Micronutrient Intakes and Incidence of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Intake Assessment
2.3. Physical Activity Assessment
2.4. Clinical and Biological Measurements
2.5. Definitions
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef]
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. In Am. J. Kidney Dis.; 2002; Volume 39, pp. S1–S266. [Google Scholar]
- Grams, M.E.; Chow, E.K.H.; Segev, D.L.; Coresh, J. Lifetime incidence of CKD stages 3–5 in the United States. Am. J. Kidney Dis. 2013, 62, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Khajehdehi, P.; Malekmakan, L.; Pakfetrat, M.; Roozbeh, J.; Sayadi, M. Prevalence of chronic kidney disease and its contributing risk factors in southern Iran: A cross-sectional adult population-based study. Iran. J. Kidney Dis. 2014, 8, 109–115. [Google Scholar] [PubMed]
- Yang, M.; Fox, C.H.; Vassalotti, J.; Choi, M. Complications of progression of CKD. Adv. Chronic Kidney Dis. 2011, 18, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Wakasugi, M.; Kazama, J.J.; Yamamoto, S.; Kawamura, K.; Narita, I. A combination of healthy lifestyle factors is associated with a decreased incidence of chronic kidney disease: A population-based cohort study. Hypertens. Res. 2013, 36, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jimenez-Moleon, J.J.; Lindholm, B.; Cederholm, T.; Arnlov, J.; Riserus, U.; Sjogren, P.; Carrero, J.J. Mediterranean diet, kidney function, and mortality in men with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fung, T.T.; Hu, F.B.; Curhan, G.C. Association of dietary patterns with albuminuria and kidney function decline in older white women: A subgroup analysis from the nurses’ health study. Am. J. Kidney Dis. 2011, 57, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Yuzbashian, E.; Asghari, G.; Mirmiran, P.; Hosseini, F.S.; Azizi, F. Associations of dietary macronutrients with glomerular filtration rate and kidney dysfunction: Tehran Lipid and Glucose Study. J. Nephrol. 2015, 28, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Strippoli, G.F.; Craig, J.C.; Rochtchina, E.; Flood, V.M.; Wang, J.J.; Mitchell, P. Fluid and nutrient intake and risk of chronic kidney disease. Nephrology 2011, 16, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; McFann, K.; Chonchol, M.; de Boer, I.H.; Kendrick, J. Association between dietary sodium and potassium intake with chronic kidney disease in US adults: A cross-sectional study. Am. J. Nephrol. 2013, 37, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.W.; Nolte, J.V.; Gaber, A.O.; Suki, W.N. Association of dietary phosphate and serum phosphorus concentration by levels of kidney function. Am. J. Clin. Nutr. 2015, 102, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F.; Ghanbarian, A.; Momenan, A.A.; Hadaegh, F.; Mirmiran, P.; Hedayati, M.; Mehrabi, Y.; Zahedi-Asl, S. Prevention of non-communicable disease in a population in nutrition transition: Tehran Lipid and Glucose Study phase II. Trials 2009, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Rezazadeh, A.; Hosseini-Esfahani, F.; Mehrabi, Y.; Mirmiran, P.; Azizi, F. Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran Lipid and Glucose Study. Br. J. Nutr. 2012, 108, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Esfahani, F.H.; Mehrabi, Y.; Hedayati, M.; Azizi, F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 2010, 13, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Esfahani, F.; Asghari, G.; Mirmiran, P.; Azizi, F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J. Epidemiol. 2010, 20, 150–158. [Google Scholar] [CrossRef]
