Inequalities in Nutrition between Cambodian Women over the Last 15 Years (2000–2014)
Abstract
:1. Introduction
2. Data and Methodologies
2.1. Data Sources
2.2. Indicators Used
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cambodia Demographic Health Survey, 2010; National Intitute of Statistics & ICF Macro: Phnon Penh, Cambodia; Rockville, MD, USA, 2011.
- WHO. The Global Prevalence of Anaemia in 2011; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2011, 1, e16–e25. [Google Scholar] [CrossRef]
- Parul, C.; Katz, J.; Wu, L.; Kimbrough-Pradhan, E.; Khatry, S.K.; LeClerq, S.C.; West, K.P., Jr. Risk factors for pregnancy-related mortality: A prospective study in rural nepal. Public Health 2008, 122, 161–172. [Google Scholar]
- WHO. Maternal anthropometry and pregnancy outcomes. A who collaborative study. Bull. World Health Organ. 1995, 73, 1–98. [Google Scholar]
- Fujiwara, K.; Aoki, S.; Kurasawa, K.; Okuda, M.; Takahashi, T.; Hirahara, F. Associations of maternal pre-pregnancy underweight with small-for-gestational-age and spontaneous preterm birth, and optimal gestational weight gain in japanese women. J. Obstet. Gynaecol. Res. 2014, 40, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Mulla, S.; Beyene, J.; Liao, G.; McDonald, S.D. Maternal underweight and the risk of preterm birth and low birth weight: A systematic review and meta-analyses. Int. J. Epidemiol. 2011, 40, 65–101. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet (Lond. UK) 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Yu, Z.; Han, S.; Zhu, J.; Sun, X.; Ji, C.; Guo, X. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: A systematic review and meta-analysis. PLoS ONE 2013, 8, e61627. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D. Obesity in women: A life cycle of medical risk. Int. J. Obes. 2007, 31, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Sebire, N.J.; Jolly, M.; Harris, J.P.; Wadsworth, J.; Joffe, M.; Beard, R.W.; Regan, L.; Robinson, S. Maternal obesity and pregnancy outcome: A study of 287,213 pregnancies in london. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Cesare, M.D.; Bhatti, Z.; Soofi, S.B.; Fortunato, L.; Ezzati, M.; Bhutta, Z.A. Geographical and socioeconomic inequalities in women and children’s nutritional status in pakistan in 2011: An analysis of data from a nationally representative survey. Lancet Glob. Health 2015, 3, e229–e239. [Google Scholar] [CrossRef]
- Kamal, S.M.; Hassan, C.H.; Alam, G.M. Dual burden of underweight and overweight among women in bangladesh: Patterns, prevalence, and sociodemographic correlates. J. Health Popul. Nutr. 2015, 33, 92–105. [Google Scholar] [PubMed]
- Mendez, M.A.; Monteiro, C.A.; Popkin, B.M. Overweight exceeds underweight among women in most developing countries. Am. J. Clin. Nutr. 2005, 81, 714–721. [Google Scholar] [PubMed]
- Monteiro, C.A.; Conde, W.L.; Lu, B.; Popkin, B.M. Obesity and inequities in health in the developing world. Int. J. Obes. Relat. Metab. Disord 2004, 28, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Simkhada, B.; Teijlingen, E.R.; Porter, M.; Simkhada, P. Factors affecting the utilization of antenatal care in developing countries: Systematic review of the literature. J. Adv. Nurs. 2008, 61, 244–260. [Google Scholar] [CrossRef] [PubMed]
- Tebekaw, Y.; Teller, C.; Colon-Ramos, U. The burden of underweight and overweight among women in addis ababa, ethiopia. BMC Public Health 2014, 14, 1126. [Google Scholar] [CrossRef] [PubMed]
- Cambodia Demographic Health Survey, 2000; National Intitute of Statistics & ICF Macro: Phnon Penh, Cambodia; Rockville, MD, USA, 2000.
- Cambodia Demographic Health Survey, 2005; National Intitute of Statistics & ICF Macro: Phnon Penh, Cambodia; Rockville, MD, USA, 2005.
- Cambodia Demographic Health Survey 2014; National Intitute of Statistics & ICF Macro: Phnon Penh, Cambodia; Rockville, MD, USA, 2015.
