Undernutrition in Patients with COPD and Its Treatment
Abstract
:1. Introduction
2. State of Undernutrition in COPD Patients
3. Causes of Undernutrition in COPD Patients
4. Adipokines and Hormones Affecting the Nutritional Status in COPD
Cytokines, Adipokines and Hormones | Primary Source | Functions | Changes in Blood Levels in COPD Patients | References |
---|---|---|---|---|
Adiponectin | Adipocytes | Insulin sensitizer, suppress inflammation | ↑ compared to healthy smokers and nonsmkers; correlated with the residual volume, blood TNF-α levels and mortality; inversely correlated with the predicted %FEV1; ↑ during acute exacerbations | [30,31,32,33,34] |
Leptin | Adipocytes, bronchial epithelial cells, alveolar type II pneumocytes, lung macrophages | Appetite control, promote inflammation; regulate hematopoiesis, angiogenesis, wound healing | ↓ in COPD patients with low BMI compared to COPD patients with normal and high BMI and healthy control; ↑ and correlated with TNF-α during acute exacerbation; not correlated with TNF-α in stable COPD patients; plasma and sputum leptin levels are inversely correlated | [23,24,25,29] |
Resistin | Peripheral blood mononuclear cells, adipocytes | Promote insulin resistance and inflammation through IL-6 and TNF-α production | Inversely correlated with FEV1% predicted | [35] |
TNF-α | Stromal vascular fraction cells, adipocytes, monocytes | Promote inflammation; antagonize insulin signaling | ↑ compared to healthy control; ↑ production from the peripheral blood monocytes in lean COPD patients | [13,14,15] |
IL-6 | Adipocytes, atromal vascular fraction cells, liver, muscle | Promote inflammation; appetite loss | ↑ compared to healthy control | [14] |
Ghrelin | X/A-like cells | Stimulate appetite and GH release | ↑ in underweight patients compared with normal weight patients and healthy control subjects; positively correlated with residual lung volume; inversely correlated with FEV1% predicted | [36] |
5. Nutritional Supplement Therapy for COPD Patients
6. High-Calorie Nutrition Therapy for COPD
Nutrients | Effect on FEV1 | Other Effects | Results of Meta-Analysis | References |
---|---|---|---|---|
Liquid prepared supplement | No change | Body weight, FFMI, 6MWD ↑; SGRQ improved | Positive | [6,49] |
Fruits and vegetable | No change (12 weeks) Improve (3 years) | IL-8, TNF-α, CRP → | Not done | [54,55] |
Vitamin E | No data | Risk of COPD ↓ | Not done | [56] |
Vitamin D | No change (1 year) | QOL, mortality rate, acute exacerbation rate → | Not done | [57] |
Creatine | No data | 6MWD, shuttle walk test, SGRQ, upper and lower limb strength → | Negative | [58,59,60,61] |
Glutamine | No data | Lactate threshold, VO2 peak →; IL-6, IL-8, TNF-α → in exacerbated patients receiving mechanical ventilation | Not done | [62,63] |
l-carnitine | No data | 6MWD, inspiratory muscle strength ↑; blood lactate concentration after exercise ↓ | Not done | [64] |
7. Nutritional Supplement Therapy Other Than High-Calorie Nutrition Therapy: Intake of Fruits and Vegetables
8. Intake of Vitamins
9. Creatine Intake
10. Intake of Other Nutrients
11. Conclusions
Conflict of Interest
References
- Schols, A.M.; Soeters, P.B.; Dingemans, A.M.; Mostert, R.; Frantzen, P.J.; Wouters, E.F. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am. Rev. Respir. Dis. 1993, 147, 1151–1156. [Google Scholar] [CrossRef]
- Vermeeren, M.A.; Creutzberg, E.C.; Schols, A.M.; Postma, D.S.; Pieters, W.R.; Roldaan, A.C.; Wouters, E.F. Prevalence of nutritional depletion in large out-patient population of patients with COPD. Respir. Med. 2006, 100, 1349–1355. [Google Scholar] [CrossRef]
