Nutrients Intake Is Associated with DNA Methylation of Candidate Inflammatory Genes in a Population of Obese Subjects
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Subjects
2.2. Lifestyle Factors and Dietary Assessment
Gene | Chromosome | CpG Position * | Primers: Forward (F), Reverse (R), and Sequencing (S) |
---|---|---|---|
CD14 | 5 | 140632047 | F: GGGTTTATAGAGGAGGGAATTGA |
140632043 | R: Biotin-AAACCCCATCCAACCCCTAT | ||
140632041 | S: TGTAGGGTTTTGGGG | ||
140632031 | |||
iNOS | 17 | 27799241 | F: TTAGGGTTAGGTAAAGGTATTTTTGTTT |
27799233 | R: Biotin-CAATTCTATAAAACCACCTAATAATCTTAA | ||
S: TAAAGGTATTTTTGTTTTAA | |||
Et-1 | 6 | 12290364 | |
12290366 | F: TTGTTTGGGGTTGGAATAAAGT | ||
12290380 | R: Biotin-ATCCTTCAACCCAAATACCCTTTT | ||
12290387 | S: GGTAGAGAGTTGTTTAAGTT | ||
12290391 | |||
HERV-w | 7 | 92468887 | F: AAGTTATAGTTGAAGGAAGA |
92468872 | R: Biotin-CAATCCCCCATCTCAACAA | ||
92468856 | S: AGTTTAAGATTAAGATTTAT | ||
TNFα | 6 | 2874672 | F: Biotin-TGAGGGGTATTTTTGATGTTTGT |
2874678 | R: TTAATAATTATTTTTATATATTTT | ||
2874680 | S: ATAAATTTTATATTTTTTAT | ||
2874695 |
2.3. Sample Collection, DNA Extraction and Bisulfite Treatment
2.4. DNA Methylation
2.5. Statistical Analysis
3. Results
Characteristic | n | Mean ± SD | Median [Q1–Q3] |
---|---|---|---|
Age, years | 165 | 50.3 ± 11.5 | 51.9 [43.3–58.5] |
Sex, n (%) | |||
Male | 33 (20.0%) | ||
Female | 132 (80.0%) | ||
BMI, kg/cm2 | 165 | 33.6 ± 6.0 | 32.9 [29.2–37.3] |
Male | 33 | 34.0 ± 4.9 | 33 [30–38.8] |
Female | 132 | 33.5 ± 6.3 | 32.8 [29.1–37.2] |
25–30 (overweight) | 54 (32.7%) | ||
≥30 (obese) | 111 (67.3%) | ||
Waist circumference, cm | 164 | 100.4 ± 13.5 | 99 [90–109] |
Male | 33 | 110.1 ± 12 | 109 [104–115] |
Female | 132 | 98.1 ± 12.8 | 96 [89–104] |
Cholesterol, mg/dL | 163 | 220.3 ± 41.1 | 215 [196–243] |
Cholesterol LDL, mg/dL | 163 | 137.1 ± 34.3 | 134 [116–158] |
Cholesterol HDL, mg/dL | 163 | 59.5 ± 14.3 | 58 [50–69] |
Total cholesterol/HDL ratio | |||
Male | 33 | 4.3 ± 1.1 | 4.2 [3.5–4.9] |
Female | 130 | 3.8 ± 1.1 | 3.6 [3–4.3] |
LDL cholesterol/HDL ratio | |||
Male | 33 | 2.8 ± 0.9 | 2.8 [2.2–3.3] |
Female | 130 | 2.4 ± 0.8 | 2.2 [1.8–2.8] |
Triglycerides, mg/dL | 163 | 113.8 ± 64.5 | 97 [75–139] |
Fasting glucose, mg/dL | 161 | 96.9 ± 25 | 91 [86–101] |
Post prandial blood glucose, mg/dL | 163 | 106 ± 29.7 | 97 [90–112] |
Homocysteine, μmol/L | 158 | 10.8 ± 4.4 | 9.9 [8.2–12.3] |
Smoking, n (%) | |||
Never smoked | 86 (52.1%) | ||
Ex-smoker | 50 (30.3%) | ||
Actual smoker | 24 (14.6%) | ||
Missing | 5 (3.0%) | ||
Physical activity frequency, n (%) | |||
Never | 84 (50.9%) | ||
<2 times a week | 25 (15.2%) | ||
2–4 times a week | 19 (11.5%) | ||
>4 times a week | 21 (12.7%) | ||
Missing | 16 (9.7%) |
Nutrient | n | Mean ± SD | Median [Q1–Q3] |
---|---|---|---|
Fiber, g/day | 165 | 20.7 ± 8.22 | 19.34 [15.08–25.95] |
Protein, g/day | 165 | 85.42 ± 27.84 | 81.25 [67.03–100.27] |
Carbohydrate, g/day | 165 | 213.62 ± 78.98 | 209.51 [154.39–254.18] |
Lipids, g/day | 165 | 63.52 ± 27.5 | 59.92 [43.49–77.55] |
Monounsaturated fatty acid (MUFA), g/day | 131 | 26.16 ± 11.41 | 24.44 [18.78–31.8] |