- consultation, W.E. Appropriate body-mass index for asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar]
- UNICEF; UNU; WHO. Iron Deficiency Anaemia Assessment, Prevention, and Control—A Guide for Programme Managers; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data—Or tears: An application to educational enrollments in states of india. Demography 2001, 38, 115–132. [Google Scholar] [PubMed]
- Jaacks, L.M.; Slining, M.M.; Popkin, B.M. Recent underweight and overweight trends by rural-urban residence among women in low- and middle-income countries. J. Nutr. 2015, 145, 352–357. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.M.; McLean, J.; Kroeun, H.; Talukder, A.; Lynd, L.D.; Green, T.J. Household food insecurity and dietary diversity as correlates of maternal and child undernutrition in rural cambodia. Eur. J. Clin. Nutr. 2014, 69, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Laillou, A.; Pham, T.V.; Tran, N.T.; Le, H.T.; Wieringa, F.; Rohner, F.; Fortin, S.; Le, M.B.; Tran do, T.; Moench-Pfanner, R.; et al. Micronutrient deficits are still public health issues among women and young children in vietnam. PLoS ONE 2012, 7, e34906. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the global burden of disease study 2013. Lancet (Lond. UK) 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Jones-Smith, J.C.; Gordon-Larsen, P.; Siddiqi, A.; Popkin, B.M. Cross-national comparisons of time trends in overweight inequality by socioeconomic status among women using repeated cross-sectional surveys from 37 developing countries, 1989–2007. Am. J. Epidemiol. 2011, 173, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Jones-Smith, J.C.; Gordon-Larsen, P.; Siddiqi, A.; Popkin, B.M. Is the burden of overweight shifting to the poor across the globe? Time trends among women in 39 low- and middle-income countries (1991–2008). Int. J. Obes. (2005) 2012, 36, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Mistry, S.K.; Puthussery, S. Risk factors of overweight and obesity in childhood and adolescence in south asian countries: A systematic review of the evidence. Public Health 2015, 129, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.K.; Rai, M.; Rehkopf, D.H.; Abrams, B. Educational attainment and obesity: A systematic review. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2013, 14, 989–1005. [Google Scholar] [CrossRef] [PubMed]
- Devaux, M.; Sassi, F.; Church, J.; Cecchini, M.; Borgonovi, F. Exploring the relationship between education and obesity. OECD J. Econ. Stud. 2011, 5, 121–159. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anemia and Assessment of Severity.; World Health Organization; (WHO-NMH-NHD-MNM/11.1-VMNIS); WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Charles, C.V.; Dewey, C.E.; Hall, A.; Hak, C.; Channary, S.; Summerlee, A.J. Anemia in cambodia: A cross-sectional study of anemia, socioeconomic status and other associated risk factors in rural women. Asia Pac. J. Clin. Nutr. 2015, 24, 253–259. [Google Scholar] [PubMed]
- Karakochuk, C.D.; Whitfield, K.C.; Barr, S.I.; Lamers, Y.; Devlin, A.M.; Vercauteren, S.M.; Kroeun, H.; Talukder, A.; McLean, J.; Green, T.J. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural prey veng, cambodia. J. Nutr. 2015, 145, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Weatherall, D.J.; Clegg, J.B. Inherited haemoglobin disorders: An increasing global health problem. Bull. World Health Org. 2001, 79, 704–712. [Google Scholar] [PubMed]
- World Development Indicators 2015. Data by coutry, Washington, the World Bank. Available online: http://data.worldbank.org/country/cambodia (accessed on 12 April 2015).
