Gender Difference on the Association between Dietary Patterns and Obesity in Chinese Middle-Aged and Elderly Populations
Abstract
:1. Introduction
2. Study Population
3. Dietary Assessment
4. Anthropometric Measurements
5. Other Health Related Variables
6. Statistical Analysis
7. Results
8. Discussion
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Rice Staple | Wheat Staple | Snacks | Prudent | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 (Low) | Q4 (High) | p | Q1 (Low) | Q4 (High) | p | Q1 (Low) | Q4 (High) | p | Q1 (Low) | Q4 (High) | p | |
Men/Women (g) | ||||||||||||
Rice | 217.4/194.8 | 390.9/368.1 | <0.001/<0.001 | 523.0/393.9 | 235.3/171.1 | <0.001/<0.001 | 497.9/285.5 | 250.0/270.4 | <1.001/0.274 | 392.2/321.1 | 307.1/242.8 | <0.001/<0.001 |
Wheat | 72.0/81.3 | 70.1/51.8 | 0.876/<0.001 | 15.6/12.0 | 162.3/119.9 | <0.001/<0.001 | 63.1/85.2 | 83.9/47.8 | <0.001/<0.001 | 69.8/62.1 | 82.0/65.4 | 0.012/0.660 |
Deep fried wheat | 2.0/1.6 | 3.0/1.4 | 0.475/0.800 | 0.32/1.8 | 5.5/1.3 | <0.001/0.461 | 1.9/2.4 | 2.1/1.2 | 0.823/0.135 | 1.3/0.2 | 3.6/2.8 | 0.068/0.001 |
Instant noodles | 2.3/0.8 | 0.0/0.3 | 0.01/0.347 | 0.8/0.0 | 13.2/1.6 | <0.001/0.176 | 0.0/0.0 | 0.8/0.9 | 0.062/0.051 | 0.0/1.5 | 1.0/0.0 | 0.079/0.202 |
Coarse grains | 128.5/147.4 | 148.8/185.0 | 0.151/0.007 | 122.6/101.2 | 158.0/251.6 | 0.016/<0.001 | 129.9/156.2 | 137.7/194.9 | 0.601/0.005 | 5.1/23.7 | 323.7/374.0 | <0.001/<0.001 |
Starchy roots and tubers | 8.9/17.0 | 38.5/24.2 | <0.001/0.043 | 45.7/30.1 | 9.7/19.9 | <0.001/<0.05 | 12.1/5.8 | 43.3/44.9 | <0.001/<0.001 | 13.8/17.9 | 27.5/29.4 | 0.014/0.023 |
Vegetables | 176.8/152.9 | 405.8/417.4 | <0.001/<0.001 | 305.3/280.8 | 254.7/242.4 | 0.004/0.016 | 404.7/264.2 | 217.8/267.4 | <0.001/0.803 | 291.0/263.4 | 290.1/261.4 | 0.961/0.893 |
Fruits | 128.9/149.7 | 150.8/187.2 | 0.124/0.007 | 123.6/102.7 | 159.7/254.8 | 0.015/<0.001 | 131.6/157.8 | 239.2/377.9 | 0.006/0.003 | 5.2/25.2 | 326.4/376.1 | <0.001/<0.001 |
Pork | 57.0/45.2 | 112.7/94.7 | <0.001/<0.001 | 86.6/54.5 | 85.7/74.1 | 0.897/<0.001 | 120.1/108.6 | 68.4/50.3 | <0.001/<0.001 | 113.5/75.9 | 66.1/57.1 | <0.001/<0.001 |
Poultry | 1.5/5.1 | 38.9/24.5 | <0.001/<0.001 | 8.4/11.5 | 7.5/15.8 | <0.001/0.107 | 11.1/29.6 | 18.7/32.1 | 0.022/<0.188 | 11.5/13.8 | 20.4/12.7 | 0.008/0.699 |
Other livestock meats | 3.6/1.6 | 9.6/8.5 | 0.009/<0.001 | 1.4/2.0 | 14.0/5.7 | <0.001/0.003 | 7.0/7.1 | 6.5/2.5 | 0.805/0.002 | 3.0/3.0 | 8.3/5.5 | 0.011/0.043 |
Organ meats | 0.4/1.4 | 5.2/1.8 | <0.001/0.593 | 4.0/2.3 | 0.7/0.8 | 0.008/0.034 | 4.4/0.2 | 6.5/2.9 | <0.643/<0.001 | 3.4/0.3 | 1.1/2.4 | 0.039/0.003 |
Processed meats | 0.6/7.1 | 17.4/4.8 | <0.001/0.164 | 8.8/12.3 | 7.5/1.7 | 0.576/<0.001 | 6.9/1.9 | 10.2/10.3 | 0.157/<0.001 | 8.8/0.5 | 5.7/11.9 | 0.128/<0.001 |
