protein) | 1,294 | 862 | 1,195 | 933 | 465 | 0.934 | 0.050 | 0.618 |
4. Discussion
5. Conclusion
Acknowledgements
Conflict of Interest
References
- Filteau, S.M. Role of breast-feeding in managing malnutrition and infectious disease. Proc. Nutr. Soc. 2000, 59, 565–572. [Google Scholar]
- Davis, T.A.; Nguyen, H.V.; Garcia-Bravo, R.; Fiorotto, M.L.; Jackson, E.M.; Lewis, D.S.; Lee, D.R.; Reeds, P.J. Amino acid composition of human milk is not unique. J. Nutr. 1994, 124, 1126–1132. [Google Scholar]
- Rassin, D.K.; Sturman, J.A.; Guall, G.E. Taurine and other free amino acids in milk of man and other mammals. Early Hum. Dev. 1978, 2, 1–13. [Google Scholar]
- Agostoni, C.; Carratu, B.; Boniglia, C.; Riva, E.; Sanzini, E. Free glutamine and glutamic acid increase in milk through a three-mounth lactation period. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 508–512. [Google Scholar]
- World Health Organization (WHO). Infant and Young Child Feeding; WHO: Geneva, Switzerland, 2011. Available online: http://www.who.int/mediacentre/factsheets/fs342/en/index.html (accessed on 14 August 2011).
- Ball, P.A.; Hardy, G. Glutamine in pediatrics: Where next? Nutrition 2002, 18, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Rogero, M.M.; Borelli, P.; Fock, R.A.; de Oliveira Pires, I.S.; Tirapegui, J. Glutamine in vitro supplementation partly reverses impaired macrophage function resulting from early weaning in mice. Nutrition 2008, 24, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Rogero, M.M.; Borelli, P.; Vinolo, M.A.; Fock, R.A.; de Oliveira Pires, I.S.; Tirapegui, J. Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice. Clin. Nutr. 2008, 27, 386–397. [Google Scholar]
- Rogero, M.M.; Tirapegui, J.; Vinolo, M.A.; Borges, M.C.; de Castro, I.A.; de Oliveira Pires, I.S.; Borelli, P. Dietary glutamine supplementation increases the activity of peritoneal macrophages and hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guérin. J. Nutr. 2008, 138, 1343–1348. [Google Scholar] [PubMed]
- Neu, J.; Roig, J.C.; Meetze, W.H.; Veerman, M.; Carter, C.; Millsaps, M.; Bowling, D.; Dallas, M.J.; Sleasman, J.; Knight, T.; et al. Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J. Pediatr. 1997, 131, 691–699. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, A.; van Elburg, R.M.; Westerbeek, E.A.; Twisk, J.W.; Fetter, W.P. Glutamine-enriched enteral nutrition in very-low-birth-weight infants and effects on feeding tolerance and infectious morbidity: A randomized controlled trial. Am. J. Clin. Nutr. 2005, 81, 1397–1404. [Google Scholar]
- Smith, R.J.; Wilmore, D.W. Glutamine nutrition and requirements. J. Parenter. Enter. Nutr. 1990, 14, 94S–99S. [Google Scholar]
- Mizock, B.A. Immunonutrition and critical illness: An update. Nutrition 2010, 26, 701–707. [Google Scholar]
- Avenell, A. Glutamine in critical care: Current evidence from systematic reviews. Proc. Nutr. Soc. 2006, 65, 236–241. [Google Scholar]
- Zheng, Y.M.; Li, F.; Zhang, M.M.; Wu, X.T. Glutamine dipeptide for parenteral nutrition in abdominal surgery: A meta-analysis of randomized controlled trials. World J. Gastroenterol. 2006, 12, 7537–7541. [Google Scholar]
- Liu, D.F.; Wei, W.; Song, L.H. Upregulation of TNF-alpha and IL-6 mRNA in mouse liver induced by bacille Calmette-Guerin plus lipopolysaccharide. Acta Pharmacol. Sin. 2006, 27, 460–468. [Google Scholar]
- Tsuji, H.; Harada, A.; Mukaida, N.; Nakanuma, Y.; Bluethmann, H.; Kaneko, S.; Yamakawa, K.; Nakamura, S.I.; Kobayashi, K.I.; Matsushima, K. Tumor necrosis factor receptor p55 is essential for intrahepatic granuloma formation and hepatocellular apoptosis in a murine model of bacterium-induced fulminant hepatitis. Infect. Immun. 1997, 65, 1892–1898. [Google Scholar]