- Harper, S.; King, N.B.; Meersman, S.C.; Reichman, M.E.; Breen, N.; Lynch, J. Implicit value judgments in the measurement of health inequalities. Milbank Q. 2010, 88, 4–29. [Google Scholar] [CrossRef] [PubMed]
2000 | 2005 | 2010 | 2014 | Year Effect | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % or Mean | Sd Err * | n | % or Mean | Sd Err | n | % or Mean | Sd Err | N | % or Mean | Sd Err | p Value | ||
Age (mean) | 15,351 | 30.1 | 0.1 | 16,823 | 30.2 | 0.1 | 18,754 | 30.2 | 0.1 | 17,577 | 30.7 | 0.1 | <0.001 | |
Age groups | <20 years | 3564 | 23.6 | 0.4 | 3646 | 21.4 | 0.4 | 3915 | 19.9 | 0.4 | 3006 | 16.5 | 0.3 | <0.001 |
20 to 34 years | 6340 | 41.0 | 0.5 | 7159 | 42.7 | 0.5 | 8559 | 45.8 | 0.5 | 8899 | 50.6 | 0. 6 | <0.001 | |
35 to 49 years | 5447 | 35.4 | 0.4 | 6018 | 35.9 | 0.4 | 6280 | 34.3 | 0.4 | 5672 | 32.9 | 0.5 | <0.001 | |
Height (m) | 7499 | 1.52 | 0.001 | 8357 | 1.52 | 0.001 | 9332 | 1.53 | 0.001 | 11,484 | 1.53 | 0.001 | <0.001 | |
Weight (kg) | 7505 | 48.3 | 0.04 | 8364 | 48.8 | 0.05 | 9336 | 49.3 | 0.05 | 11,487 | 51.6 | 0.05 | <0.001 | |
BMI | 7467 | 20.6 | 0.05 | 8350 | 21.0 | 0.04 | 9327 | 21.1 | 0.04 | 11,479 | 22.0 | 0.04 | <0.001 | |
Hemoglobin content (g/dL) | 3666 | 11.5 | 0.07 | 8180 | 11.8 | 0.03 | 9224 | 12.0 | 0.03 | 11,411 | 12.1 | 0.05 | <0.001 | |
Living area | Urban | 2656 | 17.5 | 0.6 | 4152 | 17.7 | 0.4 | 6077 | 21.0 | 0.6 | 5667 | 18.5 | 0.7 | 0.030 |
Rural | 12,901 | 82.5 | 0.6 | 12,671 | 82.3 | 0.4 | 12,677 | 79.0 | 0.6 | 11,910 | 81.5 | 0.7 | 0.030 | |
Education level | None | 4849 | 28.2 | 0.9 | 3772 | 19.4 | 0.7 | 3203 | 15.8 | 0.6 | 2233 | 12.8 | 0.6 | <0.001 |
Primary | 8182 | 54.6 | 0.7 | 9131 | 55.8 | 0.7 | 8796 | 49.4 | 0.7 | 7825 | 47.1 | 0.7 | <0.001 | |
Secondary | 2320 | 17.2 | 0.7 | 3920 | 24.7 | 0.8 | 9755 | 34.7 | 0.9 | 7519 | 40.1 | 0.8 | <0.001 | |
Mother with a childbirth during the last two years | 9784 | 62.2 | 0.5 | 10,685 | 62.6 | 0.5 | 11,783 | 63.7 | 0.5 | 11,660 | 67.6 | 0.5 | <0.001 | |
Mean number of children/by women | 15,351 | 2.2 | 0.0 | 16,823 | 2.0 | 0.0 | 18,754 | 1.8 | 0.0 | 17,577 | 1.8 | 0.0 | <0.001 |
Prevalence % (Standard Error) | Trends over Time δ | |||||||
---|---|---|---|---|---|---|---|---|
Characteristic | 2000 | 2005 | 2010 | 2014 | 2000–2014 | 2005–2014 | 2010–2014 | |
AGE | ||||||||
<20 | 25.4 (1.26) | 28.0 (1.42) | 28.3 (1.38) | 27.3 (1.29) | 1.9 | −0.7 | −1 | |
20–34 | 18.1 (0.88) | 18.3 (0.87) | 18.1 (0.67) | 13.7 (0.61) | −4.4 * | −4.6 * | −4.4 * | |
35–49 | 20.2 (0.87) | 18.3 (0.87) | 14.9 (0.85) | 7.9 (0.58) | −12.3 * | −10.4 * | −7 * | |
Absolute difference (Old-Young) | −5.2 * | −9.7 * | −13.4 * | −19.4 * | −14.2 * | −9.7 * | −6 * | |
OR (Old:Young) | 0.74 * (0.06) | 0.57 * (0.05) | 0.44 * (0.04) | 0.23 * (0.02) | ||||