Polyunsaturated fatty acid (PUFA), g/day | 131 | 12.39 ± 4.52 | 11.96 [9.18–15.05] |
PUFA n-3, g/day | 165 | 1.13 ± 0.41 | 1.04 [0.89–1.41] |
Saturated fatty acid, g/day | 165 | 25.59 ± 11.36 | 23.64 [17.02–32] |
Cholesterol , mg/day | 165 | 266 ± 101 | 260.21 [201.69–324.85] |
Ascorbic acid, mg/day | 165 | 149.01 ± 76.03 | 135.7 [100.23–196.02] |
Folic acid, μg/day | 165 | 301.45 ± 133.09 | 279.07 [205.7–363.11] |
α-carotene, μg/day | 131 | 1,006.24 ± 1,145.61 | 620.31 [157.87–1,310.38] |
β-carotene, μg/day | 131 | 6,845.55 ± 4,867.2 | 5,626.83 [3,300.42–8,952.27] |
Carotenoids, μg/day | 165 | 20,893.62 ± 13,519.3 | 17,527.85 [11,884.24–26,177.22] |
Polyphenols and flavonoids, mg/day | 131 | 90.09 ± 70.68 | 73.57 [39.42–127.4] |
Retinol, μg/day | 165 | 1,623.05 ± 1,011.97 | 1,333.7 [961.1–2,057.6] |
Tocopherols, mg/day | 165 | 8.78 ± 3.2 | 8.5 [6.85–10.74] |
Vitamin B12, μg/day | 165 | 5.95 ± 2.17 | 5.47 [4.52–7.18] |
Vitamin D, μg/day | 165 | 3.86 ± 2.46 | 3.37 [2.41–4.92] |
Methylation | β * | SE | p-value |
---|---|---|---|
CD14 | 0.033 | 0.137 | 0.807 |
Et-1 | −0.056 | 0.056 | 0.317 |
HERV-w | −0.043 | 0.038 | 0.260 |
iNOS | −0.447 | 0.399 | 0.264 |
TNFα | −0.154 | 0.135 | 0.258 |
Blood Clinical Parameters | CD14 | Et-1 | HERV-W | iNOS | TNFα | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β * | SE | p-value | β * | SE | p-value | β * | SE | p-value | β * | SE | p-value | β * | SE | p-value | |
Triglycerides, mg/dL | −0.004 | 0.147 | 0.977 | −0.002 | 0.060 | 0.972 | 0.026 | 0.041 | 0.533 | −0.571 | 0.425 | 0.182 | 0.212 | 0.145 | 0.144 |
Homocysteine, µmol/L | 0.036 | 0.140 | 0.797 | 0.056 | 0.056 | 0.324 | −0.017 | 0.039 | 0.662 | 0.590 | 0.407 | 0.150 | 0.142 | 0.138 | 0.306 |
Cholesterol LDL, mg/dL | 0.257 | 0.146 | 0.080 | 0.054 | 0.060 | 0.369 | 0.019 | 0.042 | 0.648 | 0.450 | 0.430 | 0.297 | 0.447 | 0.143 | 0.002 |
Cholesterol HDL, mg/dL | 0.154 | 0.142 | 0.280 | −0.016 | 0.058 | 0.782 | −0.042 | 0.040 | 0.301 | −0.014 | 0.418 | 0.974 | −0.205 | 0.141 | 0.147 |
Total cholesterol/HDL ratio | 0.092 | 0.144 | 0.525 | 0.050 | 0.058 | 0.392 | 0.042 | 0.041 | 0.307 | 0.327 | 0.420 | 0.438 | 0.467 | 0.139 | 0.001 |
LDL cholesterol/HDL ratio | 0.087 | 0.143 | 0.541 | 0.067 | 0.057 | 0.247 | 0.044 | 0.040 | 0.273 | 0.78 | 0.417 | 0.366 | 0.445 | 0.138 | 0.002 |
Nutrients | CD14 | Et-1 | HERV-w | iNOS | TNFα | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β * | SE | p-value | β * | SE | p-value | β * | SE | p-value | β * | SE | p-value | β * | SE | p-value | |
Fiber, g/day | −0.034 | 0.140 | 0.808 | −0.028 | 0.058 | 0.628 | 0.054 | 0.039 | 0.164 | 0.160 | 0.408 | 0.695 | −0.182 | 0.139 | 0.190 |
Protein, g/day | −0.012 | 0.142 | 0.935 | 0.001 | 0.059 | 0.984 | 0.029 | 0.039 | 0.459 | −0.328 | 0.413 | 0.429 | −0.234 | 0.140 | 0.097 |
Carbohydrate, g/day | −0.058 | 0.145 | 0.691 | −0.016 | 0.060 | 0.786 | −0.008 | 0.040 | 0.848 | −0.134 | 0.424 | 0.752 | −0.080 | 0.145 | 0.583 |
Lipids, g/day | −0.186 | 0.141 | 0.190 | 0.001 | 0.059 | 0.982 | 0.007 | 0.040 | 0.865 | 0.095 | 0.416 | 0.819 | −0.157 | 0.141 | 0.269 |
Monounsaturated fatty acid (MUFA), g/day | −0.228 | 0.170 | 0.182 | −0.033 | 0.063 | 0.599 | 0.009 | 0.046 | 0.837 | −0.206 | 0.438 | 0.638 | −0.208 | 0.166 | 0.213 |
