Vitamin D Status and Related Factors in Newborns in Shanghai, China
Abstract
:1. Introduction
2. Experimental Methods
2.1. Study Design and Subjects
2.2. Umbilical Cord Blood 25(OH)D
2.3. Risk Factors
2.4. Data Analysis
3. Results
25(OH)D2 | 25(OH)D3 | 25(OH)D | |
---|---|---|---|
Q1 | 3.7 | 14.1 | 18.5 |
Q2 | 4.6 | 17.9 | 22.4 |
Q3 | 5.3 | 23.0 | 27.5 |
Min (ng/mL) | 0.1 | 8.3 | 11.5 |
Max (ng/mL) | 11.5 | 45.1 | 51.1 |
Mean ± SD (ng/mL) | 4.5 ± 1.2 | 19.0 ± 6.1 | 23.5 ± 6.2 |
The prevalence of VitD deficiency (%) [25(OH)D < 20 ng/mL] | - | - | 36.3 |
The prevalence of VitD insufficiency (%) [25(OH)D < 30 ng/mL] | - | - | 84.1 |
Variable | (%) | 25(OH)D (Mean ± SD) (ng/mL) | p value |
---|---|---|---|
Vitamin D category (ng/mL) | |||
<20 | 36.3 | 17.5 ± 1.8 | 0.0000 ** |
≥20 | 63.7 | 26.9 ± 5.1 | |
Maternal age (years) | |||
<30 | 51.0 | 23.3 ± 6.2 | 0.2914 |
30–34 | 39.5 | 23.5 ± 6.2 | |
35–39 | 8.5 | 24.4 ± 6.0 | |
40+ | 1.0 | 25.5 ± 6.7 | |
Maternal prepregnancy BMI | |||
<28 | 95.3 | 23.5 ± 6.2 | 0.2292 |
≥28 | 4.7 | 22.4 ± 5.4 | |
Maternal education | |||
Middle school or lower | 2.8 | 22.7 ± 6.2 | 0.7719 |
High school | 11.5 | 23.5 ± 7.0 | |
College or higher | 85.7 | 23.5 ± 6.1 | |
Gestational age (weeks) | |||
<37 | 3.5 | 23.7 ± 6.2 | 0.1122 |
37–39 | 71.7 | 23.5 ± 6.2 | |
40+ | 24.8 | 22.8 ± 6.1 | |
Birth weight (g) | |||
<2500 | 2.4 | 24.5 ± 6.9 | 0.4224 |
≥2500 | 97.1 | 23.5 ± 6.2 | |
Gender | |||
boy | 50.4 | 23.2 ± 6.2 | 0.4504 |
girl | 49.6 | 23.7 ± 6.3 | |
Month of birth | |||
Summer (Jun.–Aug.) | 16.7 | 23.3 ± 6.1 | 0.0009 ** |
Autumn (Sep.–Nov.) | 46.5 | 22.6 ± 6.0 | |
Winter (Dec.–Feb.) | 36.8 | 22.4 ± 6.3 | |
VitD supplementation during pregnancy | |||
No | 78.7 | 23.0 ± 6.1 | 0.0000 ** |
≤6 times/week | 4.1 | 24.7 ± 6.3 | |
≥1 time/day | 17.2 | 25.3 ± 6.3 | |
Calcium supplementation during pregnancy | |||
No | 18.2 | 22.3 ± 5.9 | 0.0013 ** |
≤6 times/week | 11.7 | 22.6 ± 6.0 | |
≥1 time/day | 70.1 | 23.9 ± 6.3 | |
DHA supplementation during pregnancy | |||
No | 63.1 | 23.0 ± 6.0 | 0.0024 ** |
≤6 times/week | 6.6 | 24.4 ± 6.5 | |
≥1 time/day | 30.3 | 24.4 ± 6.4 | |
Outdoor activity in weekdays | |||
<0.5 h | 43.6 | 22.9 ± 5.9 | 0.0267 * |
≥0.5 h | 56.4 | 23.8 ± 6.3 | |
Outdoor activity in weekend | |||
<0.5 h | 48.6 | 23.1 ± 6.1 | 0.1328 |
≥0.5 h | 51.4 | 23.7 ± 6.3 | |
Husband smoke during pregnancy | |||
No | 99.7 | 23.7 ± 6.2 | 0.0779 |
Yes | 0.3 | 22.9 ± 6.2 |
Variable | Crude OR | 95% CI | P-value | aOR | 95% CI | P-value |
---|---|---|---|---|---|---|
Gestational age (weeks) | ||||||
<37 | 1.0 | 1.0 | ||||
37–39 | 1.1 | (0.55, 2.2) | 0.778 | 1.0 | (0.49, 2.3) | 0.903 |
40+ | 1.4 | (1.1, 1.9) | 0.021* | 1.3 | (0.96, 1.8) | 0.087 |
Maternal age (years) | ||||||
<30 | 1.0 | 1.0 | ||||
30–34 | 0.99 | (0.75, 1.3) | 0.917 | 0.98 | (0.74, 1.3) | 0.916 |
35–39 | 0.6 | (0.36, 1.0) | 0.052 | 0.61 | (0.36, 1.1) | 0.078 |
40+ | 0.42 | (0.088, 2.0) | 0.276 | 0.22 | (0.026, 1.8) | 0.156 |
Maternal prepregnancy BMI | ||||||
<28 | 1.0 | 1.0 | ||||
≥28 | 0.77 | (0.43, 1.4) | 0.395 | 0.75 | (0.4, 1.4) | 0.370 |
Maternal education | ||||||
Middle school or lower | 1.0 | 1.0 | ||||
High school | 0.64 | (0.28, 1.4) | 0.280 | 0.8 | (0.32, 2.0) | 0.615 |
College or higher | 0.59 | (0.28, 1.2) | 0.161 | 0.73 | (0.32, 1.7) | 0.458 |