EDUCATION | ||||||||
None | 22.0 (1.19) | 19.1 (1.22) | 18.6 (1.15) | 10.8 (1.09) | −11.2 * | −8.3 * | −7.8 * | |
Primary | 19.7 (0.77) | 20.4 (0.82) | 17.6 (0.79) | 12.3 (0.56) | −7.4 * | −8.1 * | −5.3 * | |
Secondary+ | 21.5 (1.45) | 21.1 (1.19) | 21.3 (0.88) | 16.9 (0.77) | −4.6 * | −4.2 * | −4.4 * | |
Absolute difference (Second.-None) | −0.5 | 2 | 2.7 | 6.1 * | 6.6 * | 4.1 * | 3.4 * | |
OR (Second.:None) | 0.97 (0.11) | 1.14 (0.12) | 1.18 (0.11) | 1.67 * (0.21) | ||||
RESIDENCE | ||||||||
Urban | 16.1 (1.35) | 17.3 (1.21) | 16.8 (0.9) | 13.4 (0.77) | −2.7 | −3.9 * | −3.4 * | |
Rural | 21.6 (0.67) | 21 (0.68) | 19.7 (0.59) | 14 (0.5) | −7.6 * | −7 * | −5.7 * | |
Absolute difference (Urban-Rural) | 5.5 * | 3.7 * | 2.9 * | 0.6 | −4.9 * | −3.1 | −2.3 | |
OR (Urban:Rural) | 0.69 * (0.07) | 0.78 * (0.07) | 0.82 * (0.06) | 0.95 (0.07) | ||||
WEALTH QUINTILE | ||||||||
Poorest | 24.5 (1.4) | 24.1 (1.38) | 22.4 (1.28) | 14.9 (0.97) | −9.6 * | −9.2 * | −7.5 * | |
Poorer | 21.4 (1.53) | 22 (1.21) | 20.1 (1.24) | 14.4 (0.97) | −7 * | −7.6 * | −5.7 * | |
Middle | 20.8 (1.24) | 22.7 (1.34) | 18.7 (1.43) | 15.3 (1.02) | −5.5 * | −7.4 * | −3.4 * | |
Richer | 20.6 (1.4) | 18.2 (1.23) | 18.3 (1.14) | 13.2 (0.98) | −7.4 * | −5 * | −5.1 * | |
Richest | 16.8 (1.1) | 16.4 (1.29) | 16.6 (0.81) | 12.3 (0.76) | −4.5 * | −4.1 * | −4.3 * | |
Absolute difference (Richest-Poorest) | −7.7 * | −7.7 * | −5.8 * | −2.6 * | 5.1 | 5.1 | 3.2 | |
OR (Richest:Poorest) | 0.62 * (0.07) | 0.62 * (0.07) | 0.68 * (0.07) | 0.81 * (0.08) | ||||
Total | 20.7 (0.60) | 20.3 (0.60) | 19.1 (0.50) | 13.9 (0.42) | −6.8 * | −6.4 * | −5.2 * | |
N | 7467 | 8350 | 9327 | 11,479 |
Prevalence % (Standard Error) | Trends over Time δ | ||||||
---|---|---|---|---|---|---|---|
Characteristic | 2000 | 2005 | 2010 | 2014 | 2000–2014 | 2005–2014 | 2010–2014 |
AGE | |||||||
<20 | 1.6 (0.36) | 1.5 (0.36) | 1.8 (0.39) | 3.6 (0.56) | 2.0 * | 2.1 * | 1.8 * |
20–34 | 5.0 (0.52) | 6.8 (0.57) | 7.2 (0.52) | 14.7 (0.61) | 9.7 * | 7.9 * | 7.5 * |
35–49 | 10.8 (0.79) | 16.9 (0.96) | 21.0 (1.12) | 30.6 (1.04) | 19.8 * | 13.7 * | 9.6 * |
Absolute difference (Old-Young) | 9.2 * | 15.4 * | 19.2 * | 27 * | 17.8 * | 11.6 | 7.8 |
OR (Old:Young) | 7.28 * (1.70) | 13.37 * (3.13) | 14.28 * (3.11) | 11.74 * (1.94) | |||
EDUCATION | |||||||
None | 5.5 (0.59) | 9.4 (1.02) | 13.1 (1.29) | 22.8 (1.51) | 17.3 * | 13.4 * | 9.7 * |
Primary | 6.7 (0.50) | 10.0 (0.67) | 11.8 (0.72) | 20.6 (0.75) | 13.9 * | 10.6 * | 8.8 * |
Secondary+ | 6.5 (0.88) | 8.6 (0.76) | 8.7 (0.69) | 14.2 (0.64) | 7.7 * | 5.6 * | 5.5 * |
Absolute difference (Second.-None) | 1 | −0.8 | −4.4 * | −8.6 * | −9.6 * | −7.8 * | −4.2 |
OR (Second.:None) | 1.18 (0.22) | 0.90 (0.13) | 0.63 * (0.08) | 0.56 * (0.05) | |||
