Iron, Oxidative Stress and Gestational Diabetes
Abstract
:1. Introduction
2. Iron and Oxidative Stress
2.1. Iron and Lipid Peroxidation
2.2. Iron and DNA Damage
3. Iron and Gestational Diabetes
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Haider, B.A.; Olofin, I.; Wang, M.; Spiegelman, D.; Ezzati, M.; Fawzi, W.W.; Nutrition Impact Model Study, G. Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: Systematic review and meta-analysis. Br. Med. J. 2013, 346, f3443. [Google Scholar] [CrossRef]
- Pena-Rosas, J.P.; De-Regil, L.M.; Dowswell, T.; Viteri, F.E. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2012, 12, CD004736. [Google Scholar] [PubMed]
- WHO. Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Guariguata, L.; Linnenkamp, U.; Beagley, J.; Whiting, D.R.; Cho, N.H. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res. Clin. Pract. 2014, 103, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Rajpathak, S.N.; Crandall, J.P.; Wylie-Rosett, J.; Kabat, G.C.; Rohan, T.E.; Hu, F.B. The role of iron in type 2 diabetes in humans. Biochim. Biophys. Acta 2009, 1790, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Henle, E.S.; Linn, S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J. Biol. Chem. 1997, 272, 19095–19098. [Google Scholar] [CrossRef] [PubMed]
- Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–910. [Google Scholar] [CrossRef]
- Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131. [Google Scholar] [CrossRef]
- Koppenol, W.H. The centennial of the fenton reaction. Free Radic. Biol. Med. 1993, 15, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Haber, F.; Weiss, J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. A Math. Phys. Sci. 1934, 147, 332–351. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990, 186, 1–85. [Google Scholar] [PubMed]
- Minotti, G.; Aust, S.D. The requirement for iron (iii) in the initiation of lipid peroxidation by iron (ii) and hydrogen peroxide. J. Biol. Chem. 1987, 262, 1098–1104. [Google Scholar] [PubMed]
- Girotti, A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998, 39, 1529–1542. [Google Scholar] [PubMed]
- Cheng, Z.; Li, Y. What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: An update. Chem. Rev. 2007, 107, 748–766. [Google Scholar] [CrossRef] [PubMed]
- Minotti, G.; Aust, S.D. The role of iron in the initiation of lipid peroxidation. Chem. Phys. Lipids 1987, 44, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.; Meyerstein, D.; Czapski, G. The fenton reagents. Free Radic. Biol. Med. 1993, 15, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, S.; Kanner, J. Oxymyoglobin oxidation and membranal lipid peroxidation initiated by iron redox cycle. J. Agric. Food Chem. 2001, 49, 5939–5944. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.L.; McCay, P.B.; Poyer, J.L.; Keele, B.B.; Misra, H. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J. Biol. Chem. 1973, 248, 7792–7797. [Google Scholar] [PubMed]
- Puntarulo, S.; Cederbaum, A.I. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation. Arch. Biochem. Biophys. 1988, 264, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Diehl-Jones, W.L.; Suh, M.; Tsopmo, A.; Shirwadkar, V.P. Impact of iron and vitamin c-containing supplements on preterm human milk: In vitro. Free Radic. Biol. Med. 2007, 42, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Puntarulo, S.; Cederbaum, A.I. Stimulation of microsomal chemiluminescence by ferritin. Biochim. Biophys. Acta 1993, 1157, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Santos, G.; Herrera, F.; Martin, V.; Rodriguez-Blanco, J.; Antolin, I.; Fernandez-Mari, F.; Rodriguez, C. Antioxidant activity and neuroprotective effects of zolpidem and several synthesis intermediates. Free Radic. Res. 2004, 38, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Serbecic, N.; Beutelspacher, S.C. Vitamins inhibit oxidant-induced apoptosis of corneal endothelial cells. Jpn. J. Ophthalmol. 2005, 49, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Pavlica, S.; Gebhardt, R. Protective effects of ellagic and chlorogenic acids against oxidative stress in pc12 cells. Free Radic. Res. 2005, 39, 1377–1390. [Google Scholar] [CrossRef] [PubMed]
