Effect of Instant Cooked Giant Embryonic Rice on Body Fat Weight and Plasma Lipid Profile in High Fat-Fed Mice
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Analysis of the Proximate and Nutritional Compositions
Component | Normal White Rice | Normal Brown Rice | Giant Embryonic White Rice | Giant Embryonic Brown Rice |
---|---|---|---|---|
Proximate composition (% dry basis) | ||||
Moisture | 59.7 | 57.2 | 59.9 | 55.6 |
Crude protein | 2.4 | 3.3 | 2.7 | 3.5 |
Crude fat | 0.2 | 0.2 | 0.4 | 0.5 |
Ash | 0.1 | 0.7 | 0.1 | 0.7 |
Carbohydrate | 37.4 | 37.3 | 36.5 | 38.2 |
Dietary fiber | 0.2 | 1.3 | 0.4 | 1.5 |
Nutritional composition (mg/100 g) | ||||
GABA | 2.2 | 4.3 | 3.9 | 5.7 |
γ-oryzanol | 0.8 | 2.0 | 2.2 | 2.9 |
Vitamin B1 | 0.1 | 0.2 | 0.2 | 0.3 |
Vitamin E | 0.1 | 0.5 | 0.8 | 0.9 |
Niacin | 0.2 | 0.3 | 0.3 | 0.4 |
Zinc | 1.4 | 1.5 | 1.7 | 1.8 |
Calcium | 8.2 | 8.5 | 8.8 | 9.0 |
Resistant starch | 0.8 | 1.0 | 0.8 | 1.0 |
2.3. Animals and Diets
Component | NC a | HF | HF-NW | HF-NB | HF-GW | HF-GB |
---|---|---|---|---|---|---|
Casein | 20.00 | 23.31 | 20.92 | 20.22 | 20.62 | 20.16 |
Sucrose | 0.30 | 20.14 | ||||
Dextrose | 50.00 | 11.65 | ||||
Corn starch | 15.00 | 8.48 | 3.05 | 4.76 | 3.76 | 5.23 |
Cellulose | 5.00 | 5.83 | 5.63 | 4.61 | 5.43 | 4.48 |
Soybean Oil | 5.00 | 2.91 | 2.91 | 2.91 | 2.91 | 2.91 |
Lard | 20.69 | 20.49 | 20.50 | 20.29 | 20.23 | |
Mineral mixture b | 3.50 | 5.24 | 5.24 | 5.24 | 5.24 | 5.24 |
Vitamin mixture c | 1.00 | 1.17 | 1.17 | 1.17 | 1.17 | 1.17 |
l-Cystine | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Choline bitartrate | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
NW | 40.00 | |||||
NB | 40.00 | |||||
GW | 40.00 | |||||
GB | 40.00 | |||||
Total (%) | 100 | 100 | 100 | 100 | 100 | 100 |
Energy (kcal/100 g) | 386 | 466 | 466 | 466 | 466 | 466 |
2.4. Analysis of the Plasma and Hepatic Lipids
2.5. Measurement of Glutamate Oxaloacetate (GOT) and Glutamate Pyruvate Transaminase (GPT) Levels
2.6. Determination of the Lipid-Regulating Enzyme and β-Oxidation Activities
2.7. Determination of Plasma Adipokine Concentrations
2.8. Statistical Analysis
3. Results
3.1. Body Weight Gain and Organ Weights
Parameter | NC | HF | HF-NW | HF-NB | HF-GW | HF-GB |
---|---|---|---|---|---|---|
Initial weight (g) | 13.64 ± 0.56 a | 13.48 ± 0.24 a | 13.72 ± 0.42 a | 13.99 ± 1.16 a | 13.79 ± 0.94 a | 13.95 ± 0.38 a |
Final weight (g) | 27.89 ± 0.60 b | 34.86 ± 0.63 c | 26.11 ± 0.59 a | 28.26 ± 1.16 b | 28.18 ± 0.91 b | 28.30 ± 0.36 b |
Weight gain (g/day) | 0.23 ± 0.02 b | 0.34 ± 0.01 c | 0.20 ± 0.01 a | 0.23 ± 0.01 b | 0.23 ± 0.01 b | 0.23 ± 0.01 b |
Feed intake (g/day) | 3.56 ± 0.25 a | 3.72 ± 0.87 b | 3.51 ± 0.68 a | 3.50 ± 0.37 a | 3.49 ± 0.35 a | 3.52 ± 0.49 a |
Energy intake (kcal/day) | 13.46 ± 0.03 a | 18.17 ± 0.02 c | 16.30 ± 0.03 b | 16.28 ± 0.02 b | 16.28 ± 0.01 b | 16.31 ± 0.01 b |
FER | 0.07 ± 0.00 c | 0.10 ± 0.00 d | 0.06 ± 0.00 b | 0.07 ± 0.00 c | 0.07 ± 0.00 c | 0.05 ± 0.00 a |
