Plant Ferritin—A Source of Iron to Prevent Its Deficiency
Abstract
:1. Introduction
2. Iron in Food—Forms, Bioavailability and Toxicity
3. Food Enrichment with Iron
4. Specific Features of Ferritin
5. Nutritional Value of Plant Ferritin
6. Iron Biofortification of Crop Plants
7. Ferritin as a Promising Bioactive Food Ingredient
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Iron Deficiency Anaemia Assessment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- De Benoist, B.; McLean, E.; Egli, I.; Cogswell, M. Worldwide Prevalence of Anaemia 1993–2005; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Blanck, H.M.; Cogswell, M.E.; Gillespie, C.; Reyes, M. Iron supplement use and iron status among US adults: Results from the third National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 2005, 82, 1024–1031. [Google Scholar] [PubMed]
- Black, M.M.; Quigg, A.M.; Hurley, K.M.; Pepper, M.R. Iron deficiency and iron-deficiency anemia in the first two years of life: Strategies to prevent loss of developmental potential. Nutr. Rev. 2011, 69, S64–S70. [Google Scholar] [CrossRef] [PubMed]
- Halterman, J.S.; Kaczorowski, J.M.; Aligne, C.A.; Auinger, P.; Szilagyi, P.G. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 2001, 107, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: A Report of the Panel on Micronutrients; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Brotanek, J.M.; Gosz, J.; Weitzman, M.; Flores, G. Iron deficiency in early childhood in the United States: Risk factors and racial/ethnic disparities. Pediatrics 2007, 120, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Eicher-Miller, H.A.; Mason, A.C.; Weaver, C.M.; McCabe, G.P.; Boushey, C.J. Food insecurity is associated with iron deficiency anemia in US adolescents. Am. J. Clin. Nutr. 2009, 90, 1358–1371. [Google Scholar] [CrossRef] [PubMed]
- Aggett, P.J. Iron. In Present Knowledge in Nutrition, 10th ed.; Erdman, J.W., MacDonald, I.A., Zeisel, S.H., Eds.; Wiley-Blackwell: Washington, DC, USA, 2012; pp. 506–520. [Google Scholar]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Iron. In Dietary Supplement Fact Sheet; USA Government, National Institutes of Health, Office of Dietary Supplements, 2004. [Google Scholar]
- Davila-Hicks, P.; Theil, E.C.; Lönnerdal, B. Iron in ferritin or in salts (ferrous sulfate) is equally bioavailable in nonanemic women. Am. J. Clin. Nutr. 2004, 80, 936–940. [Google Scholar] [PubMed]
- Theil, E.C.; Briat, J.-F. Plant Ferritin and Non-Heme Iron Nutrition in Humans. HarvestPlus Technical Monograph 1; International Food Policy Research Institute and International Center for Tropical Agriculture (CIAT): Washington, DC, USA; Cali, Columbia, 2004. [Google Scholar]
- Dary, O.; Freire, W.; Kim, S. Iron compounds for food fortification: Guidelines for Latin America and the Caribbean 2002. Nutr. Rev. 2002, 60, S50–S61. [Google Scholar] [CrossRef] [PubMed]
- Qiu, A.; Jansen, M.; Sakaris, A.; Min, S.H.; Chattopadhyay, S.; Tsai, E.; Sandoval, C.; Zhao, R.; Akabas, M.H.; Goldman, I.D. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 2006, 127, 917–928. [Google Scholar] [CrossRef]
- Quigley, J.G.; Yang, Z.; Worthington, M.T.; Phillips, J.D.; Sabo, K.M.; Sabath, D.E.; Berg, C.L.; Sassa, S.; Wood, B.L.; Abkowitz, J.L. Identification of a human heme exporter that is essential for erythropoiesis. Cell 2004, 118, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, P.; Ross, D.D.; Nakanishi, T.; Bailey-Dell, K.; Zhou, S.; Mercer, K.E.; Sarkadi, B.; Sorrentino, B.P.; Schuetz, J.D. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J. Biol. Chem. 2004, 279, 24218–24225. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.C. The iron transporter DMT1. Int. J. Biochem. Cell. Biol. 1999, 31, 991–994. [Google Scholar] [CrossRef] [PubMed]
- San Martin, C.D.; Garri, C.; Pizarro, F.; Walter, T.; Theil, E.C.; Núñez, M.T. Caco-2 intestinal epithelial cells absorb soybean ferritin by Mu2 (AP2)-dependent endocytosis. J. Nutr. 2008, 138, 659–666. [Google Scholar] [PubMed]
- Suzuki, Y.A.; Shin, K.; Lönnerdal, B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry 2001, 40, 15771–15770. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, E.P.; Garlitz, B.A.; Harris, E.L.; Beil, T.L.; Smith, P.R. Screening for hereditary hemochromatosis: A systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2006, 145, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Manoguerra, A.S.; Erdman, A.R.; Booze, L.L.; Christianson, G.; Wax, P.M.; Scharman, E.J.; Woolf, A.D.; Chyka, P.A.; Keyes, D.C.; Olson, K.R.; et al. Iron ingestion: An evidence-based consensus guideline for out-of-hospital management. Clin. Toxicol. (Phila.) 2005, 43, 553–570. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry: Iron-Containing Supplements and Drugs: Label Warning Statements Small Entity Compliance Guide; U.S. Department of Health and Human Services: Silver Spring, MD, USA, 2003. [Google Scholar]
- European Commision; Food Supplements Directive. European Commission, Health and Food Safety: Brussels, Belgium, 2002.
