High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Treatments
2.3. Study Visits
2.4. Visual Analogue Scales
2.5. Blood Analysis
2.6. Food Record Analysis
2.7. Statistical Analysis
3. Results
3.1. RS Content of Rice
3.2. Demographics
Demographic | Total (n = 18) | Men (n = 9) | Women (n = 9) |
---|---|---|---|
Age (years) (Mean, Range) | 26, 21–37 | 26, 25–30 | 27, 21–37 |
Height (m) (Mean, Range) | 1.69, 1.57–1.88 | 1.74, 1.65–1.88 | 1.63, 1.57–1.73 |
Weight (kg) (Mean, Range) | 66, 47–86 | 77, 68–86 | 57, 47–70 |
BMI (kg/m2) (Mean, Range) | 23.2, 20.1–26.8 | 25.2, 23.9–26.8 | 21.2, 18.4–23.3 |
Dietary Intake
Short Grain Rice | Dixiebelle | Rondo | p-Value | |
---|---|---|---|---|
Total energy (MJ) | 7.75 ± 0.82 | 8.57 ± 0.51 | 9.24 ± 1.13 | 0.3251 |
Total fat (g) | 74 ± 9 | 85 ± 8 | 94 ± 15 | 0.3581 |
Total carbohydrate (g) | 215 ± 24 | 240 ± 16 | 241 ± 25 | 0.4629 |
Total protein (g) | 81 ± 12 | 82 ± 8 | 97 ± 14 | 0.4579 |
Total fiber (g) | 19 ± 2 | 20 ± 2 | 17 ± 2 | 0.5292 |
Total available carbohydrate (g) | 196 ± 23 | 220 ± 15 | 222 ± 24 | 0.4339 |
% energy from carbohydrate | 46 ± 2 | 47 ± 3 | 45 ± 2 | 0.7788 |
% energy from fat | 34 ± 2 | 35 ± 2 | 36 ± 2 | 0.8196 |
% energy from protein | 17 ± 1 | 16 ± 1 | 17 ± 1 | 0.7834 |
% energy from alcohol | 2 ± 1 | 1 ± 1 | 2 ± 1 | 0.7590 |
3.3. Glucose Response
Short Grain Rice | Dixiebelle | Rondo | p-Value | |
---|---|---|---|---|
0 min | 94 ± 3 | 98 ± 2 | 94 ± 3 | 0.2791 |
15 min | 99 ± 3 | 101 ± 4 | 98 ± 3 | 0.5769 |
30 min | 137 ± 5 * | 126 ± 5 | 122 ± 6 | 0.0555 |
45 min | 144 ± 5 A | 127 ± 5 B | 129 ± 7 B | 0.0470 |
60 min | 142 ± 7 A ** | 125 ± 6 B ** | 118 ± 5 B *** | 0.0010 |
90 min | 117 ± 4 | 112 ± 5 | 111 ± 3 | 0.4173 |
120 min | 112 ± 4 A ** | 104 ± 4 B ** | 104 ± 2 B *** | 0.0402 |
AUC | 3519 ± 390 A ** | 2170 ± 371 B ** | 2419 ± 433 B *** | 0.0063 |
Short Grain Rice | Dixiebelle | Rondo | p-Value | |
---|---|---|---|---|
Glucose, 0 min | 83 ± 2 | 83 ± 2 | 85 ± 1 | 0.3436 |
Glucose, 60 min | 114 ± 6 A * | 105 ± 6 | 103 ± 5 B | 0.0790 |
Glucose, 120 min | 91 ± 3 | 95 ± 4 | 95 ± 2 | 0.3650 |
Insulin, 0 min | 5.6 ± 0.7 | 6.1 ± 0.9 | 6.5 ± 0.7 | 0.4334 |
Insulin, 60 min | 38.3 ± 6.7 A ** | 24.3 ± 3.8 B | 29.2 ± 6.3 B ** | 0.0009 |
Insulin, 120 min | 21.0 ± 4.3 A | 15.2 ± 2.5 B | 18.4 ± 4.0 | 0.0467 |
3.4. Insulin Response
3.5. Appetite
3.6. Palatability
Short Grain Rice | Dixiebelle | Rondo | p-Value | |
---|---|---|---|---|
Visual | 73 ± 3 | 68 ± 4 | 65 ± 5 | 0.1260 |
Smell | 69 ± 3 | 64 ± 5 | 67 ± 5 | 0.5021 |
Taste | 69 ± 3 A ** | 55 ± 5 B | 59 ± 5 B | 0.0421 |
Texture | 75 ± 3 A | 52 ± 6 B | 56 ± 5 B | 0.0023 |
Pleasantness | 73 ± 3 A | 65 ± 5 B | 63 ± 4 B | 0.0322 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fulgoni, V.L.; Fulgoni, S.A.; Upton, J.L.; Moon, M. Diet Quality and Markers for Human Health in Rice Eaters versus Non-Rice Eaters: An Analysis of the US National Health and Nutrition Examination Survey, 1999–2004. Nutr. Today 2010, 45, 262–272. [Google Scholar] [CrossRef]