Fresh water fish and seafood | 85.5/33.8 | 87.7/88.0 | 0.895/<0.001 | 133.1/68.4 | 51.4/67.8 | <0.001/0.937 | 78.6/81.9 | 99.0/58.2 | 0.115/0.001 | 52.2/43.8 | 112.2/84.8 | <0.001/<0.001 |
Dairy | 49.7/48.8 | 38.4/65.2 | <0.119/0.035 | 6.2/4.2 | 93.4/139.1 | <0.001/<0.001 | 22.9/48.1 | 69.7/71.0 | <0.001/0.003 | 8.6/46.8 | 83.6/69.5 | <0.001/0.003 |
Legumes | 14.2/17.6 | 34.8/27.8 | <0.001/0.001 | 13.3/12.3 | 37.9/31.5 | <0.001/<0.001 | 25.3/16.2 | 26.9/27.3 | 0.645/<0.001 | 26.2/20.4 | 28.1/23.7 | <0.001/0.290 |
Eggs | 35.3/18.7 | 46.7/69.6 | 0.012/<0.001 | 38.9/39.2 | 37.1/39.0 | 0.665/0.959 | 76.1/55.0 | 24.0/32.1 | <0.001/<0.001 | 30.9/37.0 | 41.2/41.9 | 0.013/0.230 |
Seeds and nuts | 1.2/5.5 | 17.3/12.9 | <0.001/<0.001 | 8.3/4.3 | 6.4/16.0 | 0.299/<0.001 | 5.9/0.8 | 11.1/26.7 | 0.01/<0.001 | 7.9/16.0 | 8.3/6.8 | 0.837/0.002 |
Fungi and algae | 3.0/3.1 | 23.4/25.2 | <0.001/<0.001 | 5.7/5.0 | 15.7/17.7 | <0.001/<0.001 | 12.3/8.8 | 11.7/16.2 | 0.808/0.001 | 6.5/11.8 | 16.2/11.1 | <0.001/0.751 |
Western fast food | 0.0/0.5 | 0.6/0.0 | 0.318/0.318 | 0.0/0.6 | 0.6/0.0 | 0.318/<0.318 | 0.0/0.0 | 0.6/0.7 | 0.318/0.206 | 0.6/0.0 | 0.0/0.0 | 0.318/- |
Cakes and pastries | 3.4/12.7 | 11.4/4.1 | <0.001/<0.001 | 5.5/4.0 | 10.6/13.2 | 0.005/<0.001 | 1.0/0.6 | 20.3/21.6 | <0.001/0.001< | 4.3/7.0 | 10.4/7.5 | <0.001/0.727 |
Candy and chocolates | 5.9/7.6 | 1.9/1.1 | 0.005/0.030 | 8.2/2.6 | 1.3/5.3 | 0.032/0.350 | 1.6/7.7 | 6.8/3.9 | 0.085/0.078 | 0.5/5.3 | 8.1/2.8 | 0.014/0.319 |
Soft drinks | 11.1/28.5 | 78.0/63.6 | <0.001/0.044 | 35.4/8.6 | 36.6/119.7 | 0.925/<0.001 | 3.9/34.4 | 111.1/48.8 | <0.001/0.261 | 39.2/35.8 | 41.4/55.3 | 0.880/0.149 |
Alcoholic beverages | 26.8/0.1 | 34.3/2.6 | 0.485/0.100 | 23.9/1.3 | 26.9/1.6 | 0.724/0.876 | 2.2/0.1 | 74.3/2.5 | <0.001/0.101 | 58.4/0.8 | 16.2/0.7 | <0.001/0.986 |
Tea | 271.1/270.0 | 380.1/288.4 | 0.024/0.648 | 102.1/142.2 | 666.1/461.4 | <0.001/<0.001 | 134.1/419.6 | 506.2/294.9 | <0.001/0.011 | 162.7/341.1 | 507.7/325.8 | <0.001/0.756 |
References
- Stevens, G.A.; Singh, G.M.; Lu, Y.; Danaei, G.; Lin, J.K.; Finucane, M.M.; Bahalim, A.N.; McIntire, R.K.; Gutierrez, H.R.; Cowan, M.; et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul. Health Metr. 2012, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Status Report 2014; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Ge, K. Dietary pattern and physical development in China—Based on the 1992 national nutrition survey. Asia Pac. J. Clin. Nutr. 1995, 4 (Suppl. S1), 19–23. [Google Scholar] [PubMed]
- Li, L.M.; Rao, K.Q.; Kong, L.Z.; Yao, C.H.; Xiang, H.D.; Zhai, F.Y.; Ma, G.S.; Yang, X.G. A description on the Chinese national nutrition and health survey in 2002. Zhonghua Liu Xing Bing Xue Za Zhi 2005, 26, 478–484. [Google Scholar] [PubMed]