- Murray-Kolbe, L.E.; Beard, J. Iron. In Encyclopedia of Dietary Supplements, 2nd ed.; Coates, P.M., Betz, J.M., Blackman, M.R., Cragg, G.M., Levine, M., Moss, J., White, J.D., Eds.; Informa Healthcare: London, UK; New York, NY, USA, 2010; pp. 432–438. [Google Scholar]
- World Health Organization. Guidelines on Food Fortification with Micronutrients; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Hallberg, L.; Rossander-Hulthe’n, L. Iron requirements in menstruating women. Am. J. Clin. Nutr. 1991, 54, 1047–1058. [Google Scholar] [PubMed]
- Hurrel, R.F. Fortification: Overcoming technical and practical barriers. J. Nutr. 2002, 132, 806–812. [Google Scholar]
- Ibrahim, W.; Lee, U.S.; Yeh, C.C.; Szabo, J.; Bruckner, G.; Chow, C.K. Oxidative stress and antioxidant status in mouse liver: Effects of dietary lipid, vitamin E and iron. J. Nutr. 1997, 127, 1401–1406. [Google Scholar] [PubMed]
- Haas, J.D.; Beard, J.L.; Murray-Kolb, L.E.; del Mundo, A.M.; Felix, A.; Gregorio, G.B. Iron-biofortified rice improves iron stores of non-anemic Filipino women. J. Nutr. 2005, 135, 2823–2830. [Google Scholar] [PubMed]
- Sczekan, S.R.; Joshi, J.G. Isolation and characterization of ferritin from soybeans (Glycine max). J. Biol. Chem. 1987, 262, 13780–13788. [Google Scholar] [PubMed]
- Hsieh, H.M.; Liu, W.K.; Huang, P.C. A novel stress-inducible metallothionein-like protein from rice. Plant Mol. Biol. 1995, 28, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Briat, J.-F.; Ravet, K.; Arnaud, N.; Duc, C.; Boucherez, J.; Touraine, B.; Cellier, F.; Gaymard, F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann. Bot. 2010, 105, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Theil, E.C. Ferritins: Dynamic management of biological iron and oxygen chemistry. Acc. Chem. Res. 2005, 38, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G. Phytoferritin ant its implication for human health and nutrition. Biochim. Biophys. Acta 2010, 1800, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L. The physiological role of ferritin-like compounds in bacteria. Crit. Rev. Microbiol. 2004, 30, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Goto, F.; Yoshihara, T. A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. J. Biol. Chem. 2001, 276, 19575–19579. [Google Scholar] [CrossRef] [PubMed]
- Lobréaux, S.; Yewdall, S.; Briat, J.F.; Harrison, P.M. Amino acid sequence and predicted three-dimensional structure of pea seed ferritin. Biochem. J. 1992, 288, 931–939. [Google Scholar] [PubMed]
- Lobreaux, S.; Briat, J.-F. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem. J. 1991, 274, 601–606. [Google Scholar] [PubMed]
- Masuda, T.; Goto, F.; Yoshihara, T.; Ezure, T.; Suzuki, T.; Kobayashi, S.; Shikata, M.; Utsumi, S. Construction of homo- and heteropolymers of plant ferritin subunits using an in vitro protein expression system. Protein Expr. Purif. 2007, 56, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Sun, Q.; Wei, D.; Li, J.; Tang, B.; Jia, Q.; Hu, W.; Zhao, Y.; Hua, Z.C. A novel ferritin gene, SferH-5, reveals heterogeneity of the 26.5-kDa subunit of soybean (Glycine max) seed ferritin. FEBS Lett. 2007, 581, 5796–5802. [Google Scholar] [CrossRef] [PubMed]
- Theil, E.C. Iron, ferritin, and nutrition. Annu. Rev. Nutr. 2004, 24, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Deng, J.; Yang, H.; Masuda, T.; Goto, F.; Yoshihara, T.; Zhao, G. A novel EP-involved pathway for iron release from soya bean seed ferritin. Biochem. J. 2010, 427, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Van Wuytswinkel, O.; Briat, J.F. Conformational changes and in vitro core formation modifications induced by site directed mutagenesis of the specific amino terminus (EP) of pea seed ferritin. Biochem. J. 1995, 305, 959–965. [Google Scholar] [PubMed]
