Epigenetic Effects of Human Breast Milk
Abstract
:1. Introduction
1.1. Beneficial Effects of Human Breast Milk
- The diet changes the gene expression (nutritional epigenetics).
- The metabolic processes of nutrients may vary and affect the state of health depending on the individual genotype (nutrigenetics).
1.2. Nutritional Epigenetics
1.3. Topic of Review
2. Epigenetic Effects of Human Breast Milk
2.1. Neonatal Necrotizing Enterocolitis
2.2. Infectious Diseases and Disorders of the Immune System
2.3. Obesity and Related-Disorders
2.4. Cancer
3. Breast Milk and Environmental Factors: Smoking as Epigenetic Factor
4. Discussion
Human Milk Component | Prevention of | Gene (Expression) |
---|---|---|
Lactoferrin | NECDisorders of immune system | NF-kB (reduced) (a) |
Prostaglandin J | Obesity and related-disorders | PPARγ (increased) (b) |
LCPUFA n-3 | NAFLD | liver lipogenic and cholesterol byosynthesis enzymes (reduced) (a) |
Progression of NAFLD | PPAR α and γ (increased) (b) | |
High blood total cholesterol in adulthood | HMGCoA reductase (reduced) (a) | |
Cholesterol content | High blood total cholesterol in adulthood | HMGCoA reductase (reduced) (b) |
Undigestible oligosaccharides | Gut dysbiosis and related alterations (NEC, infectious diseases, disorders of immune system, obesity and linked disorders) | action on expression of different genes (e.g., NF-κB) (b) |
5. Conclusions
Conflicts of Interest
References
- American Academy of Pediatrics. Breastfeeding and the use of human milk. Pediatrics 2012, 29, e827–e841. [Google Scholar]
- World Health Organization. Long-Term Effects of Breastfeeding: A Systematic Review; WHO: Geneva, Switzerland, 2013. Available online: http://www.who.int/maternal_child_adolescent/documents/breastfeeding_long_term_effects/en/ (accessed on 19 April 2014).
- Sullivan, S.; Schanler, R.J.; Kim, J.H.; Patel, A.L.; Trawöger, R.; Kiechl-Kohlendorfer, U.; Chan, G.M.; Blanco, C.L.; Abrams, S.; Cotton, C.M.; et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J. Pediatr. 2010, 156, 562–567.e1. [Google Scholar] [CrossRef]
- Kramer, M.S.; Aboud, F.; Mironova, E.; Vanilovich, I.; Platt, R.W.; Matush, L.; Igumnov, S.; Fombonne, E.; Bogdanovich, N.; Ducruet, T.; et al. Breastfeeding and child cognitive development: New evidence from a large randomized trial. Arch. Gen. Psychiatry 2008, 65, 578–584. [Google Scholar] [CrossRef]
- Anjos, T.; Altmäe, S.; Emmett, P.; Tiemeier, H.; Closa-Monasterolo, R.; Luque, V.; Wiseman, S.; Pérez-García, M.; Lattka, E.; Demmelmair, H.; et al. Nutrition and neurodevelopment in children: Focus on NUTRIMENTHE project. Eur. J. Nutr. 2013, 52, 1825–1842. [Google Scholar] [CrossRef]
- Campoy, C.; Escolano-Margarit, M.V.; Anjos, T.; Szajewska, H.; Uauy, R. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br. J. Nutr. 2012, 107, S85–S106. [Google Scholar] [CrossRef]
- Mead, M.N. Nutrigenomics: The genome food-interface. Environ. Health Perspect. 2007, 115, A582–A589. [Google Scholar] [CrossRef]
- Zeisel, S.H. Nutrigenomics and metabolomics will change clinical nutrition and public health practice: Insights from studies on dietary requirements for choline. Am. J. Clin. Nutr. 2007, 86, 542–548. [Google Scholar]
- Mutch, D.M.; Wahli, W.; Williamson, G. Nutrigenomics and nutrigenetics: The emerging faces of nutrition. FASEB J. 2005, 19, 1602–1616. [Google Scholar] [CrossRef]
- Stover, P.J.; Caudill, M.A. Genetic and epigenetic contributions to human nutrition and health: Managing genome-diet interactions. J. Am. Diet. Assoc. 2008, 108, 1480–1487. [Google Scholar] [CrossRef]