Organ weight (g) | ||||||
Liver | 4.25 ± 0.17 b | 4.85 ± 0.04 c | 4.15 ± 0.07 a,b | 4.08 ± 0.06 a,b | 4.00 ± 0.57 a | 4.00 ± 0.12 a |
Heart | 0.47 ± 0.02 c | 0.97 ± 0.02 d | 0.44 ± 0.01 a,b | 0.46 ± 0.01 b,c | 0.43 ± 0.02 a | 0.42 ± 0.01 a |
Kidney | 1.29 ± 0.03 a | 1.80 ± 0.02 b | 1.24 ± 0.02 a | 1.28 ± 0.02 a | 1.24 ± 0.02 a | 1.28 ± 0.04 a |
White adipose tissue weight (g) | ||||||
Epididymal | 3.20 ± 0.15 b | 6.07 ± 0.12 d | 4.16 ± 0.15 c | 3.07 ± 0.07 b | 3.24 ± 0.11 b | 2.79 ± 0.20 a |
Perirenal | 1.29 ± 0.14 a | 2.79 ± 0.31 d | 2.14 ± 0.04 c | 1.51 ± 0.04 a | 1.84 ± 0.11 b | 1.24 ± 0.06 a |
Inguinal | 0.95 ± 0.03 a,b | 2.03 ± 0.10 d | 1.56 ± 0.13 c | 1.06 ± 0.04 a,b | 1.34 ± 0.12 b,c | 0.85 ± 0.06 a |
3.2. Plasma and Hepatic Lipid Profile
Parameter | NC | HF | HF-NW | HF-NB | HF-GW | HF-GB |
---|---|---|---|---|---|---|
Plasma | ||||||
Triglyceride (mg/dL) | 135.74 ± 2.86 a | 180.14 ± 1.11 b | 132.33 ± 4.30 a | 144.52 ± 5.41 a,b | 149.27 ± 5.59 a,b | 131.62 ± 1.02 a |
Total cholesterol (mg/dL) | 157.40 ± 5.69 c | 192.80 ± 7.28 d | 153.38 ± 3.50 b,c | 150.37 ± 3.85 b,c | 146.24 ± 5.23 a,b | 140.06 ± 2.91 a |
HDL-cholesterol (mg/dL) | 73.60 ± 4.21 a | 70.44 ± 0.64 a | 85.29 ± 1.12 b | 114.50 ± 1.46 d | 110.43 ± 1.39 c | 123.88 ± 1.19 e |
Non-HDL-cholesterol (mg/dL) | 83.10 ± 2.01 d | 122.65 ± 1.02 e | 68.21 ± 0.99 c | 35.27 ± 1.54 b | 35.47 ± 1.03 b | 16.47 ± 1.00 a |
HTR (%) | 48.14 ± 2.26 b | 34.07 ± 1.87 a | 56.48 ± 1.49 c | 78.74 ± 2.70 d | 78.49 ± 3.36 d | 88.98 ± 3.06 e |
AI | 1.14 ± 0.15 d | 1.73 ± 0.11 e | 0.79 ± 0.03 c | 0.31 ± 0.04 b | 0.32 ± 0.04 b | 0.13 ± 0.03 a |
Free fatty acid (mmol/L) | 1.28 ± 0.03 b | 2.75 ± 0.12 d | 1.76 ± 0.05 c | 1.22 ± 0.28 a,b | 1.23 ± 0.21 a,b | 1.15 ± 0.02 a |
Phospholipid (mmol/L) | 1.02 ± 0.01 b | 0.99 ± 0.01 a | 1.04 ± 0.01 b | 1.04 ± 0.02 b | 1.12 ± 0.01 c | 1.14 ± 0.01 c |
GOT (karman/mL) | 24.61 ± 2.20 a b | 47.06 ± 2.28 d | 33.01 ± 2.07 c | 27.51 ± 1.89 b | 27.19 ± 1.07 b | 22.42 ± 1.29 a |
GPT (karman/mL) | 25.87 ± 2.59 c | 42.25 ± 2.09 d | 25.63 ± 1.66 c | 19.55 ± 1.57 b | 21.83 ± 2.42 b,c | 14.83 ± 2.54 a |
Liver | ||||||
Triglyceride (mg/g) | 75.25 ± 1.47 a | 89.98 ± 2.47 c | 86.24 ± 1.57 c | 82.36 ± 2.01 b | 81.87 ± 1.88 b | 79.01 ± 1.85 b |
Total cholesterol (mg/g) | 3.06 ± 0.05 a | 4.21 ± 0.04 e | 3.78 ± 0.07 d | 3.26 ± 0.04 c | 3.27 ± 0.06 c | 3.18 ± 0.04 b |
3.3. Lipid-Regulating Enzyme and β-Oxidation Activities
Parameter | NC | HF | HF-NW | HF-NB | HF-GW | HF-GB |
---|---|---|---|---|---|---|
Hepatic enzyme activity (nmoL/min/mg protein) | ||||||
FAS | 7.06 ± 0.62 a | 14.38 ± 0.55 c | 8.86 ± 0.95 b | 8.25 ± 0.87 a,b | 8.04 ± 0.45 a,b | 7.17 ± 1.23 a |
ME | 21.05 ± 0.91 c | 26.80 ± 1.51 d | 18.02 ± 0.52 b | 14.58 ± 0.79 a | 14.53 ± 0.73 a | 13.84 ± 0.74 a |
G6PD | 2.77 ± 0.25 d | 3.09 ± 0.78 f | 2.88 ± 0.46 e | 2.02 ± 0.74 b | 2.16 ± 0.68 c | 1.74 ± 0.55 a |
CPT | 16.60 ± 1.56 b,c | 11.35 ± 0.69 a | 15.05 ± 0.73 b | 17.28 ± 0.43 c | 17.88 ± 0.35 c | 20.85 ± 0.38 d |