- Kriska, A.M.; Edelstein, S.L.; Hamman, R.F.; Otto, A.; Bray, G.A.; Mayer-Davis, E.J.; Wing, R.R.; Horton, E.S.; Haffner, S.M.; Regensteiner, J.G. Physical activity in individuals at risk for diabetes: Diabetes prevention program. Med. Sci. Sports Exerc. 2006, 38, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Momenan, A.A.; Delshad, M.; Sarbazi, N.; Rezaei Ghaleh, N.; Ghanbarian, A.; Azizi, F. Reliability and validity of the modifiable activity questionnaire (MAQ) in an Iranian urban adult population. Arch. Iran. Med. 2012, 15, 279–282. [Google Scholar] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed]
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26 (Suppl. 1), S5–S20. [Google Scholar]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Da, J.; Xie, X.; Wolf, M.; Disthabanchong, S.; Wang, J.; Zha, Y.; Lv, J.; Zhang, L.; Wang, H. Serum phosphorus and progression of CKD and mortality: A meta-analysis of cohort studies. Am. J. Kidney Dis. 2015, 66, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Smyth, A.; O’Donnell, M.J.; Yusuf, S.; Clase, C.M.; Teo, K.K.; Canavan, M.; Reddan, D.N.; Mann, J.F.E. Sodium intake and renal outcomes: A systematic review. Am. J. Hypertens. 2014, 27, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Nerbass, F.B.; Pecoits-Filho, R.; McIntyre, N.J.; McIntyre, C.W.; Taal, M.W. High sodium intake is associated with important risk factors in a large cohort of chronic kidney disease patients. Eur. J. Clin. Nutr. 2015, 69, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Mahan, L.K.; Escott-Stump, S.; Raymond, J.L.; Krause, M.V. Krause’s Food & the Nutrition Care Process; Elsevier Health Sciences: Philadelphia, PA, USA, 2012. [Google Scholar]
- Odermatt, A. The western-style diet: A major risk factor for impaired kidney function and chronic kidney disease. Am. J. Physiol. Renal Physiol. 2011, 301, F919–F931. [Google Scholar] [CrossRef] [PubMed]
- Tzoulaki, I.; Patel, C.J.; Okamura, T.; Chan, Q.; Brown, I.J.; Miura, K.; Ueshima, H.; Zhao, L.; Van Horn, L.; Daviglus, M.L.; et al. A nutrient-wide association study on blood pressure. Circulation 2012, 126, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Shay, C.M.; Van Horn, L.; Stamler, J.; Dyer, A.R.; Brown, I.J.; Chan, Q.; Miura, K.; Zhao, L.; Okuda, N.; Daviglus, M.L.; et al. Food and nutrient intakes and their associations with lower BMI in middle-aged US adults: The international study of macro-/micronutrients and blood pressure (intermap). Am. J. Clin. Nutr. 2012, 96, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Opara, E.C. Oxidative stress, micronutrients, diabetes mellitus and its complications. J. R. Soc. Promot. Health 2002, 122, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Manabe, I. Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ. J. 2011, 75, 2739–2748. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Otto, M.C.; Alonso, A.; Lee, D.H.; Delclos, G.L.; Jenny, N.S.; Jiang, R.; Lima, J.A.; Symanski, E.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary micronutrient intakes are associated with markers of inflammation but not with markers of subclinical atherosclerosis. J. Nutr. 2011, 141, 1508–1515. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Thrasher, K.D.; Gundy, P.D.; Hughson, M.D.; Manning, R.D. Antioxidant treatment prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. Hypertension 2005, 45, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Caballero, B.; Chang, S.; Alberg, A.; Semba, R.; Schneyer, C.; Wilson, R.F.; Cheng, T.Y.; Prokopowicz, G.; Barnes, G.J., II; et al. Multivitamin/Mineral Supplements and Prevention of Chronic Disease; Evidence Report Technology Assessment (Full Report); Agency for Healthcare Research and Quality: Rockville, MD, USA, 2006; pp. 1–117. [Google Scholar]
All (n = 1692) | Non-CKD (n = 1519) | CKD (n = 173) | p | |
---|---|---|---|---|
Age (years) | 43.3 ± 11.4 | 41.4 ± 10.6 | 51.2 ± 11.4 | <0.001 |
Men (%) | 49.2 | 53.0 | 31.0 | <0.001 |
Smoking (%) | 12.0 | 12.6 | 8.1 | <0.001 |
Light physical activity (%) | 60.6 | 58.6 | 78.0 | <0.001 |
Energy intake (kcal) | 2285 ± 18 | 2288 ± 20 | 2270 ± 43 | 0.686 |
BMI (kg/m2) | 27.6 ± 0.1 | 27.5 ± 0.1 | 28.2 ± 0.2 | 0.016 |
SBP (mmHg) | 113.0 ± 0.4 | 111.9 ± 0.8 | 113.2 ± 0.7 | 0.125 |
DBP (mmHg) | 74.4 ± 0.2 | 74.4 ± 0.2 | 74.4 ± 0.6 | 0.993 |
Hypertension (%) | 23.2 | 21.1 | 31.6 | <0.001 |
Diabetes (%) | 7.2 | 6.1 | 16.1 | <0.001 |
Triglycerides (mL/dL) | 130.0 (83.0–171.0) | 127.0 (81.0–166.0) | 146.0 (94.0–189.5) | <0.001 |
Cholesterol (mL/dL) | 190.8 ± 0.8 | 189.9 ± 0.9 | 194.5 ± 2.0 | 0.045 |
LDL-C (mL/dL) | 119.1 ± 0.7 | 118.8 ± 0.8 | 120.5 ± 1.8 | 0.043 |
HDL-C (mL/dL) | 41.9 ± 0.2 | 43.5 ± 0.2 | 41.4 ± 0.5 | 0.003 |
FPG (mL/dL) | 93.3 ± 0.5 | 93.1 ± 0.6 | 93.8 ± 1.3 | 0.694 |
Quintiles | p for Trend * | |||
---|---|---|---|---|
Q 1 | Q 3 | Q 5 | ||
Thiamin (mg) (% EAR) | 1.11(119.2) | 1.82 (192.0) | 2.99 (332.7) | |
Model 1 | Ref. | 0.97 (0.67–1.40) | 0.88 (0.61–1.29) | 0.212 |
Model 2 | Ref. | 1.20 (0.75–1.92) | 1.11 (0.57–2.16) | 0.823 |
Riboflavin (mg) (% EAR) | 1.04 (106.5) | 1.88 (191.2) | 3.29 (329.3) | |
Model 1 | Ref. | 1.24 (0.84–1.83) | 1.43 (0.98–2.10) | 0.249 |
Model 2 | Ref. | 1.35 (0.84–2.16) | 1.70 (0.92–3.14) | 0.396 |
Niacin (mg) (% EAR) | 12.52 (110.0) | 20.82 (181.7) | 34.41 (315.5) | |
Model 1 | Ref. | 1.08 (0.73–1.60) | 1.14 (0.78–1.68) | 0.997 |
Model 2 | Ref. | 1.26 (0.78–2.04) | 1.56 (0.80–3.07) | 0.336 |
Pyridoxine (mg) (% EAR) | 1.11 (96.6) | 1.08 (160.2) | 3.08 (265.8) | |
Model 1 | Ref. | 1.25 (0.85–1.85) | 1.37 (0.94–2.01) | 0.242 |
Model 2 | Ref. | 1.37 (0.85–2.2) | 1.60 (0.83–3.09) | 0.357 |
Folate (µg) (% EAR) | 245.8 (104.9) | 448.2 (138.8) | 628.2 (258.8) | |
Model 1 | Ref. | 0.87 (0.60–1.25) | 0.62 (0.42–0.92) | 0.027 |
Model 2 | Ref. | 0.78 (0.50–1.23) | 0.44 (0.24–0.80) | 0.007 |
Cobalamin (µg) (% EAR) | 2.2 (109.1) | 3.6 (181.8) | 7.4 (369.7) | |
Model 1 | Ref. | 0.72 (0.50–1.05) | 0.58 (0.40–0.86) | 0.005 |
Model 2 | Ref. | 0.71 (0.46–1.09) | 0.57 (0.34–0.93) | 0.023 |
Vitamin C (mg) (% EAR) | 52.2 (85.6) | 124.9 (187.0) | 268.2 (445.4) | |