- Van Wuytswinkel, O.; Savino, G.; Briat, J.F. Purification and characterization of recombinant pea seed ferritins expressed in Escherichia coli: Influence of amino terminus deletions on protein solubility and in vitro core formation. Biochem. J. 1995, 305, 253–261. [Google Scholar] [PubMed]
- Ragland, M.; Briat, J.F.; Gagnon, J.; Laulhere, J.P.; Massenet, O.; Theil, E.C. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J. Biol. Chem. 1990, 265, 18339–18344. [Google Scholar] [PubMed]
- Proudhon, D.; Briat, J.F.; Lescure, A.M. Iron induction of ferritin synthesis in soybean cell suspensions. Plant Physiol. 1989, 90, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Theil, E.C. Ferritin. In Handbook of Metaloproteins 1; Messeschmidt, A., Huber, R., Poilos, T., Wieghardt, K., Eds.; John Wiley and Sons: Chichester, UK, 2000; pp. 771–781. [Google Scholar]
- Harrison, P.M. The structure and function of ferritin. Biochem. Educ. 1986, 14, 154–162. [Google Scholar] [CrossRef]
- Rama Kumar, T.; Prasad, M.N.V. Ferritin induction by iron mediated oxidative stress and ABA in Vigna mungo (L.) Hepper seedlings: Role of antioxidants and free radical scavengers. J. Plant Physiol. 1999, 155, 652–655. [Google Scholar] [CrossRef]
- Drakakaki, G.; Marcel, S.; Glahn, R.P.; Lund, E.K.; Pariagh, S.; Fischer, R.; Christou, P.; Stoger, E. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol. Biol. 2005, 59, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Lindenschmidt, R.C.; Sendelbach, L.E.; Witschi, H.P.; Price, D.J.; Fleming, J.; Joshi, J.G. Ferritin and in vivo beryllium toxicity. Toxicol. Appl. Pharm. 1986, 82, 344–350. [Google Scholar] [CrossRef]
- Polanams, J.; Ray, A.D.; Watt, R.K. Nanophase iron phosphate, iron arsenate, iron vandate and iron molybdate minerals syntehesized within the protein cage of ferritin. Inorg. Chem. 2005, 44, 3203–3209. [Google Scholar] [CrossRef] [PubMed]
- Rama Kumar, T.; Prasad, M.N.V. Metal-binding properties of ferritin in Vigna mungo (L.) Hepper (Black gram): Possible role in heavy metal detoxification. Bull. Environ. Contam. Toxicol. 1999, 62, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Surguladze, N.; Patton, S.; Cozzi, A.; Fried, M.G.; Connor, J.R. Characterization of nuclear ferritin and mechanism of translocation. Biochem. J. 2005, 388, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Sczekan, S.R.; Joshi, J.G. Metal binding properties of phytoferritin and synthetic iron cores. Biochim. Biophys. Acta 1989, 990, 8–14. [Google Scholar] [CrossRef]
- Deak, M.; Horvarth, G.V.; Davletova, S.; Török, K.; Vass, I.; Barna, B.; Kiraly, Z.; Dudits, D. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat. Biotechnol. 1999, 17, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Bottcher, A.; Nobile, P.M.; Martins, P.F.; Conte, F.F.; Azevedo, R.A.; Mazzafera, P. A role for ferritin in the antioxidant system in coffee cell cultures. BioMetals 2011, 24, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.X.; Linsenmayer, T.F. Nuclear translocation of ferritin in corneal epithelial cells. J. Cell Sci. 2001, 114, 2327–2334. [Google Scholar] [PubMed]
- Alkhateeb, A.A.; Connor, J.R. Nuclear ferritin: A new role for ferritin in cell biology. Biochim. Biophys. Acta 2010, 1800, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Mata, C.G.; Lamattina, L.; Cassia, R.O. Involvement of iron and ferritin in the potato-Phytophthora infestans interaction. Eur. J. Plant Pathol. 2001, 107, 557–562. [Google Scholar] [CrossRef]