- Murphy, C.; Newsholme, P. Macrophage-mediated lysis of a beta-cell line, tumour necrosis factor-alpha release from bacillus Calmette-Guérin (BCG)-activated murine macrophages and interleukin-8 release from human monocytes are dependent on extracellular glutamine concentration and glutamine metabolism. Clin. Sci. 1999, 96, 89–97. [Google Scholar]
- Murphy, C.; Newsholme, P. Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production. Clin. Sci. 1998, 95, 397–407. [Google Scholar]
- Chang, W.K.; Yang, K.D.; Shaio, M.F. Effect of glutamine on Th1 and Th2 cytokine responses of human peripheral blood mononuclear cells. Clin. Immunol. 1999, 93, 294–301. [Google Scholar]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. Ain-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition “ad hoc” writing committee on the reformulation of the ain-76a rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar]
- Wells, S.M.; Kew, S.; Yaqoob, P.; Wallace, F.A.; Calder, P.C. Dietary glutamine enhances cytokine production by murine macrophages. Nutrition 1999, 15, 881–884. [Google Scholar]
- Yoo, S.S.; Field, C.J.; McBurney, M.I. Glutamine supplementation maintains intramuscular glutamine concentrations and normalizes lymphocyte function in early weaned pigs. J. Nutr. 1997, 127, 2253–2259. [Google Scholar]
- Suzuki, I.; Matsumoto, Y.; Adjei, A.A.; Asato, L.; Shinjo, S.; Yamamoto, S. Effect of a glutamine supplemented diet on response to methicillin-resistant Staphylococcus aureus infection in mice. J. Nutr. Sci. Vitaminol. 1993, 39, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Doumas, T. Albumin standards and measurement of serum albumin with bromocresol green. Clin. Chim. Acta 1971, 31, 87–96. [Google Scholar]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar]
- Goodwin, J.F.; Murphy, B.; Guillemette, M. Direct measurement of serum iron and binding capacity. Clin. Chem. 1966, 12, 47–57. [Google Scholar]
- Lund, P. Determination of Glutamine with Glutaminase and Glutamate Dehydrogenase. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Grassl, M., Eds.; Academic Press: London, UK, 1985; pp. 1719–1722. [Google Scholar]
- Sahlin, K.; Katz, A.; Broberg, S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 1990, 259, 834–841. [Google Scholar]
- Minet, R.; Villie, F.; Marcollet, M.; Meynial-Denis, D.; Cynober, L. Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin. Chim. Acta 1997, 268, 121–132. [Google Scholar]
- Lowry, O.H.; Rosebruogh, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Munro, N.N.; Fleck, A. The determination of nucleic acids. Methods Biochem. Anal. 1966, 14, 113–176. [Google Scholar]
- Albanese, A.A.; Orto, L.A. Protein and Amino Acids. In Newer Methods of Nutritional Biochemistry: With Applications and Interpretations; Albanese, A.A., Ed.; Academic Press: New York, NY, USA, 1963; p. 84. [Google Scholar]
- Lacey, J.M.; Wilmore, D.W. Is glutamine a conditionally essential amino acid? Nutr. Rev. 1990, 48, 297–309. [Google Scholar] [PubMed]
- Van Acker, B.A.; Hulsewe, K.W.; Wagenmakers, A.J.; Von Meyerheict, M.F.; Soeters, P.B. Response of glutamine metabolism to glutamine supplemented parenteral nutrition. Am. J. Clin. Nutr. 2000, 72, 790–795. [Google Scholar]
- Smith, W.J.; Underwood, L.E.; Clemmons, D.R. Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J. Clin. Endocrinol. Metab. 1995, 80, 443–449. [Google Scholar]