Birth weight (Kg) | 1.0 | (1.0, 1.0) | 0.551 | 1.0 | (0.98, 1.0) | 0.738 |
Month of birth | ||||||
Summer (Jun.–Aug.) | 1.0 | 1.0 | ||||
Autumn (Sep.–Nov.) | 1.6 | (1.1, 2.3) | 0.017 * | 1.7 | (1.1, 2.6) | 0.015* |
Winter(Dec.–Feb.) | 1.7 | (1.2, 1.4) | 0.015 * | 1.7 | (1.1, 2.5) | 0.014* |
VitD supplementation during pregnancy | ||||||
No | 1.0 | 1.0 | ||||
≤6 times/week | 0.57 | (0.28, 1.1) | 0.115 | 0.78 | (0.35, 1.7) | 0.552 |
≥1 time/day | 0.52 | (0.35, 0.75) | <0.001 ** | 0.6 | (0.45, 1.0) | 0.045 |
Calcium supplementation during pregnancy | ||||||
No | 1.0 | 1.0 | ||||
≤6 times/week | 0.86 | (0.54, 1.4) | 0.531 | 1.1 | (0.63, 1.8) | 0.817 |
≥1 time/day | 0.72 | (0.52, 1.0) | 0.050 * | 0.8 | (0.56, 1.2) | 0.243 |
DHA supplementation during pregnancy | ||||||
No | 1.0 | 1.0 | ||||
≤6 times/week | 0.61 | (0.35, 1.1) | 0.080 | 0.66 | (0.36, 1.2) | 0.197 |
≥1 time/day | 0.67 | (0.5, 0.9) | 0.007 * | 0.7 | (0.51, 0.95) | 0.022 |
Outdoor activity in weekdays | ||||||
<0.5 h | 1.0 | 1.0 | ||||
≥0.5 h | 0.93 | (0.72, 1.2) | 0.558 | 0.84 | (0.58, 1.2) | 0.371 |
Outdoor activity in weekend | ||||||
<0.5 h | 1.0 | 1.0 | ||||
≥0.5 h | 1.0 | (0.81, 1.4) | 0.720 | 1.3 | (0.92, 1.9) | 0.128 |
Husband smoke during pregnancy | ||||||
No | 1.0 | 1.0 | ||||
Yes | 1.2 | (0.94, 1.6) | 0.139 | 1.2 | (0.9, 1.7) | 0.184 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Weinert, L.S.; Silveiro, S.P. Maternal-fetal impact of vitamin D deficiency: A critical review. Matern. Child Health J. 2014. [Google Scholar] [CrossRef]
- Wei, S.Q.; Qi, H.P.; Luo, Z.C.; Fraser, W.D. Maternal vitamin D status and adverse pregnancy outcomes: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2013, 26, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.A.; Rifas-Shiman, S.L.; Litonjua, A.A.; Rich-Edwards, J.W.; Weiss, S.T.; Gold, D.R.; Kleinman, K.; Gillman, M.W. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 2007, 85, 788–795. [Google Scholar] [PubMed]
- Johnson, D.D.; Wagner, C.L.; Hulsey, T.C.; McNeil, R.B.; Ebeling, M.; Hollis, B.W. Vitamin D deficiency and insufficiency is common during pregnancy. Am. J. Perinatal. 2011, 28, 7–12. [Google Scholar] [CrossRef]
- Lacroix, M; Battista, M.C.; Doyon, M.; Houde, G.; Ménard, J.; Ardilouze, J.L.; Hivert, M.F.; Perron, P. Lower vitamin D levels at first trimester are associated with higher risk of developing gestational diabetes mellitus. Acta Diabetol. 2014. [Google Scholar] [CrossRef]
- Tabesh, M.; Salehi-Abargouei, A.; Tabesh, M.; Esmaillzadeh, A. Maternal vitamin D status and risk of pre-eclampsia: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2013, 98, 3165–3173. [Google Scholar] [CrossRef]
- Mehta, S.; Hunter, D.J.; Mugusi, F.M.; Spiegelman, D.; Manji, K.P.; Giovannucci, E.L.; Hertzmark, E.; Msamanga, G.I.; Fawzi, W.W. Perinatal outcomes, including mother-to-child transmission of HIV, and child mortality and their association with maternal vitamin D status in Tanzania. J. Infect. Dis. 2009, 200, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Savvidou, M.D.; Makgoba, M.; Castro, P.T.; Akolekar, R.; Nicolaides, K.H. First-trimester maternal serum vitamin D and mode of delivery. Br. J. Nutr. 2012, 108, 1972–1975. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, M.; Magon, N. Vitamin D in pregnancy: A metabolic outlook. Indian J. Endocrinol. Metab. 2013, 17, 76. [Google Scholar] [CrossRef]