RESIDENCE | |||||||
Urban | 9.6 (1.17) | 13.4 (1.09) | 15.7 (1.3) | 22.9 (0.9) | 13.3 * | 9.5 * | 7.2 * |
Rural | 5.7 (0.4) | 8.7 (0.57) | 9.6 (0.58) | 17.3 (0.61) | 11.6 * | 8.6 * | 7.7 * |
Absolute difference (Urban-Rural) | 3.9 * | 4.7 * | 6.1 * | 5.6 * | 1.7 | 0.9 | −0.5 |
OR (Urban:Rural) | 1.76 * (0.27) | 1.63 * (0.19) | 1.75 * (0.21) | 1.43 * (0.09) | |||
WEALTH QUINTILE | |||||||
Poorest | 2.4 (0.57) | 4.1 (0.62) | 4.8 (0.73) | 12 (0.99) | 9.6 * | 7.9 * | 7.2 * |
Poorer | 4.7 (0.65) | 4.2 (0.61) | 8.6 (0.86) | 17 (1.11) | 12.3 * | 12.8 * | 8.4 * |
Middle | 5.3 (0.75) | 6.7 (0.88) | 9.8 (0.95) | 17.5 (1.15) | 12.2 * | 10.8 * | 7.7 * |
Richer | 6.5 (0.80) | 11.9 (0.98) | 13.2 (1.14) | 19.8 (1.08) | 13.3 * | 7.9 * | 6.6 * |
Richest | 11.7 (1.06) | 17.6 (1.30) | 16.3 (1.26) | 23.5 (0.93) | 11.8 * | 5.9 * | 7.2 * |
Absolute difference (Richest-Poorest) | 9.3 * | 13.5 * | 11.5 * | 11.5 * | 2.2 * | −2 * | 0 |
OR (Richest:Poorest) | 5.3 * (1.39) | 5.02 * (0.91) | 3.88 * (0.69) | 2.24 * (0.24) | |||
Total | 6.4 (0.39) | 9.5 (0.50) | 10.9 (0.53) | 18.3 (0.52) | 11.9 * | 8.8 * | 7.4 * |
N | 7467 | 8350 | 9327 | 11479 |
Prevalence % (Standard Error) | Trends over Time δ | ||||||
---|---|---|---|---|---|---|---|
Characteristic | 2000 | 2005 | 2010 | 2014 | 2000–2014 | 2005–2014 | 2010–2014 |
AGE | |||||||
<20 | 57.3 (2.27) | 44.7 (1.61) | 46.8 (1.57) | 49.2 (1.4) | −8.1 * | 4.5 * | 2.4 |
20–34 | 55.3 (1.47) | 43.2 (1.11) | 41.9 (1.07) | 43.1 (0.83) | −12.2 * | −0.1 | 1.2 |
35–49 | 59.9 (1.64) | 50.2 (1.08) | 45.7 (1.13) | 48.1 (1.07) | −11.8 * | −2.1 | 2.4 |
Absolute difference (Old-Young) | 2.6 | 5.5 * | −1.1 | −1.1 | −3.7 | −6.6 | 0.0 |
OR (Old:Young) | 1.11 (0.12) | 1.24 * (0.09) | 0.96 (0.07) | 0.96 (0.07) | |||
EDUCATION | |||||||
None | 62.2 (2.02) | 52.8 (1.66) | 49.1 (1.86) | 49.1 (1.73) | −13.1 * | −3.7 | 0 |
Primary | 57.4 (1.44) | 46.9 (0.9) | 46 (0.98) | 47.8 (0.86) | −9.6 * | 0.9 | 1.8 |
Secondary+ | 49.3 (2.58) | 38.5 (1.3) | 39.3 (1.14) | 42.1 (0.84) | −7.2 * | 3.6 * | 2.8 * |
Absolute difference (Second.-None) | −12.9 * | −14.3 * | −9.8 * | −7.0 * | 5.9 | 7.3 * | 2.8 |
OR (Second.:None) | 0.59 * (0.08) | 0.56 * (0.05) | 0.67 * (0.06) | 0.75 * (0.06) | |||
RESIDENCE | |||||||
Urban | 51 (2.83) | 36 (1.69) | 34.4 (1.31) | 39.4 (1.01) | −11.6 | 3.4 | 5 |
Rural | 58.8 (1.14) | 48.2 (0.83) | 46.8 (0.88) | 47.2 (0.71) | −11.6 | −1 | 0.4 |
Diff (Urban-Rural) | −7.8 * | −12.2 * | −12.4 * | −7.8 * | 0 | 4.4 * | 4.6 * |
OR (Urban:Rural) | 0.73 * (0.09) | 0.60 * (0.05) | 0.60 * (0.04) | 0.73 * (0.04) | |||
WEALTH QUINTILE | |||||||
Poorest | 64.4 (2.07) | 56.9 (1.63) | 52.5 (1.76) | 53.5 (1.52) | −10.9 * | −3.4 | 1 |
Poorer | 60.1 (2.33) | 49.6 (1.54) | 48.1 (1.49) | 48.5 (1.36) | −11.6 * | −1.1 | 0.4 |