- Briat, J.F.; Fobis-Loisy, I.; Grignon, N.; Vansuyt, G. Cellular and molecular aspects of iron metabolism in plants. Biol. Cell 1995, 84, 69–81. [Google Scholar] [CrossRef]
- Lucas, M.M.; van de Sype, G.; Hérouart, D.; Hernández, M.J.; Puppo, A.; de Felipe, M.R. Immunolocalization of ferritin in determinate and indeterminate legume root nodules. Protoplasma 1998, 204, 61–70. [Google Scholar] [CrossRef]
- Theil, E.C.; Hase, T. Plant and microbial ferritins. In Iron Chelation in Plants and Soil Microorganism; Barton, L.L., Hemming, B.B., Eds.; Academic Press: San Diego, CA, USA, 1993; pp. 133–156. [Google Scholar]
- Zancani, M.; Peresson, C.; Biroccio, A.; Federici, G.; Urbani, A.; Murgia, I.; Soave, C.; Micali, F.; Vianello, A.; Macrì, F. Evidence for the presence of ferritin in plant mitochondria. Eur. J. Biochem. 2004, 271, 3657–3664. [Google Scholar] [CrossRef] [PubMed]
- Briat, J.-F. Iron dynamics in plants. Adv. Bot. Res. 2008, 46, 138–180. [Google Scholar]
- Grusak, M.A. Iron transport to developing ovules of Pisum sativum L. Seed import characteristics and phloem iron-loading capacity of source regions. Plant Physiol. 1994, 104, 649–655. [Google Scholar] [PubMed]
- Hocking, P.J.; Pate, J.S. Mobilization of minerals to developing seeds of legumes. Ann. Bot. 1977, 41, 1259–1278. [Google Scholar]
- Burton, J.W.; Harlow, C.; Theil, E.C. Evidence for reutilization of nodule iron in soybean seed development. J. Plant Nutr. 1998, 21, 913–927. [Google Scholar] [CrossRef]
- Messina, M.; Messina, V. The role of soy in vegetarian diets. Nutrients 2010, 2, 855–888. [Google Scholar] [CrossRef] [PubMed]
- Kalgaonkar, S.; Lönnerdal, B. Effect of dietary factors on iron uptake from ferritin by Caco-2 cells. J. Nutr. Biochem. 2008, 19, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Murray-Kolb, L.E.; Takaiwa, F.; Goto, F.; Yoshihara, T.; Theil, E.C.; Beard, J.L. Transgenic rice is a source of iron for iron-depleted rats. J. Nutr. 2002, 132, 957–960. [Google Scholar] [PubMed]
- Zielińska-Dawidziak, M.; Hertig, I.; Piasecka-Kwiatkowska, D.; Staniek, H.; Nowak, K.W.; Twardowski, T. Study on iron availability from prepared soybean sprouts using an iron-deficient rat model. Food Chem. 2012, 135, 2622–2627. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.R.; Beard, J.L.; Dassenko, S.A.; Cook, J.D. Iron absorption from legumes in humans. Am. J. Clin. Nutr. 1984, 40, 42–44. [Google Scholar] [PubMed]
- Lönnerdal, B.; Bryant, A.; Liu, X.; Theil, E.C. Iron absorption from soybean ferritin in nonanemic women. Am. J. Clin. Nutr. 2006, 83, 103–107. [Google Scholar] [PubMed]
- Beard, J.L.; Burton, J.W.; Theil, E.C. Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats. J. Nutr. 1996, 126, 154–160. [Google Scholar] [PubMed]
- Theil, E.C.; Chen, H.; Miranda, C.; Janser, H.; Elsenhans, B.; Núñez, M.T.; Pizarro, F.; Schümann, K. Absorption of iron from ferritin is independent of heme iron and ferrous salts in women and rat intestinal segments. J. Nutr. 2012, 142, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Hoppler, M.; Schonbachler, A.; Meile, L.; Hurrell, R.F.; Walczyk, T. Ferritin-iron is released during boiling and in vitro gastric digestion. J. Nutr. 2008, 138, 878–884. [Google Scholar] [PubMed]
- Bejjani, S.; Pullakhandam, R.; Punjal, R.; Nair, K.M. Gastric digestion of pea ferritin and modulation of its iron bioavailability by ascorbic and phytic acids in Caco-2 cells. World J. Gastroenterol. 2007, 13, 2083–2088. [Google Scholar] [PubMed]
- Chen, L.; Bai, G.; Yang, R.; Zang, J.; Zhou, T.; Zhao, G. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 2014, 15, 307–312. [Google Scholar] [CrossRef]