- Wilson, D.O.; Rogers, R.M.; Wright, E.C.; Anthonisen, N.R. Body weight in chronic obstructive pulmonary disease: The national institutes of health intermittent positive pressure breathing trial. Am. Rev. Respir. Dis. 1989, 139, 1435–1438. [Google Scholar] [CrossRef]
- Schols, A.M. Nutrition in chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med. 2000, 6, 110–115. [Google Scholar] [CrossRef]
- Schols, A.M.; Slangen, J.; Volovics, L.; Wouters, E.F. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998, 157, 1791–1797. [Google Scholar] [CrossRef]
- Collins, P.F.; Stratton, R.J.; Elia, M. Nutritional support in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1385–1395. [Google Scholar] [CrossRef] [Green Version]
- Hallin, R.; Koivisto-Hursti, U.K.; Lindberg, E.; Janson, C. Nutritional status, dietary energy intake and the risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Respir. Med. 2006, 100, 561–567. [Google Scholar] [CrossRef]
- Girón, R.; Matesanz, C.; García-Río, F.; de Santiago, E.; Mancha, A.; Rodríguez-Salvanés, F.; Ancochea, J. Nutritional state during COPD exacerbation: Clinical and prognostic implications. Ann. Nutr. Metab. 2009, 54, 52–58. [Google Scholar] [CrossRef]
- Rabinovich, R.A.; Ardite, E.; Mayer, A.M.; Polo, M.F.; Vilaró, J.; Argilés, J.M.; Roca, J. Training depletes muscle glutathione in patients with chronic obstructive pulmonary disease and low body mass index. Respiration 2006, 73, 757–761. [Google Scholar] [CrossRef]
- Grönberg, A.M.; Slinde, F.; Engström, C.P.; Hulthén, L.; Larsson, S. Dietary problems in patients with severe chronic obstructive disease. J. Hum. Nutr. Diet. 2005, 18, 445–452. [Google Scholar] [CrossRef]
- Wilson, D.O.; Donahoe, M; Rogers, R.M.; Pennock, B.E. Metabolic rate and weight loss in chronic obstructive lung disease. J. Parenter. Enter. Nutr. 1990, 14, 7–11. [Google Scholar] [CrossRef]
- Schols, A.M.; Fredrix, E.W.; Soeters, P.B.; Westerterp, K.R.; Wouters, E.F. Restingenergy expenditure in patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 1991, 54, 983–987. [Google Scholar]
- Gan, W.Q.; Man, S.F.; Senthilselvan, A.; Sin, D.D. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax 2004, 59, 574–580. [Google Scholar] [CrossRef]
- Yasuda, N.; Gotoh, K.; Minatoguchi, S.; Asano, K.; Nishigaki, K.; Nomura, M.; Ohno, A.; Watanabe, M.; Sano, H.; Kumada, H.; et al. An increase of soluble Fas, an inhibitor of apoptosis, associated with progression of COPD. Respir. Med. 1998, 92, 993–999. [Google Scholar] [CrossRef]
- De Godoy, I.; Donahoe, M.; Calhoun, W.J.; Mancino, J.; Rogers, R.M. Elevated TNF-α production by peripheral blood monocytes of weight-losing COPD patients. Am. J. Respir. Crit. Care Med. 1996, 153, 633–637. [Google Scholar] [CrossRef]
- Koehler, F.; Doehner, W.; Hoernig, S.; Witt, C.; Anker, S.D.; John, M. Anorexia in chronic obstructive pulmonary disease-association to cachexia and hormonal derangement. Int. J. Cardiol. 2007, 119, 83–89. [Google Scholar] [CrossRef]
- Das, U.N. Is obesity an inflammatory condition? Nutrition 2001, 17, 953–966. [Google Scholar] [CrossRef]
- Mohamed-Ali, V.; Goodrick, S.; Rawesh, A.; Katz, D.R.; Miles, J.M.; Yudkin, J.S.; Klein, S.; Coppack, S.W. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J. Clin. Endocrinol. Metab. 1997, 82, 4196–4200. [Google Scholar] [CrossRef]
- Breyer, M.K.; Rutten, E.P.; Vernooy, J.H.; Spruit, M.A.; Dentener, M.A.; van der Kallen, C.; van Greevenbroek, M.M.; Wouters, E.F. Gender differences in the adipose secretome system in chronic obstructive pulmonary disease (COPD): A pivotal role of leptin. Respir. Med. 2011, 105, 1046–1053. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Breyer, M.K.; Rutten, E.P.; Locantore, N.W.; Watkins, M.L.; Miller, B.E.; Wouters, E.F. Dysregulatedadipokine metabolism in chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Zhang, H.H.; Kumar, S.; Barnett, A.H.; Eggo, M.C. Tumor necrosis factor-alpha exerts dual effects on human adipose leptin synthesis and release. Mol. Cell. Endocrinol. 2000, 159, 79–88. [Google Scholar] [CrossRef]