β-oxidation | 0.22 ± 0.03 b | 0.13 ± 0.02 a | 0.24 ± 0.02 b | 0.61 ± 0.03 d | 0.41 ± 0.04 c | 0.80 ± 0.01 e |
Adipocyte enzyme activity (µmoL/min/mg protein) | ||||||
FAS | 23.83 ± 3.45 b | 46.46 ± 3.00 c | 27.03 ± 0.82 b | 25.27 ± 3.35 b | 22.88 ± 1.78 b | 14.68 ± 2.09 a |
ME | 201.57 ± 2.05 c | 258.93 ± 6.17 d | 203.82 ± 1.69 c | 175.48 ± 1.08 b | 170.20 ± 0.84 b | 163.08 ± 1.87 a |
CPT | 302.47 ± 0.89 a | 286.75 ± 2.38 a | 307.29 ± 2.13 a | 382.26 ± 10.05 b | 364.59 ± 26.57 b | 427.59 ± 1.82 c |
β-oxidation | 1.07 ± 0.28 a,b | 0.66 ± 0.24 a | 1.12 ± 0.23 a,b | 1.14 ± 0.07 a,b | 1.27 ± 0.22 b | 1.46 ± 0.52 b |
3.4. Plasma Adipokine Concentrations
Group | Leptin (ng/mL) | Resistin (ng/mL) | Adiponectin (μg/mL) | TNF-α (ng/mL) |
---|---|---|---|---|
NC | 1.48 ± 0.26 c | 19.26 ± 1.71 a,b | 8.24 ± 0.16 b | 1.11 ± 0.04 a,b |
HF | 1.96 ± 0.04 e | 28.71 ± 1.31 c | 8.04 ± 0.36 a | 1.32 ± 0.02 c |
HF-NW | 1.53 ± 0.35 c | 21.48 ± 1.18 b | 8.23 ± 0.09 b | 1.17 ± 0.05 b |
HF-NB | 1.33 ± 0.01 b | 19.16 ± 0.95 a,b | 8.22 ± 0.04 b | 1.17 ± 0.04 b |
HF-GW | 1.36 ± 0.03 b | 18.95 ± 1.38 a | 8.37 ± 0.20 c | 1.05 ± 0.04 a |
HF-GB | 1.18 ± 0.04 a | 18.42 ± 0.63 a | 8.77 ± 0.20 d | 1.04 ± 0.19 a |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rewthong, O.; Soponronnarit, S.; Taechapairoj, C.; Tungtrakul, P.; Prachayawarakorn, S. Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. J. Food Eng. 2011, 103, 258–264. [Google Scholar] [CrossRef]
- Seo, W.D.; Kim, J.Y.; Park, D.S.; Han, S.I.; Jang, K.C.; Choi, K.J.; Kim, S.Y.; Oh, S.H.; Ra, J.E.; Yo, G.; et al. Comparative analysis of physicochemicals and antioxidative properties of new giant embryo mutant, YR23517Acp79, in rice (Oryza sativa L.). J. Korean Soc. Appl. Biol. Chem. 2011, 54, 700–709. [Google Scholar] [CrossRef]
- Min, B.; Gu, L.; McClung, A.M.; Bergman, C.J.; Chen, M.H. Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem. 2012, 133, 715–722. [Google Scholar] [CrossRef]
- Zhu, L.; Gu, M.; Meng, X.; Cheung, S.C.; Yu, H.; Huang, J.; Sun, Y.; Shi, Y.; Liu, Q. High-amylose rice improves indices of animal health in normal and diabetic rats. Plant. Biotechnol. J. 2012, 10, 353–362. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, P.; Tang, S.; Zhao, H.; Wu, D. Comparative studies on major nutritional components of rice with a giant embryo and a normal embryo. J. Food Biochem. 2005, 29, 653–661. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Methods of Analysis. Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2003. [Google Scholar]
- Kwak, E.J. Development of brown colored rice tea with high GABA content. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1201–1205. [Google Scholar] [CrossRef]
- Chakuton, K.; Puangpronpitag, D.; Nakornriab, M. Phytochemical content and antioxidant activity of colored and non-colored Thai rice cultivars. Asian J. Plant Sci. 2012, 11, 285–293. [Google Scholar] [CrossRef]