- Moreno, J.A.; Pérez-Jiménez, F.; Marín, C.; Gómez, P.; Pérez-Martínez, P.; Moreno, R.; Bellido, C.; Fuentes, F.; López-Miranda, J. Apolipoprotein E gene promoter −219G→T polymorphism increases LDL-cholesterol concentrations and susceptibility to oxidation in response to a diet rich in saturated fat. Am. J. Clin. Nutr. 2004, 80, 1404–1409. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on establishing Food-Based Dietary Guidelines. EFSA J. 2010, 8, 1460–1502. [Google Scholar]
- Hurlimann, T.; Menuz, V.; Graham, J.; Robitaille, J.; Vohl, M.C.; Godard, B. Risk of nutrigenomics and nutrigenetics? What the scientists say. Genes Nutr. 2014, 9, 370. [Google Scholar] [CrossRef]
- Ho, E.; Zempleni, J. Overview to symposium “Nutrients and epigenetic regulation of gene expression”. J. Nutr. 2009, 139, 2387–2388. [Google Scholar] [CrossRef]
- Waterland, R.A.; Michels, K.B. Epigenetic epidemiology of the developmental origins hypothesis. Annu. Rev. Nutr. 2007, 27, 363–388. [Google Scholar] [CrossRef]
- Cutfield, W.S.; Hofman, P.L.; Mitchell, M.; Morison, I.M. Could epigenetics play a role in the developmental origins of health and disease? Pediatr. Res. 2007, 61, 68R–75R. [Google Scholar] [CrossRef]
- Liotto, N.; Miozzo, M.; Giannì, M.L.; Taroni, F.; Morlacchi, L.; Piemontese, P.; Roggero, P.; Mosca, F. Early nutrition: The role of genetics and epigenetics. Pediatr. Med. Chir. 2009, 31, 65–71. [Google Scholar]
- Tammen, S.A.; Friso, S.; Choi, S.W. Epigenetics: The link between nature and nurture. Mol. Aspects Med. 2013, 34, 753–764. [Google Scholar] [CrossRef]
- Lillycrop, K.A.; Burdge, G.C. Epigenetic changes in early life and future risk of obesity. Int. J. Obes. 2011, 35, 72–83. [Google Scholar] [CrossRef]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef]
- Barker, D.J. Developmental origins of chronic disease. Public Health 2012, 126, 185–189. [Google Scholar] [CrossRef]
- Koletzko, B.; Brands, B.; Poston, L.; Godfrey, K.; Demmelmair, H. Early Nutrition Project. Early nutrition programming of long-term health. Proc. Nutr. Soc. 2012, 71, 371–378. [Google Scholar] [CrossRef]
- Mortensen, E.L.; Michaelsen, K.F.; Sanders, S.A.; Reinisch, J.M. The association between duration of breastfeeding and adult intelligence. JAMA 2002, 287, 2365–2371. [Google Scholar]
- Quigley, MA.; Henderson, G.; Anthony, M.Y.; McGuire, W. Formula milk versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 2007. [Google Scholar] [CrossRef]
- Chen, A.C.; Chung, M.Y.; Chang, J.H.; Lin, H.C. Pathogenesis implication for necrotizing enterocolitis prevention in preterm very-low-birth-weight infants. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 7–11. [Google Scholar] [CrossRef]
- Chatterton, D.E.; Nguyen, D.N.; Bering, S.B.; Sangild, P.T. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int. J. Biochem. Cell. Biol. 2013, 45, 1730–1747. [Google Scholar] [CrossRef]
- Morrow, A.L.; Lagomarcino, A.J.; Schibler, K.R.; Taft, D.H.; Yu, Z.; Wang, B.; Altaye, M.; Wagner, M.; Gevers, D.; Ward, D.V.; et al. Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome 2013, 1, 13. [Google Scholar] [CrossRef]
- Fanaro, S.; Chierici, R.; Guerrini, P.; Vigi, V. Intestinal microflora in early infancy: Composition and development. Acta. Paediatr. Suppl. 2003, 91, 48–55. [Google Scholar]
- Sjögren, Y.M.; Tomicic, S.; Lundberg, A.; Böttcher, M.F.; Björkstén, B.; Sverremark-Ekström, E.; Jenmalm, M.C. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin. Exp. Allergy 2009, 39, 1842–1851. [Google Scholar] [CrossRef]