Polyunsaturated fatty acid (PUFA), g/day | −0.233 | 0.170 | 0.174 | −0.044 | 0.065 | 0.495 | 0.009 | 0.046 | 0.850 | −0.172 | 0.440 | 0.697 | −0.199 | 0.168 | 0.239 |
PUFA n-3, g/day | −0.186 | 0.143 | 0.196 | 0.001 | 0.059 | 0.987 | 0.009 | 0.040 | 0.825 | 0.147 | 0.420 | 0.726 | −0.117 | 0.143 | 0.414 |
Saturated fatty acid, g/day | 0.098 | 0.141 | 0.489 | 0.080 | 0.059 | 0.176 | 0.011 | 0.039 | 0.772 | −0.693 | 0.409 | 0.092 | −0.183 | 0.140 | 0.192 |
Cholesterol , mg/day | −0.054 | 0.142 | 0.703 | −0.022 | 0.059 | 0.713 | 0.021 | 0.039 | 0.590 | −0.221 | 0.414 | 0.595 | −0.278 | 0.139 | 0.048 |
Ascorbic acid, mg/day | 0.230 | 0.138 | 0.098 | −0.022 | 0.058 | 0.700 | 0.072 | 0.039 | 0.064 | 0.155 | 0.408 | 0.704 | −0.146 | 0.139 | 0.295 |
Folic acid, μg/day | 0.159 | 0.135 | 0.242 | 0.038 | 0.056 | 0.501 | 0.067 | 0.038 | 0.079 | −0.203 | 0.398 | 0.610 | −0.339 | 0.133 | 0.012 |
Alpha carotene, μg/day | 0.050 | 0.170 | 0.770 | −0.013 | 0.062 | 0.840 | 0.040 | 0.045 | 0.380 | 0.401 | 0.435 | 0.359 | −0.190 | 0.165 | 0.253 |
Beta carotene, μg/day | 0.170 | 0.169 | 0.316 | 0.027 | 0.063 | 0.673 | 0.088 | 0.044 | 0.051 | 0.210 | 0.436 | 0.631 | −0.332 | 0.164 | 0.045 |
Carotenoids, μg/day | 0.124 | 0.137 | 0.368 | 0.044 | 0.056 | 0.436 | 0.083 | 0.037 | 0.029 | 0.102 | 0.402 | 0.801 | −0.331 | 0.135 | 0.015 |
Polyphenols and flavonoids, mg/day | 0.156 | 0.173 | 0.370 | −0.016 | 0.064 | 0.808 | 0.059 | 0.046 | 0.197 | 0.088 | 0.446 | 0.843 | −0.152 | 0.169 | 0.371 |
Retinol, μg/day | 0.103 | 0.137 | 0.453 | 0.026 | 0.056 | 0.645 | 0.071 | 0.038 | 0.063 | 0.026 | 0.403 | 0.949 | −0.360 | 0.134 | 0.008 |
Tocopherols, mg/day | −0.081 | 0.138 | 0.556 | −0.001 | 0.057 | 0.987 | 0.044 | 0.038 | 0.253 | −0.002 | 0.403 | 0.996 | −0.205 | 0.137 | 0.136 |
Vitamin B12, μg/day | 0.044 | 0.143 | 0.758 | −0.018 | 0.059 | 0.763 | 0.028 | 0.040 | 0.487 | −0.021 | 0.417 | 0.960 | −0.153 | 0.142 | 0.281 |
Vitamin D, μg/day | 0.228 | 0.138 | 0.101 | 0.078 | 0.057 | 0.171 | 0.008 | 0.039 | 0.828 | −0.844 | 0.401 | 0.037 | −0.180 | 0.137 | 0.193 |
4. Discussion
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chawla, A.; Nguyen, K.D.; Goh, Y.P. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 2011, 11, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clini. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef]
- De Liso, F.; Bonara, P.; Vigna, L.; Novembrino, C.; de Giuseppe, R.; Bamonti, F.; Carbonelli, V.; Frugoni, C.; Tirelli, A.S.; Maiavacca, R.; et al. Oxidative stress and low-grade inflammatory status as. Cardiometabolic risk factors in italian occupational overweight/obese subjects. Eur. J. Inflamm. 2013, 11, 789–796. [Google Scholar]
- Barnard, N.D.; Bush, A.I.; Ceccarelli, A.; Cooper, J.; de Jager, C.A.; Erickson, K.I.; Fraser, G.; Kesler, S.; Levin, S.M.; Lucey, B.; et al. Dietary and lifestyle guidelines for the prevention of alzheimer’s disease. Neurobiol. Aging 2014, 35, S74–S78. [Google Scholar] [CrossRef] [PubMed]