Middle | 58.6 (2.34) | 48.8 (1.5) | 46.1 (1.76) | 45.7 (1.39) | −12.9 * | −3.1 | −0.4 |
Richer | 57.5 (2.55) | 46.6 (1.56) | 43.2 (1.62) | 43.9 (1.29) | −13.6 * | −2.7 | 0.7 |
Richest | 47.6 (2.29) | 32.6 (1.44) | 33.9 (1.22) | 39.1 (1.18) | −8.5 * | 6.5 * | 5.2 * |
Absolute difference (Richest-Poorest) | −16.8 * | −24.3 * | −18.6 * | −14.4 * | 2.4 | 9.9 * | 4.2 |
OR (Richest-Poorest) | 0.50 * (0.06) | 0.37 * (0.03) | 0.46 * (0.04) | 0.55 * (0.04) | |||
Total | 57.4 (1.07) | 46.0 (0.75) | 44.2 (0.75) | 45.7 (0.61) | −11.7 * | −0.3 | 1.5 |
N | 3666 | 8180 | 9224 | 11,411 |
Underweight (N = 30,654) | Overweight (N = 30,654) | Anemia (N = 32,470) | ||||
---|---|---|---|---|---|---|
p-Value | β-Coefficient * (95% CI) | p-Value | β-Coefficient * (95% CI) | p-Value | β-Coefficient * (95% CI) | |
Increase in age category ** | <0.001 | −0.21 (−0.26 −0.17) | <0.001 | 0.71 (0.65 0.77) | ns | - |
Increase in wealth index | <0.001 | −0.12 (−0.15 −0.09) | <0.001 | 0.36 (0.32 0.40) | <0.001 | −0.13 (−0.16 −0.11) |
Increase in maternal education category | 0.007 | 0.09 (0.02 0.15) | <0.001 | −0.18 (−0.26 −0.11) | <0.001 | −0.08 (−0.13 −0.03) |
Living in urban area (ref: rural area) | <0.001 | -0.15 (−0.23 0.10) | ||||
Increase in number of children | <0.001 | −0.17 (−0.25 −0.10) | <0.001 | 0.24 (0.16 0.32) | - | - |
Increase in year of survey | <0.001 | −0.04 (−0.05 −0.03) | <0.001 | 0.09 (0.08 0.10) | <0.001 | −0.02 (−0.03 −0.01) |
Having anemia (ref: no anemia) | <0.001 | 0.22 (0.15 0.30) | <0.001 | −0.49 (−0.58 −0.39) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greffeuille, V.; Sophonneary, P.; Laillou, A.; Gauthier, L.; Hong, R.; Hong, R.; Poirot, E.; Dijkhuizen, M.; Wieringa, F.; Berger, J. Inequalities in Nutrition between Cambodian Women over the Last 15 Years (2000–2014). Nutrients 2016, 8, 224. https://doi.org/10.3390/nu8040224
Greffeuille V, Sophonneary P, Laillou A, Gauthier L, Hong R, Hong R, Poirot E, Dijkhuizen M, Wieringa F, Berger J. Inequalities in Nutrition between Cambodian Women over the Last 15 Years (2000–2014). Nutrients. 2016; 8(4):224. https://doi.org/10.3390/nu8040224
Chicago/Turabian StyleGreffeuille, Valérie, Prak Sophonneary, Arnaud Laillou, Ludovic Gauthier, Rathmony Hong, Rathavuth Hong, Etienne Poirot, Marjoleine Dijkhuizen, Frank Wieringa, and Jacques Berger. 2016. "Inequalities in Nutrition between Cambodian Women over the Last 15 Years (2000–2014)" Nutrients 8, no. 4: 224. https://doi.org/10.3390/nu8040224
APA StyleGreffeuille, V., Sophonneary, P., Laillou, A., Gauthier, L., Hong, R., Hong, R., Poirot, E., Dijkhuizen, M., Wieringa, F., & Berger, J. (2016). Inequalities in Nutrition between Cambodian Women over the Last 15 Years (2000–2014). Nutrients, 8(4), 224. https://doi.org/10.3390/nu8040224