- Noguchi, T. Protein nutrition and insulin-like growth factor system. Br. J. Nutr. 2000, 84, S241–S244. [Google Scholar]
- Takenaka, A.; Oki, N.; Takahashi, S.I.; Noguchi, T. Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-I (IGF-I) but does not affect plasma IGF-binding protein-1 in rats. J. Nutr. 2000, 130, 2910–2914. [Google Scholar]
- Liu, Z.; Long, W.; Fryburg, D.A.; Barrett, E.J. The regulation of body and skeletal muscle protein metabolism by hormones and amino acids. J. Nutr. 2006, 136, S212–S217. [Google Scholar]
- MacLennan, P.A.; Smith, K.; Weryk, B.; Watt, P.W.; Rennie, M.J. Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett. 1988, 237, 133–136. [Google Scholar]
- MacLennan, P.A.; Brown, R.A.; Rennie, M.J. A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett. 1987, 215, 187–191. [Google Scholar]
- Wu, G.Y.; Thompson, J.R. The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem. J. 1990, 265, 593–598. [Google Scholar] [PubMed]
- Parry-Billings, M.; Newsholme, E.A. The possible role of glutamine substrate cycles in skeletal muscle. Biochem. J. 1991, 279, 327–328. [Google Scholar]
- Rogero, M.M.; Tirapegui, J.; Pedrosa, R.G.; Castro, I.A.; Pires, I.S.O. Plasma and tissue glutamine response to acute and chronic supplementation with L-glutamine and L-alanyl-L-glutamine in rats. Nutr. Res. 2004, 24, 261–270. [Google Scholar]
- Breuille, D.; Voisin, L.; Contrepois, M.; Arnal, M.; Rose, F.; Obled, C. A sustained rat model for studying the long-lasting catabolic state of sepsis. Infect. Immun. 1999, 67, 1079–1085. [Google Scholar]
- Frick, C.G.; Fink, H.; Gordan, M.L.; Eckel, B.; Martyn, J.A.; Blobner, M. Chronic Escherichia coli infection induces muscle wasting without changing acetylcholine receptor numbers. Intensive Care Med. 2008, 34, 561–567. [Google Scholar]
- Samuels, S.E.; Baracos, V.E. Tissue protein turnover is altered during catch-up growth following Escherichia coli infection in weanling rats. J. Nutr. 1995, 125, 520–530. [Google Scholar]
- Kowalchuk, J.M.; Curi, R.; Newsholme, E.A. Glutamine metabolism in isolated incubated adipocytes of the rat. Biochem. J. 1988, 249, 705–708. [Google Scholar]
- Curi, R. Does PEPCK play a key role in amino acid oxidation? Braz. J. Med. Biol. Res. 1988, 21, 27–30. [Google Scholar] [PubMed]
- Rumberger, J.M.; Wu, T.; Hering, M.A.; Marshall, S. Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels: Effects of glucose, glutamine, and glucosamine on glycerophosphate dehydrogenase, fatty acid synthase, and acetyl-CoA carboxylase mRNA levels. J. Biol. Chem. 2003, 278, 28547–28552. [Google Scholar] [PubMed]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rogero, M.M.; Borges, M.C.; De Castro, I.A.; Pires, I.S.O.; Borelli, P.; Tirapegui, J. Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin. Nutrients 2011, 3, 792-804. https://doi.org/10.3390/nu3090792
Rogero MM, Borges MC, De Castro IA, Pires ISO, Borelli P, Tirapegui J. Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin. Nutrients. 2011; 3(9):792-804. https://doi.org/10.3390/nu3090792
Chicago/Turabian StyleRogero, Marcelo Macedo, Maria Carolina Borges, Inar Alves De Castro, Ivanir S. O. Pires, Primavera Borelli, and Julio Tirapegui. 2011. "Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin" Nutrients 3, no. 9: 792-804. https://doi.org/10.3390/nu3090792
APA StyleRogero, M. M., Borges, M. C., De Castro, I. A., Pires, I. S. O., Borelli, P., & Tirapegui, J. (2011). Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin. Nutrients, 3(9), 792-804. https://doi.org/10.3390/nu3090792