- Courtois, F.; Delvin, E.; Ledoux, M.; Seidman, E.; Lavoie, J.C.; Levy, E. The antioxidant bht normalizes some oxidative effects of iron + ascorbate on lipid metabolism in caco-2 cells. J. Nutr. 2002, 132, 1289–1292. [Google Scholar] [PubMed]
- Zager, R.A. Parenteral iron compounds: Potent oxidants but mainstays of anemia management in chronic renal disease. Clin. J. Am. Soc. Nephrol. 2006, 1 (Suppl. 1), S24–S31. [Google Scholar] [PubMed]
- Zager, R.A.; Johnson, A.C.; Hanson, S.Y.; Wasse, H. Parenteral iron formulations: A comparative toxicologic analysis and mechanisms of cell injury. Am. J. Kidney Dis. 2002, 40, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y.; Iqbal, M.; Okada, S. Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate. Biochim. Biophys. Acta 2005, 1740, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Jabbar, Z.; Athar, M.; Alam, M.S. Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates fe-nta induced hepatotoxicity in mice. Food Chem. Toxicol. 2006, 44, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, T.; Khan, T.H.; Prasad, L.; Sultana, S. Farnesol prevents fe-nta-mediated renal oxidative stress and early tumour promotion markers in rats. Hum. Exp. Toxicol. 2006, 25, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.K.; Iqbal, M.; Athar, M. Garlic oil ameliorates ferric nitrilotriacetate (fe-nta)-induced damage and tumor promotion: Implications for cancer prevention. Food Chem. Toxicol. 2007, 45, 1634–1640. [Google Scholar] [CrossRef] [PubMed]
- Galleano, M.; Puntarulo, S. Hepatic chemiluminescence and lipid peroxidation in mild iron overload. Toxicology 1992, 76, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Galleano, M.; Puntarulo, S. Effect of mild iron overload on liver and kidney lipid peroxidation. Braz. J. Med. Biol. Res. 1994, 27, 2349–2358. [Google Scholar] [PubMed]
- Galleano, M.; Puntarulo, S. Role of antioxidants on the erythrocytes resistance to lipid peroxidation after acute iron overload in rats. Biochim. Biophys. Acta 1995, 1271, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, H.; Gao, Z.; Xu, H. Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. Eur. J. Pharmacol. 2005, 509, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Zhao, Y.; Gao, Z. Dietary supplementation of baicalin and quercetin attenuates iron overload induced mouse liver injury. Eur. J. Pharmacol. 2006, 535, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Koyu, A.; Ozguner, F.; Caliskan, S.; Karaca, H. Preventive effect of vitamin e on iron-induced oxidative damage in rabbit. Toxicol. Ind. Health 2005, 21, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, D.S.; Maharaj, H.; Daya, S.; Glass, B.D. Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity. J. Neurochem. 2006, 96, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Kapsokefalou, M.; Miller, D.D. Iron loading and large doses of intravenous ascorbic acid promote lipid peroxidation in whole serum in guinea pigs. Br. J. Nutr. 2001, 85, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, S.; Raghunath, M.; Ghafoorunissa. Dietary sesame oils inhibits iron-induced oxidative stress in rats. Br. J. Nutr. 2004, 92, 581–587. [Google Scholar]
- Galleano, M.; Puntarulo, S. Dietary alpha-tocopherol supplementation on antioxidant defenses after in vivo iron overload in rats. Toxicology 1997, 124, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Carrier, J.; Aghdassi, E.; Platt, I.; Cullen, J.; Allard, J.P. Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats with induced colitis. Aliment Pharmacol. Ther. 2001, 15, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Knutson, M.D.; Walter, P.B.; Ames, B.N.; Viteri, F.E. Both iron deficiency and daily iron supplements increase lipid peroxidation in rats. J. Nutr. 2000, 130, 621–628. [Google Scholar] [PubMed]