- Karakas, S.; Karadag, F.; Karul, A.B.; Gurgey, O.; Gurel, S.; Guney, E.; Cildag, O. Circulating leptin and body composition in chronic obstructive pulmonary disease. Int. J. Clin. Pract. 2005, 59, 1167–1170. [Google Scholar] [CrossRef]
- Kythreotis, P.; Kokkini, A.; Avgeropoulou, S.; Hadjioannou, A.; Anastasakou, E.; Rasidakis, A.; Bakakos, P. Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease. BMC Pulm. Med. 2009, 9. [Google Scholar] [CrossRef]
- Takabatake, N.; Nakamura, H.; Abe, S.; Hino, T.; Saito, H.; Yuki, H.; Kato, S.; Tomoike, H. Circulating leptin in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999, 159, 1215–1219. [Google Scholar] [CrossRef]
- Moore, S.I.; Huffnagle, G.B.; Chen, G.H.; White, E.S.; Mancuso, P. Leptin modulates neutrophil phagocytosis of Klebsiella pneumoniae. Infect. Immun. 2003, 71, 4182–4185. [Google Scholar] [CrossRef]
- Bruno, A.; Chanez, P.; Chiappara, G.; Siena, L.; Giammanco, S.; Gjomarkaj, M.; Bonsignore, G.; Bousquet, J.; Vignola, A.M. Does leptin play a cytokine-like role within the airways of COPD patients? Eur. Respir. J. 2005, 26, 398–405. [Google Scholar] [CrossRef]
- Vernooy, J.H.; Drummen, N.E.; van Suylen, R.J.; Cloots, R.H.; Möller, G.M.; Bracke, K.R.; Zuyderduyn, S.; Dentener, M.A.; Brusselle, G.G.; Hiemstra, P.S.; et al. Enhanced pulmonary leptin expression in patients with severe COPD and asymptomatic smokers. Thorax 2009, 64, 26–32. [Google Scholar]
- Broekhuizen, R.; Vernooy, J.H.; Schols, A.M.; Dentener, M.A; Wouters, E.F. Leptin as local inflammatory marker in COPD. Respir. Med. 2005, 99, 70–74. [Google Scholar] [CrossRef]
- Diez, J.J.; Iglesias, P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 2003, 148, 293–300. [Google Scholar] [CrossRef]
- Tomoda, K.; Yoshikawa, M.; Itoh, T.; Tamaki, S.; Fukuoka, A.; Komeda, K.; Kimura, H. Elevated circulating plasma adiponectin in underweight patients with COPD. Chest 2007, 132, 135–140. [Google Scholar] [CrossRef]
- Chan, K.H.; Yeung, S.C.; Yao, T.J.; Ip, M.S.; Cheung, A.H.; Chan-Yeung, M.M.; Mak, J.C. Elevated plasma adiponectin levels in patients with chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. 2010, 14, 1193–1200. [Google Scholar]
- Waschki, B.; Kirsten, A.; Holz, O.; Müller, K.C.; Meyer, T.; Watz, H.; Magnussen, H. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: A prospective cohort study. Chest 2011, 140, 331–342. [Google Scholar] [CrossRef]
- Kirdar, S.; Serter, M.; Ceylan, E.; Sener, A.G.; Kavak, T.; Karadağ, F. Adiponectin as a biomarker of systemic inflammatory response in smoker patients with stable and exacerbation phases of chronic obstructive pulmonary disease. Scand. J. Clin. Lab. Invest. 2009, 69, 219–224. [Google Scholar] [CrossRef]
- Al Mutairi, S.S.; Mojiminiyi, O.A.; Shihab-Eldeen, A.; Al Rammah, T.; Abdella, N. Putative roles of circulating resistin in patients with asthma, COPD and cigarette smokers. Dis. Markers 2011, 31, 1–7. [Google Scholar]
- Itoh, T.; Nagaya, N.; Yoshikawa, M. Elevated plasma ghrelin level in underweight patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2004, 170, 879–882. [Google Scholar] [CrossRef]
- Van den Borst, B.; Gosker, H.R.; Schols, A.M. Central fat and peripheral muscle: Partners in crime in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013, 187, 8–13. [Google Scholar] [CrossRef]