Model 1 | Ref. | 0.78 (0.48–1.25) | 0.70 (0.43–1.15) | 0.077 |
Model 2 | Ref. | 0.62 (0.36–1.05) | 0.38 (0.21–0.69) | <0.001 |
Vitamin A (µg) (% EAR) | 197.4 (35.2) | 425.8 (77.0) | 859.9 (188.2) | |
Model 1 | Ref. | 1.04 (0.60–1.79) | 1.46 (0.88–2.44) | 0.377 |
Model 2 | Ref. | 0.85 (0.46–1.56) | 1.15 (0.61–2.16) | 0.837 |
Vitamin D (µg) (% EAR) | 0.61 (6.1) | 1.18 (15.3) | 4.09 (40.9) | |
Model 1 | Ref. | 0.59 (0.36–0.95) | 0.35 (0.20–0.62) | <0.001 |
Model 2 | Ref. | 0.64 (0.38–1.07) | 0.39 (0.21–0.70) | 0.002 |
Vitamin E (mg) (% EAR) | 6.06 (50.5) | 10.76 (89.7) | 17.61 (163.3) | |
Model 1 | Ref. | 0.79 (0.47–1.31) | 0.72 (0.43–1.21) | 0.079 |
Model 2 | Ref. | 0.67 (0.38–1.19) | 0.45 (0.22–0.92) | 0.005 |
Quintiles | p for Trend * | |||
---|---|---|---|---|
Q 1 | Q 3 | Q 5 | ||
Sodium (g) (% AI) | 1.85 (123.0) | 3.52 (234.8) | 7.87 (601.8) | |
Model 1 | Ref. | 1.18 (0.79–1.76) | 1.56 (1.06–2.30) | 0.042 |
Model 2 | Ref. | 1.14 (0.72–1.83) | 1.64 (1.03–2.61) | 0.041 |
Potassium (g) (% AI) | 2.15 (45.8) | 3.59 (75.1) | 5.82 (131.6) | |
Model 1 | Ref. | 0.76 (0.46–1.25) | 0.79 (0.49–1.30) | 0.093 |
Model 2 | Ref. | 0.71 (0.40–1.26) | 0.47 (0.23–0.97) | 0.039 |
Calcium (mg) (% EAR) | 619.9 (84.4) | 931.7 (146.3) | 1660.2 (249.8) | |
Model 1 | Ref. | 0.89 (0.53–1.45) | 1.12 (0.69–1.83) | 0.364 |
Model 2 | Ref. | 0.81 (0.45–1.46) | 0.79 (0.39–1.57) | 0.444 |
Magnesium (mg) (% EAR) | 224.9 (77.9) | 356.2 (118.3) | 581.3 (195.7) | |
Model 1 | Ref. | 0.88 (0.61–1.29) | 0.70 (0.47–1.03) | 0.046 |
Model 2 | Ref. | 0.69 (0.43–1.09) | 0.41 (0.22–0.76) | 0.002 |
Phosphorus (mg) (% EAR) | 820.4 (141.4) | 1392.6 (239.9) | 2206.5 (401.1) | |
Model 1 | Ref. | 0.96 (0.66–1.39) | 0.90 (0.62–1.32) | 0.323 |
Model 2 | Ref. | 0.73 (0.40–1.33) | 0.77 (0.48–1.24) | 0.187 |
Selenium (µg) (% EAR) | 60.0 (133.5) | 102.4 (228.7) | 175.1 (430.4) | |
Model 1 | Ref. | 0.93 (0.64–1.36) | 0.87 (0.59–1.26) | 0.926 |
Model 2 | Ref. | 1.10 (0.70–1.74) | 1.13 (0.62–2.04) | 0.869 |
Zinc (mg) (% EAR) | 6.5 (84.8) | 10.7 (136.6) | 17.4 (223.7) | |
Model 1 | Ref. | 0.96 (0.65–1.43) | 1.15 (0.78–1.69) | 0.992 |
Model 2 | Ref. | 0.97 (0.59–1.59) | 1.29 (0.65–2.58) | 0.959 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhadnejad, H.; Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Azizi, F. Micronutrient Intakes and Incidence of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study. Nutrients 2016, 8, 217. https://doi.org/10.3390/nu8040217
Farhadnejad H, Asghari G, Mirmiran P, Yuzbashian E, Azizi F. Micronutrient Intakes and Incidence of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study. Nutrients. 2016; 8(4):217. https://doi.org/10.3390/nu8040217
Chicago/Turabian StyleFarhadnejad, Hossein, Golaleh Asghari, Parvin Mirmiran, Emad Yuzbashian, and Fereidoun Azizi. 2016. "Micronutrient Intakes and Incidence of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study" Nutrients 8, no. 4: 217. https://doi.org/10.3390/nu8040217
APA StyleFarhadnejad, H., Asghari, G., Mirmiran, P., Yuzbashian, E., & Azizi, F. (2016). Micronutrient Intakes and Incidence of Chronic Kidney Disease in Adults: Tehran Lipid and Glucose Study. Nutrients, 8(4), 217. https://doi.org/10.3390/nu8040217