- Michas, G.; Micha, R.; Zampelas, A. Dietary fats and cardiovascular disease: Putting together the pieces of a complicated puzzle. Atherosclerosis 2014, 234, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef] [PubMed]
- McAtee, C.P. Fitness, nutrition and the molecular basis of chronic disease. Biotechnol. Geneti. Eng. Rev. 2013, 29, 1–23. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Vigna, L.; Novembrino, C.; de Giuseppe, R.; de Liso, F.; Sommaruga, D.; Agnelli, G.; Belluigi, V.; Riboldi, L.; Bamonti, F. Nutritional and oxidative status in occupational obese subjects. Mediterr. J. Nutr. Metab. 2011, 4, 69–74. [Google Scholar] [CrossRef]
- Vassalle, C.; Vigna, L.; Bianchi, S.; Maffei, S.; Novembrino, C.; De Giuseppe, R.; de Liso, F.; Vannucci, A.; Tirelli, S.; Maiavacca, R.; et al. A biomarker of oxidative stress as a nontraditional risk factor in obese subjects. Biomark. Med. 2013, 7, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, M.M.; Cortese, F.; Gesualdo, M.; Carbonara, S.; Zito, A.; Ricci, G.; de Pascalis, F.; Scicchitano, P.; Riccioni, G. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat. Inflamm. 2013, 2013, 782137. [Google Scholar] [CrossRef]
- Pounis, G.; Costanzo, S.; di Giuseppe, R.; de Lucia, F.; Santimone, I.; Sciarretta, A.; Barisciano, P.; Persichillo, M.; de Curtis, A.; Zito, F.; et al. Consumption of healthy foods at different content of antioxidant vitamins and phytochemicals and metabolic risk factors for cardiovascular disease in men and women of the moli-sani study. Eur. J. Clin. Nutr. 2013, 67, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Cencioni, C.; Spallotta, F.; Martelli, F.; Valente, S.; Mai, A.; Zeiher, A.M.; Gaetano, C. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int. J. Mol. Sci. 2013, 14, 17643–17663. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. The antioxidant paradox: Less paradoxical now? Br. J. Clin. Pharmacol. 2013, 75, 637–644. [Google Scholar]
- Halliwell, B. The antioxidant paradox. Lancet 2000, 355, 1179–1180. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Gonzales, F.A.; Jones, P.A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: Correlation of accessibility, methylation, mecp2 binding and acetylation. Nucleic Acids Res. 2001, 29, 4598–4606. [Google Scholar] [CrossRef] [PubMed]
- Wachsman, J.T. DNA methylation and the association between genetic and epigenetic changes: Relation to carcinogenesis. Mutat. Res. 1997, 375, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, X. Diet, epigenetic, and cancer prevention. Adv. Genet. 2010, 71, 237–255. [Google Scholar] [PubMed]
- World Health Organization (WHO). Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Crapanzano, R.; Vigna, L.; Tirelli, A.S.; Sommaruga, D.; Cassinelli, L.; Bertazzi, P.A.; Riboldi, L. Vitamin d as a cardiovascular risk factor in workers. G. Ital. Med. Lav. Ergon. 2012, 34, 196–198. [Google Scholar] [PubMed]
- Cassinelli, L.M.; Sommaruga, D.; Tirelli, A.S.; Rossi, P.; Vigna, L. Vitamin d as a modifiable risk factor in relation to overweight and obesity. Prog. Nutr. 2012, 14, 115–126. [Google Scholar]
- UCSC Genome Bioinformatics. Available online: https://genome.ucsc.edu/ (accessed on 3 May 2014).