- Jordan, J.G., Jr.; Mann, J.R. Obesity and mortality in persons with obstructive lung disease using data from the NHANES III. South. Med. J. 2010, 103, 323–330. [Google Scholar] [CrossRef]
- Van den Borst, B.; Gosker, H.R.; Koster, A.; Yu, B.; Kritchevsky, S.B.; Liu, Y.; Meibohm, B.; Rice, T.B.; Shlipak, M.; Yende, S.; et al. The influence of abdominal visceral fat on inflammatorypathways and mortalityrisk in obstructive lung disease. Am. J. Clin. Nutr. 2012, 96, 516–526. [Google Scholar] [CrossRef]
- Nakamura, T.; Kihara, S.; Kumada, M.; Shibazaki, S.; Takahashi, M.; Nagai, M.; Matsuzawa, Y.; Funahashi, T. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 2004, 68, 975–981. [Google Scholar] [CrossRef]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar]
- Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature 2001, 409, 194–198. [Google Scholar]
- Nagaya, N.; Itoh, T.; Murakami, S.; Oya, H.; Uematsu, M.; Miyatake, K.; Kangawa, K. Treatment of cachexia with ghrelin in patients with COPD. Chest 2005, 128, 1187–1193. [Google Scholar] [CrossRef]
- Miki, K.; Maekura, R.; Nagaya, N.; Nakazato, M.; Kimura, H.; Murakami, S.; Ohnishi, S.; Hiraga, T.; Miki, M.; Kitada, S.; et al. Ghrelin treatment of cachectic patients with chronic obstructive pulmonary disease: A multicenter, randomized, double-blind, placebo-controlled trial. PLoS One 2012, 7. [Google Scholar] [CrossRef]
- Elijah, I.E.; Branski, L.K.; Finnerty, C.C.; Herndon, D.N. The GH/IGF-1system in critical illness. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 759–767. [Google Scholar] [CrossRef]
- Burdet, L.; de Muralt, B.; Schutz, Y.; Pichard, C.; Fitting, J.W. Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease. A prospective, randomized, controlled study. Am. J. Respir. Crit. Care Med. 1997, 156, 1800–1806. [Google Scholar]
- Ferreira, I.M.; Brooks, D.; Lacasse, Y.; Goldstein, R.S.; White, J. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2005, 18, CD000998. [Google Scholar]
- Weekes, C.E.; Emery, P.W.; Elia, M. Dietary counseling and food fortification in stable COPD: A randomized trial. Thorax 2009, 64, 326–331. [Google Scholar] [CrossRef]
- Ferreira, I.M.; Brooks, D.; White, J.; Goldstein, R. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012, 12. [Google Scholar] [CrossRef]
- Cai, B.; Zhu, Y.; Ma, Yi.; Xu, Z.; Zao, Yi.; Wang, J.; Lin, Y.; Comer, G.M. Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients. Nutrition 2003, 19, 229–232. [Google Scholar] [CrossRef]
- Broekhuizen, R.; Creutzberg, E.C.; Weling-Scheepers, C.A.; Wouters, E.F.; Schols, A.M. Optimizing oral nutritional drink supplementation in patients with chronic obstructive pulmonary disease. Br. J. Nutr. 2005, 93, 965–971. [Google Scholar] [CrossRef]
- Planas, M.; Alvarez, J.; García-Peris, P.A.; de la Cuerda, C.; de Lucas, P.; Castellà, M.; Canseco, F.; Reyes, L. Nutritional support and quality of life in stable chronic obstructive pulmonary disease (COPD) patients. Clin. Nutr. 2005, 24, 433–441. [Google Scholar] [CrossRef]
- Sugawara, K.; Takahashi, H.; Kasai, C.; Kiyokawa, N.; Watanabe, T.; Fujii, S.; Kashiwagura, T.; Honma, M.; Satake, M.; Shioya, T. Effects of nutritional supplementation combined with low-intensity exercise in malnourished patients with COPD. Respir. Med. 2010, 104, 1883–1889. [Google Scholar] [CrossRef]
- Keranis, E.; Makris, D.; Rodopoulou, P.; Martinou, H.; Papamakarios, G.; Daniil, Z.; Zintzaras, E.; Gourgoulianis, K.I. Impact of dietary shift to higher-antioxidant foods in COPD: A randomized trial. Eur. Respir. J. 2010, 36, 774–780. [Google Scholar] [CrossRef]