- Elidrissy, A.T.H.; Munawarah, M.; Alharbi, K.M. Hypocalcemic rachitic cardiomyopathy in infants. J. Saudi Heart Assoc. 2013, 25, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.E.; Reinert, L.; Kinnunen, L.; Harjutsalo, V.; Koskela, P.; Surcel, H.M.; Allardt, C.; Tuomilehto, J. Serum 25-hydroxyvitamin D level during early pregnancy and type 1 diabetes risk in the offspring. Diabetologia 2012, 55, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Si, S.; Liu, J.; Chen, X.; Zhou, L.; Jia, G.; Liu, G.; Niu, Y.; Wu, J.; Zhang, W.; Zhang, J. Vitamin D status in Chinese pregnant women and their newborns in Beijing and their relationships to birth size. Public Health Nutr. 2013, 16, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, F.; Mao, M.; Liu, D.-H.; Yang, H.-M.; Yang, S.-F. High prevalence of vitamin D and calcium deficiency among pregnant women and their newborns in Chengdu, China. World J. Pediatr. 2010, 6, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Shao, H.; Gu, J.; Zhen, Z. Vitamin D status of pregnant women in Shanghai, China. J. Matern. Fetal Neonatal Med. 2012, 25, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, H.; Yang, X.; Zhao, L.; Yu, X. Relationships between 25-hydroxyvitamin D and nocturnal enuresis in five-to seven-year-old children. PLoS One 2014, 9, e99316. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Manson, J.A.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Christopher, G.J.; Gallo, R.L.; Christopher, S.G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Hassan, M.M.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R. Why the minimum desirable serum 25-hydroxyvitamin D level should be 75 nmol/L (30 ng/mL). Best Prac. Res. Clin. Endocrinol. Metab. 2011, 25, 681–691. [Google Scholar] [CrossRef]
- Wahl, D.A.; Cooper, C.; Ebeling, P.R.; Eggersdorfer, M.; Hilger, J.; Hoffmann, K.; Josse, R.; Kanis, J.A.; Mithal, A.; Pierroz, D.D.; et al. A global representation of vitamin D status in healthy populations. Arch. Osteoporos. 2012, 7, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.; Comeau, K.; Agellon, S.; Vanstone, C.; Sharma, A.; Jones, G.; L’Abbé, M.; Khamessan, A.; Weiler, H.; Rodd, C. Methodological issues in assessing plasma 25-hydroxyvitamin D concentration in newborn infants. Bone 2014, 61, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.J. Quantitation of 25-OH-vitamin D (25OHD) using liquid tandem mass spectrometry (LC-MS-MS). In Clinical Applications of Mass Spectrometry; Humana Press: NJ, USA, 2010; pp. 509–517. [Google Scholar]
- Chen, H.; McCoy, L.F.; Schleicher, R.L.; Pfeiffer, C.M. Measurement of 25-hydroxyvitamin D3 (25OHD3) and 25-hydroxyvitamin D2 (25OHD2) in human serum using liquid chromatography-tandem mass spectrometry and its comparison to a radioimmunoassay method. Clin. Chim. Acta 2008, 391, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.J.; Taylor, R.L.; Reddy, G.S.; Grebe, S.K. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J. Clin. Endocrinol. Metab. 2006, 91, 3055–3061. [Google Scholar] [CrossRef] [PubMed]
- Aronov, P.A.; Hall, L.M.; Dettmer, K.; Stephensen, C.B.; Hammock, B.D. Metabolic profiling of major vitamin D metabolites using Diels–Alder derivatization and ultra-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2008, 391, 1917–1930. [Google Scholar] [CrossRef] [PubMed]