- Festi, D.; Colecchia, A.; Pini, S.; Scaioli, E.; Maffeis, C.; Coccheri, S.; Petroni, M.L. Development and application of a simple and powerful tool for nutrition and lifestyle education for the italian general population by general practitioners and family paediatricians. Mediterr. J. Nutr. Metab. 2009, 2, 139–144. [Google Scholar] [CrossRef]
- Tarantini, L.; Bonzini, M.; Tripodi, A.; Angelici, L.; Nordio, F.; Cantone, L.; Apostoli, P.; Bertazzi, P.A.; Baccarelli, A.A. Blood hypomethylation of inflammatory genes mediates the effects of metal-rich airborne pollutants on blood coagulation. Occup. Environ. Med. 2013, 70, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Bollati, V.; Baccarelli, A.; Hou, L.; Bonzini, M.; Fustinoni, S.; Cavallo, D.; Byun, H.M.; Jiang, J.; Marinelli, B.; Pesatori, A.C.; et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007, 67, 876–880. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Asssociation. Standards of medical care in diabetes—2014. Diabetes Care 2014, 37 (Suppl. 1), S14–S80. [Google Scholar]
- Wright, S.D.; Ramos, R.A.; Tobias, P.S.; Ulevitch, R.J.; Mathison, J.C. Cd14, a receptor for complexes of lipopolysaccharide (lps) and lps binding protein. Science 1990, 249, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Munthe-Kaas, M.C.; Bertelsen, R.J.; Torjussen, T.M.; Hjorthaug, H.S.; Undlien, D.E.; Lyle, R.; Gervin, K.; Granum, B.; Mowinckel, P.; Carlsen, K.H.; et al. Pet keeping and tobacco exposure influence cd14 methylation in childhood. Pediatr. Allergy Immunol. 2012, 23, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Zhen, J.; Lu, H.; Wang, X.Q.; Vaziri, N.D.; Zhou, X.J. Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. Am. J. Hypertens. 2008, 21, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Fish, J.E.; Mawji, I.A.; Leung, D.D.; Rachlis, A.C.; Marsden, P.A. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J. Immunol. 2005, 175, 3846–3861. [Google Scholar] [CrossRef] [PubMed]
- Browatzki, M.; Pfeiffer, C.A.; Schmidt, J.; Kranzhofer, R. Endothelin-1 induces cd40 but not il-6 in human monocytes via the proinflammatory transcription factor nf-kappab. Eur. J. Med. Res. 2005, 10, 197–201. [Google Scholar] [PubMed]
- Vallender, T.W.; Lahn, B.T. Localized methylation in the key regulator gene endothelin-1 is associated with cell type-specific transcriptional silencing. FEBS Lett. 2006, 580, 4560–4566. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T. The role of ebv in ms pathogenesis. Int. MS J. 2006, 13, 52–57. [Google Scholar] [PubMed]
- Perron, H.; Bernard, C.; Bertrand, J.B.; Lang, A.B.; Popa, I.; Sanhadji, K.; Portoukalian, J. Endogenous retroviral genes, herpesviruses and gender in multiple sclerosis. J. Neurol. Sci. 2009, 286, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Perron, H.; Lang, A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin. Rev. Allergy Immunol. 2010, 39, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Campion, J.; Milagro, F.I.; Goyenechea, E.; Martinez, J.A. Tnf-alpha promoter methylation as a predictive biomarker for weight-loss response. Obesity Silver Spring 2009, 17, 1293–1297. [Google Scholar] [PubMed]