- Baldrick, F.R.; Elborn, J.S.; Woodside, J.V.; Treacy, K.; Bradley, J.M.; Patterson, C.C.; Schock, B.C.; Ennis, M.; Young, I.S.; McKinley, M.C. Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: A randomized controlled trial. Eur. Respir. J. 2012, 39, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Agler, A.H.; Kurth, T.; Gaziano, J.M.; Buring, J.E.; Cassano, P.A. Randomized vitamin E supplementation and risk of chronic lung disease in the Women’s Health Study. Thorax 2011, 66, 320–325. [Google Scholar] [CrossRef]
- Lehouck, A.; Mathieu, C.; Carremans, C.; Baeke, F.; Verhaegen, J.; Van Eldere, J.; Decallonne, B.; Bouillon, R.; Decramer, M.; Janssens, W. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: A randomized trial. Ann. Intern. Med. 2012, 156, 105–114. [Google Scholar] [CrossRef]
- Deacon, S.J.; Vincent, E.E.; Greenhaff, P.L.; Fox, J.; Steiner, M.C.; Singh, S.J.; Morgan, M.D. Randomized controlled trial of dietary creatine as an adjunct therapy to physical training in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 178, 233–239. [Google Scholar] [CrossRef]
- Faager, G.; Söderlund, K.; Sköld, C.M.; Rundgren, S.; Tollbäck, A.; Jakobsson, P. Creatine supplementation and physical training in patients with COPD: A double blind, placebo-controlled study. Int. J. Chron. Obstruct. Pulmon. Dis. 2006, 1, 445–453. [Google Scholar]
- Fuld, J.P.; Kilduff, L.P.; Neder, J.A.; Pitsiladis, Y.; Lean, M.E.; Ward, S.A.; Cotton, M.M. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax 2005, 60, 531–537. [Google Scholar] [CrossRef]
- Al-Ghimlas, F.; Todd, D.C. Creatine supplementation for patients with COPD receiving pulmonary rehabilitation: A systematic review and meta-analysis. Respirology 2010, 15, 785–795. [Google Scholar] [CrossRef]
- Marwood, S.; Jack, S.; Patel, M.; Walker, P.; Bowtell, J.; Calverley, P. No effect of glutamine ingestion on indices of oxidative metabolism in stable COPD. Respir. Physiol. Neurobiol. 2011, 177, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Memiş, D.; Turan, A.; Karamanlioglu, B.; Koyuncu, O.; Pamukçu, Z. Glutamine and chronic obstructive pulmonary disease. Eur. J. Anaesthesiol. 2006, 23, 621–623. [Google Scholar] [CrossRef]
- Borghi-Silva, A.; Baldissera, V; Sampaio, L.M.; Pires-DiLorenzo, V.A.; Jamami, M.; Demonte, A.; Marchini, J.S.; Costa, D. l-carnitine as an ergogenic aid for patients with chronic obstructive pulmonary disease submitted to whole-body and respiratory muscle training programs. Braz. J. Med. Biol. Res. 2006, 39, 465–474. [Google Scholar]
- Smit, H.A.; Grievink, L.; Tabak, C. Dietary influences on chronic obstructive lung disease and asthma: A review of the epidemiological evidence. Proc. Nutr. Soc. 1999, 58, 309–319. [Google Scholar] [CrossRef]
- Romieu, I.; Trenga, C. Diet and obstructive lung diseases. Epidemiol. Rev. 2001, 23, 268–287. [Google Scholar] [CrossRef]
- Tabak, C.; Smit, H.A.; Heederik, D.; Ocké, M.C.; Kromhout, D. Diet and chronic obstructive pulmonary disease: Independent beneficial effects of fruits, whole grains, and alcohol (the MORGEN study). Clin. Exp. Allergy 2001, 31, 747–755. [Google Scholar] [CrossRef]
- Kelly, Y.; Sacker, A.; Marmot, M. Nutrition and respiratory health in adults: Findings from the Health Survey for Scotland. Eur. Respir. J. 2003, 21, 664–671. [Google Scholar] [CrossRef]
- Carey, I.M.; Strachan, D.P.; Cook, D.G. Effects of changes in fresh fruit consumption on ventilatory function in healthy British adults. Am. J. Respir. Crit. Care Med. 1998, 158, 728–733. [Google Scholar] [CrossRef]
- Miedema, I.; Feskens, E.J.; Heederik, D.; Kromhout, D. Dietary determinants of long-term incidence of chronic nonspecific lung diseases. The Zutphen Study. Am. J. Epidemiol. 1993, 138, 37–45. [Google Scholar]