- Nicklas, T.A.; O’Neil, C.E.; Fulgoni, V.L. Rice Consumption is Associated with Better Nutrient Intake and Diet Quality in Adults: National Health and Nutrition Examination Survey (NHANES) 2005–2010. Food Nutr. Sci. 2014, 5, 525–532. [Google Scholar] [CrossRef]
- International Rice Research Institute. World Rice Statistics Online Query; International Rice Research Institute: Los Baños, Laguna, Philippines, 2009. [Google Scholar]
- Panlasigui, L.N.; Thompson, L.U.; Juliano, B.O.; Perez, C.M.; Yiu, S.H.; Greenberg, G.R. Rice Varieties with Similar Amylose Content Differ in Starch Digestibility and Glycemic Response in Humans. Am. J. Clin. Nutr. 1991, 54, 871–877. [Google Scholar] [PubMed]
- Brand-Miller, J.C.; Stockmann, K.; Atkinson, F.; Petocz, P.; Denyer, G. Glycemic Index, Postprandial Glycemia, and the Shape of the Curve in Healthy Subjects: Analysis of a Database of More than 1000 Foods. Am. J. Clin. Nutr. 2009, 89, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Patindol, J.A.; Guraya, H.S.; Champagne, E.T.; McClung, A.M. Nutritionally Important Starch Fractions of Rice Cultivars Grown in Southern United States. J. Food Sci. 2010, 75, H137–H144. [Google Scholar] [CrossRef] [PubMed]
- Topping, D.L.; Clifton, P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [PubMed]
- Cummings, J.H.; Stephen, A.M. Carbohydrate Terminology and Classification. Eur. J. Clin. Nutr. 2007, 61, S5–S18. [Google Scholar] [CrossRef] [PubMed]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, Power and Validity of Visual Analogue Scales in Assessment of Appetite Sensations in Single Test Meal Studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M. The Glycemic Index. World Rev. Nutr. Diet. 1990, 62, 120–185. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Piao, J.H.; Tian, Y.; Li, W.D.; Li, K.J.; Yang, X.G. Postprandial Glycaemic and Insulinaemic Responses to GM-Resistant Starch-Enriched Rice and the Production of Fermentation-Related H2 in Healthy Chinese Adults. Br. J. Nutr. 2010, 103, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.T.; Stewart, M.L. Effect of variety and cooking method on resistant starchcontent of white rice and subsequent postprandial glucose response and appetite in humans. Asia Pac. J. Clin. Nutr. 2013, 22, 372–379. [Google Scholar] [PubMed]
- Kwak, J.H.; Paik, J.K.; Kim, H.I.; Kim, O.Y.; Shin, D.Y.; Kim, H.J.; Lee, J.H.; Lee, J.H. Dietary Treatment with Rice Containing Resistant Starch Improves Markers of Endothelial Function with Reduction of Postprandial Blood Glucose and Oxidative Stress in Patients with Prediabetes or Newly Diagnosed Type 2 Diabetes. Atherosclerosis 2012, 224, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White Rice Consumption and Risk of Type 2 Diabetes: Meta-Analysis and Systematic Review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef] [PubMed]