- Minekawa, R.; Takeda, T.; Sakata, M.; Hayashi, M.; Isobe, A.; Yamamoto, T.; Tasaka, K.; Murata, Y. Human breast milk suppresses the transcriptional regulation of IL-1beta-induced NF-κB signaling in human intestinal cells. Am. J. Physiol. Cell. Physiol. 2004, 287, C1404–C1411. [Google Scholar] [CrossRef]
- Mulligan, P.; White, R.J.N.; Monteleone, G.; Wang, P.; Wilson, W.J.; Ohtsuka, Y.; Sanderson, R.I. Breast Milk Lactoferrin Regulates Gene Expression by Binding Bacterial DNA CpG Motifs but Not Genomic DNA Promoters in Model Intestinal Cells. Pediatr. Res. 2006, 59, 656–661. [Google Scholar] [CrossRef]
- Patel, J.A.; Nair, S.; Revai, K.; Grady, J.; Saeed, K.; Matalon, R.; Block, S.; Chonmaitree, T. Association of Proinflammatory Cytokines Gene Polymorphisms with Susceptibility to Otitis Media. Pediatrics 2006, 118, 2273–2279. [Google Scholar] [CrossRef]
- Weng, M.; Walker, W.A. The role of gut microbiota in programming the immue phenotype. J. Dev. Orig. Health Dis. 2013, 4. [Google Scholar] [CrossRef]
- Moloney, R.D.; Desbonnet, L.; Clarke, G.; Dinan, T.G.; Cryan, J.F. The microbiome: Stress, health and disease. Mamm. Genome 2014, 25, 49–74. [Google Scholar] [CrossRef]
- Agostoni, C.; Baselli, L.; Mazzoni, M.B. Early nutrition patterns and diseases of adulthood: A plausible link? Eur. J. Intern. Med. 2013, 24, 5–10. [Google Scholar] [CrossRef]
- Sharma, A.M.; Staels, B. Peroxisome proliferator-activated receptor gamma and adipose tissue—Understanding obesity-related changes in regulation of lipid and glucose metabolism. J. Clin. Endocrinol. Metab. 2007, 92, 386–395. [Google Scholar] [CrossRef]
- Beamer, B.A.; Yen Beamer, B.A.; Yen, C.J.; Andersen, R.E.; Muller, D.; Elahi, D.; Cheskin, L.J.; Andres, R.; Roth, J.; Shuldiner, A.R. Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-γ 2 gene with obesity in two Caucasian populations. Diabetes 1998, 47, 1806–1808. [Google Scholar] [CrossRef]
- Cole, S.A.; Mitchell, B.D.; Hsueh, W.C.; Pineda, P.; Beamer, B.A.; Shuldiner, A.R.; Comuzzie, A.G.; Blangero, J.; Hixson, J.E. The Pro12Ala variant of peroxisome proliferator-activated receptor- γ 2 (PPAR- γ 2) is associated with measures of obesity in Mexican Americans. Int. J. Obes. Relat. Meta. Disord. 2000, 24, 522–524. [Google Scholar] [CrossRef]
- Meirhaeghe, A.; Fajas, L.; Helbecque, N.; Cottel, D.; Auwerx, J.; Deeb, S.S.; Amouyel, P. Impact of the peroxisome proliferator activated receptor γ 2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 195–199. [Google Scholar] [CrossRef]
- Verier, C.; Meirhaeghe, A.; Bokor, S.; Breidenassel, C.; Manios, Y.; Molnár, D.; Artero, E.G.; Nova, E.; de Henauw, S.; Moreno, L.A.; et al. Breast-feeding modulates the influence of the peroxisome proliferator-activated receptor-gamma (PPARG2) Pro12Ala polymorphism on adiposity in adolescents: The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) cross-sectional study. Diabetes Care 2010, 33, 190–196. [Google Scholar] [CrossRef]
- Yang, L.; Chan, C.C.; Kwon, O.S.; Liu, S.; McGhee, J.; Stimpson, S.A.; Chen, L.Z.; Harrington, W.W.; Symonds, W.T.; Rockey, D.C. Regulation of peroxisome proliferator-activated receptor-gamma in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G902–G911. [Google Scholar] [CrossRef]
- Svegliati-Baroni, G.; Candelaresi, C.; Saccomanno, S.; Ferretti, G.; Bachetti, T.; Marzioni, M.; de Minicis, S.; Nobili, L.; Salzano, R.; Omenetti, A.; et al. Rmodel of insulin resistance and nonalcoholic steatohepatitis in rats: Role of peroxisome proliferatoractivated receptor-α and n-3 polyunsaturated fatty acid treatment on liver injury. Am. J. Pathol. 2006, 169, 846–860. [Google Scholar] [CrossRef]