- Karras, S.N.; Shah, I.; Petroczi, A.; Goulis, D.G.; Bili, H.; Papadopoulou, F.; Harizopoulou, V.; Tarlatzis, B.C.; Naughton, D. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: implications of a new assay on the roles of vitamin D forms. Nutr. J. 2013, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Klenk, J.; Rapp, K.; Denkinger, M.D.; Nagel, G.; Nikolaus, T.; Peter, R.; Koenig, W.; Böhm, B.O.; Rothenbacher, D. Seasonality of vitamin D status in older people in Southern Germany: implications for assessment. Age Ageing 2013, 42, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.D.; Zhang, J.; Yan, C.; Shen, X. Relationships between serum 25-hydroxyvitamin D and quantitative ultrasound bone mineral density in 0–6 year old children. Bone 2013, 53, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Luick, B.; Bersamin, A.; Stern, J.S. Locally harvested foods support serum 25-hydroxyvitamin D sufficiency in an indigenous population of Western Alaska. Int. J. Circumpolar Health 2014. [Google Scholar] [CrossRef]
- Camargo, C.A.; Ingham, T.; Wickens, K.; Thadhani, R.I.; Silvers, K.M.; Epton, M.J.; Town, G.I.; Espinola, J.A.; Crane, J. Vitamin D status of newborns in New Zealand. Br. J. Nutr. 2010, 104, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Godang, K.; Frøslie, K.F.; Henriksen, T.; Qvigstad, E.; B.ollerslev, J. Seasonal variation in maternal and umbilical cord 25 (OH) vitamin D and their associations with neonatal adiposity. Eur. J. Endocrinol. 2014, 170, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Parlak, M.; Kalay, S.; Kalay, Z.; Kirecci, A.; Guney, O.; Koklu, E. Severe vitamin D deficiency among pregnant women and their newborns in Turkey. J. Matern. Fetal Neonatal Med. 2014. [Google Scholar] [CrossRef]
- El Koumi, M.A.; Ali, Y.F.; Abd, E.R.R.N. Impact of Maternal Vitamin D Status during Pregnancy on Neonatal Vitamin D Status. Turkish J. Pediatr. 2013, 55, 371–377. [Google Scholar]
- Josefson, J.L.; Feinglass, J.; Rademaker, A.W.; Metzger, B.E.; Zeiss, D.M.; Price, H.E.; Langman, C.B. Maternal obesity and vitamin D sufficiency are associated with cord blood vitamin D insufficiency. J. Clin. Endocrinol. Metab. 2012, 98, 114–119. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Wang, W.; Wei, Z.; Ouyang, F.; Huang, L.; Wang, X.; Zhao, Y.; Zhang, H.; Zhang, J. Vitamin D Status and Related Factors in Newborns in Shanghai, China. Nutrients 2014, 6, 5600-5610. https://doi.org/10.3390/nu6125600
Yu X, Wang W, Wei Z, Ouyang F, Huang L, Wang X, Zhao Y, Zhang H, Zhang J. Vitamin D Status and Related Factors in Newborns in Shanghai, China. Nutrients. 2014; 6(12):5600-5610. https://doi.org/10.3390/nu6125600
Chicago/Turabian StyleYu, Xiaodan, Weiye Wang, Zhenzhen Wei, Fengxiu Ouyang, Lisu Huang, Xia Wang, Yanjun Zhao, Huijuan Zhang, and Jun Zhang. 2014. "Vitamin D Status and Related Factors in Newborns in Shanghai, China" Nutrients 6, no. 12: 5600-5610. https://doi.org/10.3390/nu6125600
APA StyleYu, X., Wang, W., Wei, Z., Ouyang, F., Huang, L., Wang, X., Zhao, Y., Zhang, H., & Zhang, J. (2014). Vitamin D Status and Related Factors in Newborns in Shanghai, China. Nutrients, 6(12), 5600-5610. https://doi.org/10.3390/nu6125600