- Sang, Y.; Seib, P.A. Resistant straches from amylose mutants of corn by simultaneous heat-moisture treatment and phosphorylation. Carbohydr. Polym. 2006, 63, 167–175. [Google Scholar] [CrossRef]
- American Institute of Nutrition. Report of ad hoc committee on standards for nutritional studies. J. Nutr. 1977, 107, 1340–1348. [Google Scholar]
- Folch, J.M.; Lee, M.; Stanley, G.H.S. A sample method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 26, 497–509. [Google Scholar]
- Reitman, S.; Frankel, S. Methods of Enzymatic Analysis; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Hulcher, F.H.; Olson, W.H. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid Res. 1973, 14, 625–631. [Google Scholar]
- Bradford, M.M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Gibson, D.M.; Hubbard, D.D. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem. Biophys. Res. Commun. 1960, 3, 531–535. [Google Scholar] [CrossRef]
- Ochoa, S. Malic dehydrogenase from pig heart. In Methods in Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academic Press: New York, NY, USA, 1955; pp. 735–739. [Google Scholar]
- Pitkanen, E.; Pitkanen, O.; Uotila, L. Enzymatic determination of unbound d-mannose in serum. Eur. J. Clin. Chem. Clin. Biochem. 1997, 35, 761–766. [Google Scholar]
- Bieber, L.L.; Abraham, T.; Helmrath, T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal. Biochem. 1972, 50, 509–518. [Google Scholar] [CrossRef]
- Lazarow, P.B. Assay of peroxisomal beta-oxidation of fatty acids. Methods Enzymol. 1981, 72, 315–319. [Google Scholar] [CrossRef]
- Marques-Vidal, P.; Pecoud, A.; Hayoz, D.; Paccaud, F.; Mooser, V.; Waeber, G.; Vollenweider, P. Normal weight obesity: Relationaship with lipids, glycaemic status, liver enzymes and inflammation. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 669–675. [Google Scholar] [CrossRef]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef]
- Choi, W.H.; Gwon, S.Y.; Ahn, J.; Jung, C.H.; Ha, T.Y. Cooked rice prevents hyperlipidemia in hamsters fed a high-fat/cholesterol diet by the regulation of the expression of hepatic genes involved in lipid metabolism. Nutr. Res. 2013, 33, 572–579. [Google Scholar] [CrossRef]
- Kozuka, C.; Yabiku, K.; Takayama, C.; Matsushita, M.; Shimabukuro, M.; Masuzaki, H. Natural food science based novel approach toward prevention and treatment of obesity and type 2 diabetes: Recent studies on brown rice and γ-oryzanol. Obes. Res. Clin. Pract. 2013, 7, e165–e172. [Google Scholar] [CrossRef]
- Lee, Y.R.; Kim, C.E.; Nam, S.H. Cholesterol-lowering and antioxidant status-improving efficacy of germinated giant embryonic rice (Oryza sativa L.) in high cholesterol-fed rats. Ann. Nutr. Metab. 2007, 51, 519–526. [Google Scholar] [CrossRef]
- Lee, Y.R.; Kang, M.Y.; Nam, S.H. Effect of giant embryonic rice supplementation on the lipid peroxidation levels and antioxidative enzyme activities in the plasma and liver of streptozotocin-induced diabetic rats. J. Korean Soc. Appl. Biol. Chem. 2005, 48, 358–363. [Google Scholar]