- Nobili, V.; Bedogni, G.; Alisi, A.; Pietrobattista, A.; Alterio, A.; Tiribelli, C.; Agostoni, C. A protective effect of breastfeeding on the profression of non-alcoholic fatty liver disease. Arch. Dis. Child. 2009, 94, 801–805. [Google Scholar] [CrossRef]
- Rossmeisl, M.; Medrikova, D.; van Schothorst, E.M.; Pavlisova, J.; Kuda, O.; Hensler, M.; Bardova, K.; Flachs, P.; Stankova, B.; Vecka, M.; et al. Oega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. B. Biochim. Biophys. Acta. 2013, 1841, 267–278. [Google Scholar]
- Owen, C.G.; Whincup, P.H.; Odoki, K.; Gilg, J.A.; Cook, D.G. Infant feeding and blood cholesterol: A study in adolescents and a systematic review. Pediatrics 2002, 110, 597–608. [Google Scholar] [CrossRef]
- Owen, C.G.; Whincup, P.H.; Kaye, S.J.; Martin, R.M.; Davey Smith, G.; Cook, D.G.; Bergstrom, E.; Black, S.; Wadsworth, M.E.; Fall, C.H.; et al. Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. Am. J. Clin. Nutr. 2008, 88, 305–314. [Google Scholar]
- Boschetti, E.; di Nunzio, M.; Danesi, F.; Tugnoli, V.; Bordoni, A. Influence of genotype on the modulation of gene and protein expression by n-3 LCPUFA in rats. Genes Nutr. 2013, 8, 589–600. [Google Scholar] [CrossRef]
- Vos, M.B. Nutrition, nonalcoholic fatty liver disease and the microbiome: Recent progress in the field. Curr. Opin. Lipidol. 2014, 25, 61–66. [Google Scholar] [CrossRef]
- Fukada, S.; Ohno, H. Gut microbiome and metabolic diseases. Semin. Immunopathol. 2014, 36, 103–114. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: Collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50,302 women with breast cancer and 96,973 women without the disease. Lancet 2002, 360, 187–195. [Google Scholar] [CrossRef]
- Jernström, H.; Lubinski, J.; Lynch, H.T.; Ghadirian, P.; Neuhausen, S.; Isaacs, C.; Weber, B.L.; Horsman, D.; Rosen, B.; Foulkes, W.D.; et al. Breastfeeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2004, 96, 1094–1098. [Google Scholar] [CrossRef]
- Wannous, R.; Bon, E.; Mahéo, K.; Goupille, C.; Chamouton, J.; Bougnoux, P.; Roger, S.; Besson, P.; Chevalier, S. PPAR mRNA expression, reduced by n-3 PUFA diet in mammary tumor, controls breast cancer cell growth. Biochim. Biophys. Acta 2013, 1831, 1618–1625. [Google Scholar]
- Marangoni, F.; Colombo, C.; de Angelis, L.; Gambaro, V.; Agostoni, C.; Giovannini, M.; Galli, C. Cigarette smoke negatively and dose-dependently affects the biosynthetic pathway of the n-3 polyunsaturated fatty acid series in human mammary epithelial cells. Lipids 2004, 39, 633–637. [Google Scholar] [CrossRef]
- Agostoni, C.; Marangoni, F.; Grandi, F.; Lammardo, A.M.; Giovannini, M.; Riva, E.; Galli, C. Earlier smoking habits are associated with higher serum lipids and lower milk fat and polyunsaturated fatty acid content in the first 6 months of lactation. Eur. J. Clin. Nutr. 2003, 57, 1466–1472. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic Effects of Human Breast Milk. Nutrients 2014, 6, 1711-1724. https://doi.org/10.3390/nu6041711
Verduci E, Banderali G, Barberi S, Radaelli G, Lops A, Betti F, Riva E, Giovannini M. Epigenetic Effects of Human Breast Milk. Nutrients. 2014; 6(4):1711-1724. https://doi.org/10.3390/nu6041711
Chicago/Turabian StyleVerduci, Elvira, Giuseppe Banderali, Salvatore Barberi, Giovanni Radaelli, Alessandra Lops, Federica Betti, Enrica Riva, and Marcello Giovannini. 2014. "Epigenetic Effects of Human Breast Milk" Nutrients 6, no. 4: 1711-1724. https://doi.org/10.3390/nu6041711
APA StyleVerduci, E., Banderali, G., Barberi, S., Radaelli, G., Lops, A., Betti, F., Riva, E., & Giovannini, M. (2014). Epigenetic Effects of Human Breast Milk. Nutrients, 6(4), 1711-1724. https://doi.org/10.3390/nu6041711