- Lönnerdal, B. Soybean ferritin: Implications for iron status of vegetarians. Am. J. Clin. Nutr. 2009, 89, 1680S–1685S. [Google Scholar] [CrossRef] [PubMed]
- Goto, F.; Yoshihara, T.; Toki, S.; Takaiwa, F. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 1999, 17, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Lucca, P.; Hurrell, R.; Potrykus, I. Approaches to improving the bioavailability and level of iron in rice seeds. J. Sci. Food Agric. 2001, 81, 828–834. [Google Scholar] [CrossRef]
- Paul, S.; Ali, N.; Gayen, D.; Datta, S.K.; Datta, K. Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops Food 2012, 3, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Yoshihara, T.; Ooyama, A.; Goto, F.; Takaiwa, F. Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 2005, 222, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Suzuki, Y.; Huang, J.; Yalda, D.; Pham, P.; Wu, L.; Bartley, G.; Huang, N.; Lönnerdal, B. Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci. 2002, 163, 713–722. [Google Scholar] [CrossRef]
- Masuda, H.; Suzuki, M.; Morikawa, K.C.; Kobayashi, T.; Nakanishi, H.; Takahashi, M.; Saigusa, M.; Mori, S.; Nishizawa, N.K. Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 2008, 6, 100–108. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nakanishi, H.; Takahashi, M.; Kawasaki, S.; Nishizawa, N.K.; Mori, S. In vivo evidence that IDS3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 2001, 6, 864–871. [Google Scholar] [CrossRef]
- Suzuki, M.; Morikawa, K.C.; Nakanishi, H.; Takahashi, M.; Saigusa, M.; Mori, S.; Nishizawa, N.K. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci. Plant Nutr. 2008, 6, 77–85. [Google Scholar] [CrossRef]
- Bonna, A.L.; Chaparro-Giraldo, A.; Appezzato-da-Gloria, B.; Hedden, P.; Silva-Filho, M.C. Ectopic expression of soybean leghemoglobin in chloroplasts impairs gibberellin biosynthesis and induces dwarfism in transgenic potato plants. Mol. Breed. 2008, 22, 613–618. [Google Scholar] [CrossRef]
- Bashir, K.; Ishimaru, Y.; Shimo, H.; Kakei, Y.; Senoura, T.; Takanashi, R.; Sato, Y.; Uozumi, N.; Nakanishi, H.; Nishizawa, N.K. Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci. Plant Nutr. 2011, 57, 803–812. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Bashir, K.; Nakanishi, H.; Nishizawa, N.K. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signal. Behav. 2012, 7, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, Y.; Masuda, H.; Bashir, K.; Inoue, H.; Tsukamoto, T.; Takahashi, M.; Nakanishi, H.; Aoki, N.; Hirose, T.; Ohsugi, R.; et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 2010, 62, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Bashir, K.; Takahashi, R.; Akhtar, S.; Ishimaru, Y.; Hiromi, N.; Nishizawa, N.K. The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 2013, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, C.; Viteri, F.E.; Lönnerdal, B.; Young, K.A.; Raboy, V.; Brown, K.H. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. Am. J. Clin. Nutr. 1998, 68, 1123–1127. [Google Scholar] [PubMed]
- Raboy, V. Progress in breeding low phytate crops. J. Nutr. 2002, 132, 503S–505S. [Google Scholar] [PubMed]
- Lucca, P.; Hurrell, R.; Potrykus, I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 2001, 102, 392–397. [Google Scholar] [CrossRef]