- Romero-Aba, M.E.; Schuemann, K.; Kroll, S.; Friel, J.K.; Weiss, G.; Juergen, F.; Solomons, N.W. Short and medium term stability of biomarkers of inflamation and in vivo oxidation in biological fluids of healthy guatemalan men. FASEB J. 2007, 21, A739. [Google Scholar]
- Lachili, B.; Hininger, I.; Faure, H.; Arnaud, J.; Richard, M.J.; Favier, A.; Roussel, A.M. Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation. Biol. Trace Elem. Res. 2001, 83, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Duarte, T.L.; Jones, G.D. Vitamin c modulation of h2o2-induced damage and iron homeostasis in human cells. Free Radic. Biol. Med. 2007, 43, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Eiselt, J.; Racek, J.; Opatrny, K., Jr.; Trefil, L.; Stehlik, P. The effect of intravenous iron on oxidative stress in hemodialysis patients at various levels of vitamin C. Blood Purif. 2006, 24, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Menasche, P.; Antebi, H.; Alcindor, L.G.; Teiger, E.; Perez, G.; Giudicelli, Y.; Nordmann, R.; Piwnica, A. Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans. Circulation 1990, 82, IV390–IV396. [Google Scholar]
- Imlay, J.A.; Linn, S. DNA damage and oxygen radical toxicity. Science 1988, 240, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Han, Z.; Chin, S.M.; Linn, S. Three chemically distinct types of oxidants formed by iron-mediated fenton reactions in the presence of DNA. Proc. Natl. Acad. Sci. USA 1994, 91, 12438–12442. [Google Scholar] [CrossRef] [PubMed]
- Mello Filho, A.C.; Meneghini, R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the haber-weiss reaction. Biochim. Biophys. Acta 1984, 781, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA damage and disease: Induction, repair and significance. Mutat. Res. 2004, 567, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Henle, E.S.; Linn, S. Oxidative damage to DNA constituents by iron-mediated fenton reactions. The deoxycytidine family. J. Biol. Chem. 1996, 271, 21167–21176. [Google Scholar]
- Henle, E.S.; Luo, Y.; Gassmann, W.; Linn, S. Oxidative damage to DNA constituents by iron-mediated fenton reactions. The deoxyguanosine family. J. Biol. Chem. 1996, 271, 21177–21186. [Google Scholar]
- Erba, D.; Riso, P.; Colombo, A.; Testolin, G. Supplementation of jurkat t cells with green tea extract decreases oxidative damage due to iron treatment. J. Nutr. 1999, 129, 2130–2134. [Google Scholar] [PubMed]
- Richter, C.; Park, J.W.; Ames, B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 1988, 85, 6465–6467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wei, T.; Hou, J.; Li, G.; Yu, S.; Xin, W. Iron-induced oxidative damage and apoptosis in cerebellar granule cells: Attenuation by tetramethylpyrazine and ferulic acid. Eur. J. Pharmacol. 2003, 467, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Mello-Filho, A.C.; Meneghini, R. Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutat. Res. 1991, 251, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Keep, R.F.; Hua, Y.; Hoff, J.T.; Xi, G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005, 1039, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Srigiridhar, K.; Nair, K.M.; Subramanian, R.; Singotamu, L. Oral repletion of iron induces free radical mediated alterations in the gastrointestinal tract of rat. Mol. Cell Biochem. 2001, 219, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Walter, P.B.; Knutson, M.D.; Paler-Martinez, A.; Lee, S.; Xu, Y.; Viteri, F.E.; Ames, B.N. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc. Natl. Acad. Sci. USA 2002, 99, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, K.; Min, K.; Alkan, Z.; Hawkes, W.C.; Ebeler, S.; Bowlus, C.L. The potentiating and protective effects of ascorbate on oxidative stress depend upon the concentration of dietary iron fed c3h mice. J. Nutr. Biochem. 