- Hermsdorff, H.H.; Zulet, M.A.; Puchau, B.; Martinez, J.A. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: A translational study. Nutr. Metab. 2010, 7, 42. [Google Scholar] [CrossRef]
- Jimenez-Gomez, Y.; Lopez-Miranda, J.; Blanco-Colio, L.M.; Marin, C.; Perez-Martinez, P.; Ruano, J.; Paniagua, J.A.; Rodriguez, F.; Egido, J.; Perez-Jimenez, F. Olive oil and walnut breakfasts reduce the postprandial inflammatory response in mononuclear cells compared with a butter breakfast in healthy men. Atherosclerosis 2009, 204, e70–e76. [Google Scholar] [CrossRef] [PubMed]
- Kanuri, G.; Spruss, A.; Wagnerberger, S.; Bischoff, S.C.; Bergheim, I. Role of tumor necrosis factor alpha (tnfalpha) in the onset of fructose-induced nonalcoholic fatty liver disease in mice. J. Nutr. Biochem. 2011, 22, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Hermsdorff, H.H.; Mansego, M.L.; Campion, J.; Milagro, F.I.; Zulet, M.A.; Martinez, J.A. Tnf-alpha promoter methylation in peripheral white blood cells: Relationship with circulating tnfalpha, truncal fat and n-6 pufa intake in young women. Cytokine 2013, 64, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Chait, A. The effect of dietary cholesterol on macrophage accumulation in adipose tissue: Implications for systemic inflammation and atherosclerosis. Curr. Opin. Lipidol. 2009, 20, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, K. Statistical issues related to semiquantitative food-frequency questionnaires. Am. J. Clin. Nutr. 1994, 59, 262S–265S. [Google Scholar] [PubMed]
- Carroll, R.J.; Pee, D.; Freedman, L.S.; Brown, C.C. Statistical design of calibration studies. Am. J. Clin. Nutr. 1997, 65, 1187S–1189S. [Google Scholar] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollati, V.; Favero, C.; Albetti, B.; Tarantini, L.; Moroni, A.; Byun, H.-M.; Motta, V.; Conti, D.M.; Tirelli, A.S.; Vigna, L.; et al. Nutrients Intake Is Associated with DNA Methylation of Candidate Inflammatory Genes in a Population of Obese Subjects. Nutrients 2014, 6, 4625-4639. https://doi.org/10.3390/nu6104625
Bollati V, Favero C, Albetti B, Tarantini L, Moroni A, Byun H-M, Motta V, Conti DM, Tirelli AS, Vigna L, et al. Nutrients Intake Is Associated with DNA Methylation of Candidate Inflammatory Genes in a Population of Obese Subjects. Nutrients. 2014; 6(10):4625-4639. https://doi.org/10.3390/nu6104625
Chicago/Turabian StyleBollati, Valentina, Chiara Favero, Benedetta Albetti, Letizia Tarantini, Alice Moroni, Hyang-Min Byun, Valeria Motta, Diana Misaela Conti, Amedea Silvia Tirelli, Luisella Vigna, and et al. 2014. "Nutrients Intake Is Associated with DNA Methylation of Candidate Inflammatory Genes in a Population of Obese Subjects" Nutrients 6, no. 10: 4625-4639. https://doi.org/10.3390/nu6104625
APA StyleBollati, V., Favero, C., Albetti, B., Tarantini, L., Moroni, A., Byun, H.-M., Motta, V., Conti, D. M., Tirelli, A. S., Vigna, L., Bertazzi, P. A., & Pesatori, A. C. (2014). Nutrients Intake Is Associated with DNA Methylation of Candidate Inflammatory Genes in a Population of Obese Subjects. Nutrients, 6(10), 4625-4639. https://doi.org/10.3390/nu6104625