- Lucca, P.; Hurrell, R.; Potrykus, I. Fighting iron deficiency anemia with iron-rich rice. J. Am. Coll. Nutr. 2002, 21, 184S–190S. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Cheng, Z.; Ai, C.; Jiang, X.; Bei, X.; Zheng, Y.; Glahn, R.P.; Welch, R.M.; Miller, D.D.; Lei, X.G. Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 2010, 5, e10190. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Usuda, K.; Kobayashi, T.; Ishimaru, Y.; Kakei, Y.; Takahashi, M.; Higuchi, K.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Overexpression of the barley nicotianamine synthase gene HvNAS1 increase iron and zinc concentrations in rice grains. Rice 2009, 6, 155–166. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, U.S.; Lee, S.J.; Kim, Y.K.; Persson, D.P.; Husted, S.; Schjørring, J.K.; Kakei, Y.; Masuda, H.; Nishizawa, N.K.; et al. Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc. Natl. Acad. Sci. USA 2009, 6, 22014–22019. [Google Scholar] [CrossRef]
- Johnson, A.A.T.; Kyriacou, B.; Callahan, D.L.; Carruthers, L.; Stangoulis, J.; Lombi, E.; Tester, M. Constitutive overexpression of the OsNAS gene family reveals single gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 2011, 6, e24476. [Google Scholar] [CrossRef] [PubMed]
- Grennan, A.K. Metallothioneins, a diverse protein family. Plant. Physiol. 2011, 155, 1750–1751. [Google Scholar] [CrossRef] [PubMed]
- Ogo, Y.; Itai, R.N.; Nakanishi, H.; Kobayashi, T.; Takahashi, M.; Mori, S.; Nishizawa, N.K. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe deficient conditions. Plant J. 2007, 51, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Ogo, Y.; Itai, R.N.; Kobayashi, T.; Aung, M.S.; Nakanishi, H.; Nishizawa, N.K. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol. Biol. 2011, 75, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Kobayashi, T.; Ishimaru, Y.; Takahashi, M.; Aung, M.S.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front. Plant Sci. 2013, 6, 132. [Google Scholar] [CrossRef]
- Wirth, J.; Poletti, S.; Aeschlimann, B.; Yakandawala, N.; Drosse, B.; Osorio, S.; Tohge, T.; Fekrnie, A.R.; Günther, D.; Gruissem, W.; et al. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotech. J. 2009, 7, 1–14. [Google Scholar] [CrossRef]
- Aung, M.S.; Masuda, H.; Kobayashi, T.; Nakanishi, H.; Yamakawa, T.; Nishizawa, N.K. Iron biofortification of Myanmar rice. Front. Plant Sci. 2013, 4, 158. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, M.; Datta, K.; Oliva, N.; Khalekuzzaman, M.; Torrizo, L.; Krishnan, S.; Oliveira, M.; Goto, F.; Datta, S.K. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 2003, 164, 371–378. [Google Scholar] [CrossRef]
- Masuda, H.; Ishimaru, Y.; Aung, M.S.; Kobayashi, T.; Kakei, Y.; Takahashi, M.; Higuchi, K.; Nakanishi, H.; Nishizawa, N.K. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [PubMed]
- Kanobe, M.N.; Rodermel, S.R.; Bailey, T.; Scott, M.P. Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene. Front. Plant Sci. 2013, 4, 196. [Google Scholar] [CrossRef] [PubMed]
- Borg, S.; Brinch-Pedersen, H.; Tauris, B.; Madsen, L.H.; Darbani, B.; Noeparvar, S.; Holm, P.B. Wheat ferritins: Improving the iron content of the wheat grain. J. Cereal Sci. 2012, 56, 204–213. [Google Scholar] [CrossRef]
- Sui, X.; Zhao, Y.; Wang, S.; Duan, X.; Xu, L.; Liang, R.; Li, B.-Y. Improvement Fe content of wheat (Triticum aestivum) grain by soybeanferritin expression cassette without vector backbone sequence. J. Agric. Biotechnol. 2012, 20, 766–773. [Google Scholar]
- Goto, F.; Yoshihara, T.; Saiki, H. Iron acumulation and enhanced growth in transgenic lettuce plants expressing the iron binding protein ferritin. Theor. Appl. Genet. 2000, 100, 658–664. [Google Scholar] [CrossRef]
- DellaValle, D.M.; Thavarajah, D.; Thavarajah, P.; Vandenberg, A.; Glahn, R.P. Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: Is there genetic potential for iron bioavailability? Field Crop. Res. 2013, 144, 119–125. [Google Scholar]