- Walda, I.C.; Tabak, C.; Smit, H.A.; Räsänen, L.; Fidanza, F.; Menotti, A.; Nissinen, A.; Feskens, E.J.; Kromhout, D. Diet and 20-year chronic obstructive pulmonary disease mortality in middle-aged men from three European countries. Eur. J. Clin. Nutr. 2002, 56, 638–643. [Google Scholar] [CrossRef]
- Varraso, R.; Willett, W.C.; Camargo, C.A., Jr. Prospective study of dietary fiber and risk of chronic obstructive pulmonary disease among US women and men. Am. J. Epidemiol. 2010, 171, 776–784. [Google Scholar] [CrossRef]
- Wu, T.C.; Huang, Y.C.; Hsu, S.Y.; Wang, Y.C.; Yeh, S.L. Vitamin E and vitamin C supplementation in patients with chronic obstructive pulmonary disease. Int. J. Vitam. Nutr. Res. 2007, 77, 272–279. [Google Scholar] [CrossRef]
- Daga, M.K.; Chhabra, R.; Sharma, B.; Mishra, T.K. Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease. J. Biosci. 2003, 28, 7–11. [Google Scholar] [CrossRef]
- Butland, B.K.; Fehily, A.M.; Elwood, P.C. Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax 2000, 55, 102–108. [Google Scholar] [CrossRef]
- Schwartz, J.; Weiss, S.T. Relationship between dietary vitamin C intake and pulmonary function in the First National Health and Nutrition Examination Survey (NHANES I). Am. J. Clin. Nutr. 1994, 59, 110–114. [Google Scholar]
- Britton, J.R.; Pavord, I.D.; Richards, K.A.; Knox, A.J.; Wisniewski, A.F.; Lewis, S.A.; Tattersfield, A.E.; Weiss, S.T. Dietary antioxidant vitamin intake and lung function in the general population. Am. J. Respir. Crit. Care Med. 1995, 151, 1383–1387. [Google Scholar] [CrossRef]
- Ness, A.R.; Khaw, K.T.; Bingham, S.; Day, N.E. Vitamin C status and respiratory function. Eur. J. Clin. Nutr. 1996, 50, 573–579. [Google Scholar]
- Hu, G.; Zhang, X.; Chen, J.; Peto, R.; Campbell, T.C.; Cassano, P.A. Dietary vitamin C intake and lung function in rural China. Am. J. Epidemiol. 1998, 148, 594–599. [Google Scholar] [CrossRef]
- Dow, L.; Tracey, M.; Villar, A.; Coggon, D.; Margetts, B.M.; Campbell, M.J.; Holgate, S.T. Does dietary intake of vitamins C and E influence lung function in older people? Am. J. Respir. Crit. Care Med. 1996, 154, 1401–1404. [Google Scholar] [CrossRef]
- Grievink, L.; Smit, H.A.; Ocké, M.C.; van ’t Veer, P.; Kromhout, D. Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: The MORGEN study. Thorax 1998, 53, 166–171. [Google Scholar] [CrossRef]
- Tabak, C.; Smit, H.A.; Räsänen, L.; Fidanza, F.; Menotti, A.; Nissinen, A.; Feskens, E.J.; Heederik, D.; Kromhout, D. Dietary factors and pulmonary function: A cross sectional study in middle aged men from three European countries. Thorax 1999, 54, 1021–1026. [Google Scholar] [CrossRef]
- Siedlinski, M.; Postma, D.S.; van Diemen, C.C.; Blokstra, A.; Smit, H.A.; Boezen, H.M. Lung function loss, smoking, vitamin C intake, and polymorphisms of the glutamate-cysteine ligase genes. Am. J. Respir. Crit. Care Med. 2008, 178, 13–19. [Google Scholar] [CrossRef]
- Guenegou, A.; Boczkowski, J.; Aubier, M.; Neukirch, F.; Leynaert, B. Interaction between a heme oxygenase-1 gene promoter polymorphism and serum beta-carotene levels on 8-year lung function decline in a general population: The European Community Respiratory Health Survey (France). Am. J. Epidemiol. 2008, 167, 139–144. [Google Scholar]
- Ochs-Balcom, H.M.; Grant, B.J.; Muti, P.; Sempos, C.T.; Freudenheim, J.L.; Browne, R.W.; McCann, S.E.; Trevisan, M.; Cassano, P.A.; Iacoviello, L.; et al. Antioxidants, oxidative stress, and pulmonary function in individuals diagnosed with asthma or COPD. Eur. J. Clin. Nutr. 2006, 60, 991–999. [Google Scholar] [CrossRef]