- Behall, K.M.; Scholfield, D.J.; Hallfrisch, J.G.; Liljeberg-Elmstahl, H.G. Consumption of both Resistant Starch and Beta-Glucan Improves Postprandial Plasma Glucose and Insulin in Women. Diabetes Care 2006, 29, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Behall, K.M.; Hallfrisch, J. Plasma Glucose and Insulin Reduction After Consumption of Breads Varying in Amylose Content. Eur. J. Clin. Nutr. 2002, 56, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Al-Tamimi, E.K.; Seib, P.A.; Snyder, B.S.; Haub, M.D. Consumption of Cross-Linked Resistant Starch (RS4(XL)) on Glucose and Insulin Responses in Humans. J. Nutr. Metab. 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Granfeldt, Y.; Drews, A.; Bjorck, I. Arepas made from High Amylose Corn Flour Produce Favorably Low Glucose and Insulin Responses in Healthy Humans. J. Nutr. 1995, 125, 459–465. [Google Scholar] [PubMed]
- Hallstrom, E.; Sestili, F.; Lafiandra, D.; Bjorck, I.; Ostman, E. A Novel Wheat Variety with Elevated Content of Amylose Increases Resistant Starch Formation and May Beneficially Influence Glycaemia in Healthy Subjects. Food Nutr. Res. 2011, 55. [Google Scholar] [CrossRef] [PubMed]
- Larsen, H.N.; Christensen, C.; Rasmussen, O.W.; Tetens, I.H.; Choudhury, N.H.; Thilsted, S.H.; Hermansen, K. Influence of Parboiling and Physico-Chemical Characteristics of Rice on the Glycaemic Index in Non-Insulin-Dependent Diabetic Subjects. Eur. J. Clin. Nutr. 1996, 50, 22–27. [Google Scholar] [PubMed]
- Yamada, Y.; Hosoya, S.; Nishimura, S.; Tanaka, T.; Kajimoto, Y.; Nishimura, A.; Kajimoto, O. Effect of Bread Containing Resistant Starch on Postprandial Blood Glucose Levels in Humans. Biosci. Biotechnol. Biochem. 2005, 69, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Penn-Marshall, M.; Holtzman, G.I.; Barbeau, W.E. African Americans may have to Consume More than 12 Grams a Day of Resistant Starch to Lower their Risk for Type 2 Diabetes. J. Med. Food. 2010, 13, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Willis, H.J.; Eldridge, A.L.; Beiseigel, J.; Thomas, W.; Slavin, J.L. Greater Satiety Response with Resistant Starch and Corn Bran in Human Subjects. Nutr. Res. 2009, 29, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Karalus, M.; Clark, M.; Greaves, K.A.; Thomas, W.; Vickers, Z.; Kuyama, M.; Slavin, J. Fermentable Fibers do Not Affect Satiety or Food Intake by Women Who do Not Practice Restrained Eating. J. Acad Nutr. Diet. 2012, 112, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenel, A.M.; Stewart, M.L. High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans. Nutrients 2015, 7, 5362-5374. https://doi.org/10.3390/nu7075225
Zenel AM, Stewart ML. High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans. Nutrients. 2015; 7(7):5362-5374. https://doi.org/10.3390/nu7075225
Chicago/Turabian StyleZenel, Alison M., and Maria L. Stewart. 2015. "High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans" Nutrients 7, no. 7: 5362-5374. https://doi.org/10.3390/nu7075225
APA StyleZenel, A. M., & Stewart, M. L. (2015). High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans. Nutrients, 7(7), 5362-5374. https://doi.org/10.3390/nu7075225