- Blair, M.W. Mineral biofortification strategies for food staples: The example of common bean. J. Agric. Food Chem. 2013, 61, 8287–8294. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Genetically modified plants for improved trace element nutrition. J. Nutr. 2003, 133, 1490–1493. [Google Scholar]
- Drakakaki, G.; Christou, P.; Stoger, E. Constitutive expression of soybean cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res. 2000, 9, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M.; Siger, A. Effect of elevated accumulation of iron in ferritin on the antioxidants content in soybean sprouts. Eur. Food Res. Technol. 2012, 234, 1005–1012. [Google Scholar] [CrossRef]
- Zielińska-Dawidziak, M.; Piasecka-Kwiatkowska, D.; Warchalewski, J.R.; Makowska, A.; Gawlak, M.; Nawrot, J. Sprouted wheat grain with ferritin overexpression as a potential source of iron for cereal product fortification. Eur. Food Res. Technol. 2014, 238, 829–835. [Google Scholar] [CrossRef]
- Izaguirre-Mayoral, M.L.; Sinclair, T.R. Soybean genotypic difference in growth, nutrient accumulation and ultrastructure in response to manganese and iron supply in solution culture. Ann. Bot. (Lond.) 2005, 96, 149–158. [Google Scholar] [CrossRef]
- Werner, T.; Hoermannsperger, G.; Schuemann, K.; Hoelzlwimmer, G.; Tsuji, S.; Haller, D. Intestinal epithelial cell proteome from wild-type and TNFDeltaARE/WT mice: Effect of iron on the development of chronic ileitis. J. Proteome Res. 2009, 8, 3252–3264. [Google Scholar] [CrossRef] [PubMed]
- Orozco, M.N.; Solomons, N.W.; Schumann, K.; Friel, J.K.; de Montenegro, A.L. Antioxidant-rich oral supplements attenuate the effects of oral iron on in situ oxidation susceptibility of human feces. J. Nutr. 2010, 140, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hintze, K.B.; Lonnerdal, B.; Theil, E.C. Iron at the center of ferritin, metal/oxygen homeostasis and novel dietary strategies. Biol. Res. 2006, 39, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Korcz, A.; Twardowski, T. Lupin ferritin: Purification and characterization, biosynthesis and regulation of in vitro synthesis in plant system. J. Plant Physiol. 1992, 141, 75–81. [Google Scholar] [CrossRef]
- Hoppler, M.; Meile, L.; Walczyk, T. Biosynthesis, isolation and characterization of 57Fe enriched Phaseolus vulgaris ferritin after heterologous expression in Escherichia coli. Anal. Bioanal. Chem. 2008, 390, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Hoppler, M.; Zeder, C.; Walczyk, T. Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry. Anal. Chem. 2009, 81, 7368–7372. [Google Scholar] [CrossRef] [PubMed]
- Hoppler, M.; Egli, I.; Petry, N.; Gille, D.; Zeder, C.; Walczyk, T.; Blair, M.W.; Hurrell, R.F. Iron speciation in beans (Phaseolus vulgaris) biofortified by common breeding. J. Food Sci. 2014, 79, C1629–C1634. [Google Scholar] [CrossRef] [PubMed]
- Niedzielski, P.; Zielińska-Dawidziak, M.; Kozak, L.; Kowalewski, P.; Szlachetka, P.; Zalicka, S.; Wachowiak, W. Determination of iron species in samples of iron-fortified food. Food Anal. Method 2014, 7, 2023–2032. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska-Dawidziak, M. Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients 2015, 7, 1184-1201. https://doi.org/10.3390/nu7021184
Zielińska-Dawidziak M. Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients. 2015; 7(2):1184-1201. https://doi.org/10.3390/nu7021184
Chicago/Turabian StyleZielińska-Dawidziak, Magdalena. 2015. "Plant Ferritin—A Source of Iron to Prevent Its Deficiency" Nutrients 7, no. 2: 1184-1201. https://doi.org/10.3390/nu7021184
APA StyleZielińska-Dawidziak, M. (2015). Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients, 7(2), 1184-1201. https://doi.org/10.3390/nu7021184