2007, 18, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Asare, G.A.; Mossanda, K.S.; Kew, M.C.; Paterson, A.C.; Kahler-Venter, C.P.; Siziba, K. Hepatocellular carcinoma caused by iron overload: A possible mechanism of direct hepatocarcinogenicity. Toxicology 2006, 219, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Proteggente, A.R.; England, T.G.; Rice-Evans, C.A.; Halliwell, B. Iron supplementation and oxidative damage to DNA in healthy individuals with high plasma ascorbate. Biochem. Biophys. Res. Commun. 2001, 288, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Kawanishi, Y.; Kamohara, S.; Uchida, Y.; Shiota, M.; Inatomi, Y.; Komori, T.; Miyazawa, K.; Gondo, K.; Yamasawa, I. Oxidative DNA damage (8-hydroxydeoxyguanosine) and body iron status: A study on 2507 healthy people. Free Radic. Biol. Med. 2003, 35, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Tuomainen, T.P.; Loft, S.; Nyyssonen, K.; Punnonen, K.; Salonen, J.T.; Poulsen, H.E. Body iron is a contributor to oxidative damage of DNA. Free Radic. Res. 2007, 41, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Zein, S.; Rachidi, S.; Hininger-Favier, I. Is oxidative stress induced by iron status associated with gestational diabetes mellitus? J. Trace Elem. Med. Biol. 2014, 28, 65–69. [Google Scholar] [CrossRef]
- Domellof, M.; Thorsdottir, I.; Thorstensen, K. Health effects of different dietary iron intakes: A systematic literature review for the 5th nordic nutrition recommendations. Food Nutr. Res. 2013, 57. [Google Scholar] [CrossRef] [Green Version]
- Bowers, K.; Yeung, E.; Williams, M.A.; Qi, L.; Tobias, D.K.; Hu, F.B.; Zhang, C. A prospective study of prepregnancy dietary iron intake and risk for gestational diabetes mellitus. Diabetes Care 2011, 34, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zhang, C.; Gelaye, B.; Enquobahrie, D.A.; Frederick, I.O.; Williams, M.A. Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care 2011, 34, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Helin, A.; Kinnunen, T.I.; Raitanen, J.; Ahonen, S.; Virtanen, S.M.; Luoto, R. Iron intake, haemoglobin and risk of gestational diabetes: A prospective cohort study. BMJ Open 2012, 2, e001730. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Menato, G.; Villois, P.; Gambino, R.; Cassader, M.; Cotrino, I.; Cavallo-Perin, P. Iron supplementation and gestational diabetes in midpregnancy. Am. J. Obstet. Gynecol. 2009, 201, 158.e1–158.e6. [Google Scholar]
- Chan, K.K.; Chan, B.C.; Lam, K.F.; Tam, S.; Lao, T.T. Iron supplement in pregnancy and development of gestational diabetes—A randomised placebo-controlled trial. BJOG Int. J. Obstet. Gynaecol. 2009, 116, 789–798. [Google Scholar] [CrossRef]
- Kinnunen, T.I.; Luoto, R.; Helin, A.; Hemminki, E. Supplemental iron intake and the risk of glucose intolerance in pregnancy: Re-analysis of a randomised controlled trial in finland. Matern. Child Nutr. 2014. [Google Scholar] [CrossRef]
- Salmenhaara, M.; Uusitalo, L.; Uusitalo, U.; Kronberg-Kippila, C.; Sinkko, H.; Ahonen, S.; Veijola, R.; Knip, M.; Kaila, M.; Virtanen, S.M. Diet and weight gain characteristics of pregnant women with gestational diabetes. Eur. J. Clin. Nutr. 2010, 64, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Afkhami-Ardekani, M.; Rashidi, M. Iron status in women with and without gestational diabetes mellitus. J. Diabetes Complications 2009, 23, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Behboudi-Gandevani, S.; Safary, K.; Moghaddam-Banaem, L.; Lamyian, M.; Goshtasebi, A.; Alian-Moghaddam, N. The relationship between maternal serum iron and zinc levels and their nutritional intakes in early pregnancy with gestational diabetes. Biol. Trace Elem. Res. 2013, 154, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, F.; Bagheri, S.M.; Rajabi, O. A comparative study of relationship between micronutrients and gestational diabetes. ISRN Obstet. Gynecol. 