- Oh, C.H.; Oh, S.H. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 2004, 7, 19–23. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Gaddi, A. Rice bran oil and γ-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother. Res. 2001, 15, 277–289. [Google Scholar] [CrossRef]
- Patel, M.; Naik, S.N. Gamma-oryzanol from rice bran oil—A review. J. Sci. Ind. Res. 2004, 63, 569–578. [Google Scholar]
- Son, M.J.; Rico, C.W.; Nam, S.H.; Kang, M.Y. Influence of oryzanol and ferulic acid on the lipid metabolism and antioxidative status in high fat-fed mice. J. Clin. Biochem. Nutr. 2010, 46, 150–156. [Google Scholar] [CrossRef]
- Halminski, M.A.; Marsh, J.B.; Harrison, E.H. Differential effects of fish oil, safflower oil and palm oil on fatty acid oxidation and glycerolipid synthesis in rat liver. J. Nutr. 1991, 121, 1554–1561. [Google Scholar]
- Stefanovix-Racic, M.; Perdomo, G.; Mantell, B.S.; Sipula, I.J.; Brown, N.F.; O’Doherty, R.M. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am. J. Physiol. 2008, 294, E969–E977. [Google Scholar]
- Berndt, J.; Kovacs, P.; Ruschke, K.; Kloting, N.; Fasshauer, M.; Schon, M.R.; Korner, A.; Stumvoll, M.; Bluher, M. Fatty acid synthase gene expression in human adipose tissue: Association with obesity and type 2 diabetes. Diabetologia 2007, 50, 1472–1480. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Song, X.; Zhang, X.; Ge, C.; Gao, S. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 2010, 7, 6. [Google Scholar] [CrossRef]
- Silha, J.V.; Weiler, H.A.; Murphy, L.J. Plasma adipokines and body composition in response to modest dietary manipulations in the mouse. Obesity 2006, 14, 1320–1329. [Google Scholar] [CrossRef]
- Trayhurn, P.; Wood, I.S. Signalling role of adipose tissue: Adipokines and inflammation in obesity. Biochem. Soc. Trans. 2005, 33, 1078–1081. [Google Scholar] [CrossRef]
- Wang, Y.; Lam, K.S.; Xu, A. Adiponectin as a therapeutic target for obesity-related metabolic and cardiovascular disorders. Drug Dev. Res. 2006, 67, 677–686. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chung, S.I.; Kim, T.H.; Rico, C.W.; Kang, M.Y. Effect of Instant Cooked Giant Embryonic Rice on Body Fat Weight and Plasma Lipid Profile in High Fat-Fed Mice. Nutrients 2014, 6, 2266-2278. https://doi.org/10.3390/nu6062266
Chung SI, Kim TH, Rico CW, Kang MY. Effect of Instant Cooked Giant Embryonic Rice on Body Fat Weight and Plasma Lipid Profile in High Fat-Fed Mice. Nutrients. 2014; 6(6):2266-2278. https://doi.org/10.3390/nu6062266
Chicago/Turabian StyleChung, Soo Im, Tae Hyeong Kim, Catherine W. Rico, and Mi Young Kang. 2014. "Effect of Instant Cooked Giant Embryonic Rice on Body Fat Weight and Plasma Lipid Profile in High Fat-Fed Mice" Nutrients 6, no. 6: 2266-2278. https://doi.org/10.3390/nu6062266
APA StyleChung, S. I., Kim, T. H., Rico, C. W., & Kang, M. Y. (2014). Effect of Instant Cooked Giant Embryonic Rice on Body Fat Weight and Plasma Lipid Profile in High Fat-Fed Mice. Nutrients, 6(6), 2266-2278. https://doi.org/10.3390/nu6062266