- Janssens, W.; Bouillon, R.; Claes, B.; Carremans, C.; Lehouck, A.; Buysschaert, I.; Coolen, J.; Mathieu, C.; Decramer, M.; Lambrechts, D. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax 2010, 65, 215–220. [Google Scholar] [CrossRef]
- Graat-Verboom, L.; Smeenk, F.W.; van den Borne, B.E.; Spruit, M.A.; Jansen, F.H.; van Enschot, J.W.; Wouters, E.F. Progression of osteoporosis in patients with COPD: A 3-year follow up study. Respir. Med. 2012, 106, 861–870. [Google Scholar] [CrossRef]
- Van Etten, E.; Mathieu, C. Immunoregulation by 1,25-dihydroxyvitamin D3: Basic concepts. J. Steroid. Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef]
- Adams, J.S.; Hewison, M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 80–90. [Google Scholar] [CrossRef]
- Adams, J.S.; Chen, H.; Chun, R.; Ren, S.; Wu, S.; Gacad, M.; Nguyen, L.; Ride, J.; Liu, P.; Modlin, R.; et al. Substrate and enzyme trafficking as a means of regulating 1,25-dihydroxyvitamin D synthesis and action: the human innate immune response. J. Bone Miner. Res. 2007, 22, V20–V24. [Google Scholar] [CrossRef]
- Boyan, B.D.; Schwartz, Z. 1,25-dihydroxy vitamin D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60-activated matrix vesicle matrix metalloproteinases. Cells Tissues Organs 2009, 189, 70–74. [Google Scholar] [CrossRef]
- Koli, K.; Keski-Oja, J. Vitamin D3 regulation of transforming growth factor-beta system in epithelial and fibroblastic cells--relationships to plasminogen activation. J. Investig. Dermatol. Symp. Proc. 1996, 1, 33–38. [Google Scholar]
- Pfeifer, M.; Begerow, B.; Minne, H.W. Vitamin D and muscle function. Osteoporos. Int. 2002, 13, 187–194. [Google Scholar]
- Black, P.N.; Scragg, R. Relationship between serum 25-hydroxyvitamin D and pulmonary function survey. Chest 2005, 128, 3792–3798. [Google Scholar] [CrossRef]
- Persson, L.J.; Aanerud, M.; Hiemstra, P.S.; Hardie, J.A.; Bakke, P.S.; Eagan, T.M. Chronic obstructive pulmonary disease is associated with low levels of vitamin D. PLoS One 2012, 7. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Jameson, K.A.; Robinson, S.M; Boucher, B.J.; Syddall, H.E.; Sayer, A.A.; Cooper, C.; Holloway, J.W.; Dennison, E.M. Relationship of vitamin D status to adult lung function and COPD. Thorax 2011, 66, 692–698. [Google Scholar] [CrossRef]
- Kunisaki, K.M.; Niewoehner, D.E.; Singh, R.J.; Connett, J.E. Vitamin D status and longitudinal lung function decline in the Lung Health Study. Eur. Respir. J. 2011, 37, 238–243. [Google Scholar] [CrossRef]
- Hornikx, M.; Van Remoortel, H.; Lehouck, A.; Mathieu, C.; Maes, K.; Gayan-Ramirez, G.; Decramer, M.; Troosters, T.; Janssens, W. Vitamin D supplementation during rehabilitation in COPD: A secondary analysis of a randomized trial. Respir. Res. 2012, 13. [Google Scholar] [CrossRef]
- Durup, D.; Jørgensen, H.L.; Christensen, J.; Schwarz, P.; Heegaard, A.M.; Lind, B. A reverse J-shaped association of all-cause mortality with serum 25-hydroxyvitamin D in general practice: The COPD study. J. Clin. Endocrinol. Metab. 2012, 97, 2644–2652. [Google Scholar] [CrossRef]
- Schellenberg, D.; Paré, P.D.; Weir, T.D.; Spinelli, J.J.; Walker, B.A.; Sandford, A.J. Vitamin D binding protein variants and the risk of COPD. Am. J. Respir. Crit. Care Med. 1998, 157, 957–961. [Google Scholar] [CrossRef]
- Shen, L.H.; Zhang, X.M.; Su, D.J.; Yao, S.P.; Yu, B.Q.; Wang, H.W.; Lu, F.Z. Association of vitamin D binding protein variants with susceptibility to chronic obstructive pulmonary disease. J. Int. Med. Res. 2010, 38, 1093–1098. [Google Scholar]
- Wood, A.M.; Bassford, C.; Webster, D.; Newby, P.; Rajesh, P.; Stockley, R.A.; Thickett, D.R. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax 2011, 66, 205–210. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Creatine: Endogenous metabolite, dietary, and therapeutic supplement. Annu. Rev. Nutr. 2007, 27, 241–261. [Google Scholar] [CrossRef]