2012, 2012, 470419. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, E.; Nandakumaran, M.; Al-Shammari, M.; Al-Harouny, A. Maternal-fetal status of copper, iron, molybdenum, selenium and zinc in patients with gestational diabetes. J. Matern. Fetal Neonatal Med. 2004, 16, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, M.; Huang, Z.; Sheng, L.; Ge, Y.; Zhang, H.; Jiang, M.; Zhang, G. Elemental contents in serum of pregnant women with gestational diabetes mellitus. Biol. Trace Elem. Res. 2002, 88, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Amiri, F.N.; Basirat, Z.; Omidvar, S.; Sharbatdaran, M.; Tilaki, K.H.; Pouramir, M. Comparison of the serum iron, ferritin levels and total iron-binding capacity between pregnant women with and without gestational diabetes. J. Nat. Sci. Biol Med. 2013, 4, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Scholl, T.O.; Stein, T.P. Association of elevated serum ferritin levels and the risk of gestational diabetes mellitus in pregnant women: The camden study. Diabetes Care 2006, 29, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Soubasi, V.; Petridou, S.; Sarafidis, K.; Tsantali, C.; Diamanti, E.; Buonocore, G.; Drossou-Agakidou, V. Association of increased maternal ferritin levels with gestational diabetes and intra-uterine growth retardation. Diabetes & Metabolism 2010, 36, 58–63. [Google Scholar]
- Lao, T.T.; Chan, P.L.; Tam, K.F. Gestational diabetes mellitus in the last trimester - a feature of maternal iron excess? Diabetic Med. J. Br. Diabetic Assoc. 2001, 18, 218–223. [Google Scholar] [CrossRef]
- Lao, T.T.; Tam, K.F. Maternal serum ferritin and gestational impaired glucose tolerance. Diabetes Care 1997, 20, 1368–1369. [Google Scholar] [CrossRef] [PubMed]
- Derbent, A.U.; Simavli, S.A.; Kaygusuz, I.; Gumus, II; Yilmaz, S.; Yildirim, M.; Uysal, S. Serum hepcidin is associated with parameters of glucose metabolism in women with gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2013, 26, 1112–1115. [Google Scholar]
- Lao, T.T.; Ho, L.F. Impact of iron deficiency anemia on prevalence of gestational diabetes mellitus. Diabetes Care 2004, 27, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Lao, T.T.; Chan, L.Y.; Tam, K.F.; Ho, L.F. Maternal hemoglobin and risk of gestational diabetes mellitus in chinese women. Obstet. Gynecol. 2002, 99, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Cauza, E.; Hanusch-Enserer, U.; Bischof, M.; Spak, M.; Kostner, K.; Tammaa, A.; Dunky, A.; Ferenci, P. Increased c282y heterozygosity in gestational diabetes. Fetal Diagn. Ther. 2005, 20, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Bencaiova, G.; Krafft, A.; Burkhardt, T.; Zimmermann, R. Hemoglobinopathies, body iron stores and gestational diabetes mellitus. Haematologica 2005, 90, 1138–1139. [Google Scholar] [PubMed]
- Yeniel, A.O.; Ergenoglu, A.M.; Sanhal, C.Y.; Sahin, C.; Ulukus, M.; Oztekin, K. Does high maternal first trimester iron status have an effect on the 50 g oral glucose test? J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol. 2012, 32, 332–334. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhuang, T.; Han, H.; Yang, Z. Iron, Oxidative Stress and Gestational Diabetes. Nutrients 2014, 6, 3968-3980. https://doi.org/10.3390/nu6093968
Zhuang T, Han H, Yang Z. Iron, Oxidative Stress and Gestational Diabetes. Nutrients. 2014; 6(9):3968-3980. https://doi.org/10.3390/nu6093968
Chicago/Turabian StyleZhuang, Taifeng, Huijun Han, and Zhenyu Yang. 2014. "Iron, Oxidative Stress and Gestational Diabetes" Nutrients 6, no. 9: 3968-3980. https://doi.org/10.3390/nu6093968
APA StyleZhuang, T., Han, H., & Yang, Z. (2014). Iron, Oxidative Stress and Gestational Diabetes. Nutrients, 6(9), 3968-3980. https://doi.org/10.3390/nu6093968