- Barnes, P.J. Defective antioxidant gene regulation in COPD: Acase for broccoli. Am. J. Respir. Crit. Care Med. 2008, 178, 552–554. [Google Scholar] [CrossRef]
- Morimitsu, Y.; Nakagawa, Y.; Hayashi, K.; Fujii, H.; Kumagai, T.; Nakamura, Y.; Osawa, T.; Horio, F.; Itoh, K.; Iida, K.; et al. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. J. Biol. Chem. 2002, 277, 3456–3463. [Google Scholar] [CrossRef]
- Meja, K.K.; Rajendrasozhan, S.; Adenuga, D.; Biswas, S.K.; Sundar, I.K.; Spooner, G.; Marwick, J.A.; Chakravarty, P.; Fletcher, D.; Whittaker, P.; et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am. J. Respir. Cell Mol. Biol. 2008, 39, 312–323. [Google Scholar] [CrossRef]
- Biswas, S.K.; McClure, D.; Jimenez, L.A.; Megson, I.L.; Rahman, I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid. Redox Signal. 2005, 7, 32–41. [Google Scholar] [CrossRef]
- Shahar, E.; Boland, L.L.; Folsom, A.R.; Tockman, M.S.; McGovern, P.G.; Eckfeldt, J.H. Docosahexaenoic acid and smoking-related chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999, 159, 1780–1785. [Google Scholar] [CrossRef]
- Broekhuizen, R.; Wouters, E.F.; Creutzberg, E.C.; Weling-Scheepers, C.A.; Schols, A.M. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. Thorax 2005, 60, 376–382. [Google Scholar] [CrossRef]
- De Batlle, J.; Sauleda, J.; Balcells, E.; Gómez, F.P.; Méndez, M.; Rodriguez, E.; Barreiro, E.; Ferrer, J.J.; Romieu, I.; Gea, J.; et al. Association between Ω3 and Ω6 fatty acid intakes and serum inflammatory markers in COPD. J. Nutr. Biochem. 2012, 23, 817–821. [Google Scholar] [CrossRef]
- McKeever, T.M.; Lewis, S.A.; Cassano, P.A.; Ocké, M.; Burney, P.; Britton, J.; Smit, H.A. The relation between dietary intake of individual fattyacids, FEV1 and respiratory disease in Dutch adults. Thorax 2008, 63, 208–214. [Google Scholar] [CrossRef]
- Engelen, M.P.; Rutten, E.P.; de Castro, C.L.; Wouters, E.F.; Schols, A.M,.; Deutz, N.E. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2007, 85, 431–439. [Google Scholar]
- Dal Negro, R.W.; Aquilani, R.; Bertacco, S.; Boschi, F.; Micheletto, C.; Tognella, S. Comprehensive effects of supplemented essential amino acids in patients with severe COPD and sarcopenia. Monaldi Arch. Chest Dis. 2010, 73, 25–33. [Google Scholar]
- Hammarqvist, F.; Wernerman, J.; Ali, R.; von der Decken, A.; Vinnars, E. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann. Surg. 1989, 209, 455–461. [Google Scholar] [CrossRef]
- Engelen, M.P.; Schols, A.M.; Does, J.D.; Deutz, N.E.; Wouters, E.F. Altered glutamate metabolism is associated with reduced muscle glutathione levels in patients with emphysema. Am. J. Respir. Crit. Care Med. 2000, 161, 98–103. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Itoh, M.; Tsuji, T.; Nemoto, K.; Nakamura, H.; Aoshiba, K. Undernutrition in Patients with COPD and Its Treatment. Nutrients 2013, 5, 1316-1335. https://doi.org/10.3390/nu5041316
Itoh M, Tsuji T, Nemoto K, Nakamura H, Aoshiba K. Undernutrition in Patients with COPD and Its Treatment. Nutrients. 2013; 5(4):1316-1335. https://doi.org/10.3390/nu5041316
Chicago/Turabian StyleItoh, Masayuki, Takao Tsuji, Kenji Nemoto, Hiroyuki Nakamura, and Kazutetsu Aoshiba. 2013. "Undernutrition in Patients with COPD and Its Treatment" Nutrients 5, no. 4: 1316-1335. https://doi.org/10.3390/nu5041316
APA StyleItoh, M., Tsuji, T., Nemoto, K., Nakamura, H., & Aoshiba, K. (2013). Undernutrition in Patients with COPD and Its Treatment. Nutrients, 5(4), 1316-1335. https://doi.org/10.3390/nu5041316