- Hou, X.; Lu, J.; Weng, J.; Ji, L.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; Zhu, D.; Ge, J.; et al. Impact of waist circumference and body mass index on risk of cardiometabolic disorder and cardiovascular disease in Chinese adults: A national diabetes and metabolic disorders survey. PLoS ONE 2013, 8, e57319. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, S.X.; Zeng, E.K.; Ma, C.W.; Wang, J.Y.; Duan, L. The Social Development and the Coping Strategies for China′s Aging Population. Chin. J. Soc. Med. 2014, 2, 75–77. (In Chinese) [Google Scholar]
- Wang, B. Characteristics, thinking and solution of the aging society in Shanghai. Chin. J. Gerontol. 2015, 2, 532–534. (In Chinese) [Google Scholar]
- Smith, J.P.; Strauss, J.; Zhao, Y. Healthy Aging in China. J. Econ. Ageing 2014, 4, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.M.; El-Serag, H.B. The epidemiology of obesity. Gastroenterol. Clin. N. Am. 2010, 39, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, L. Eating pattern analyses: The whole is more than the sum of its parts. J. Am. Diet. Assoc. 2011, 111, 203. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L. Dietary patterns, approaches, and multicultural perspective. Appl. Physiol. Nutr. Metab. 2010, 35, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Randi, G.; Edefonti, V.; Ferraroni, M.; La Vecchia, C.; Decarli, A. Dietary patterns and the risk of colorectal cancer and adenomas. Nutr. Rev. 2010, 68, 389–408. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, Y.; Lai, J.; Wang, D.; Zhang, J.; Fu, P.; Yang, X.; Qi, L. Dietary patterns are associated with stroke in Chinese adults. J. Nutr. 2011, 141, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, Y.; Li, Y.; Luan, D.; Yang, X.; Zhai, F.; Ma, G. Dietary patterns and hypertension among Chinese adults: A nationally representative cross-sectional study. BMC Public Health 2011, 11, 925. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Buys, N.; Shen, S. Dietary patterns and cardiovascular disease-related risks in Chinese older adults. Front. Public Health 2013, 1, 48. [Google Scholar] [CrossRef] [PubMed]
- Nanri, A.; Shimazu, T.; Takachi, R.; Ishihara, J.; Mizoue, T.; Noda, M.; Inoue, M.; Tsugane, S. Dietary patterns and type 2 diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2013, 67, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Murphy, S.P.; Wilkens, L.R.; Yamamoto, J.F.; Sharma, S.; Hankin, J.H.; Henderson, B.E.; Kolonel, L.N. Dietary patterns using the Food Guide Pyramid groups are associated with sociodemographic and lifestyle factors: The multiethnic cohort study. J. Nutr. 2005, 135, 843–849. [Google Scholar] [PubMed]
- Shu, L.; Zheng, P.F.; Zhang, X.Y.; Si, C.J.; Yu, X.L.; Gao, W.; Zhang, L.; Liao, D. Association between Dietary Patterns and the Indicators of Obesity among Chinese: A Cross-Sectional Study. Nutrients 2015, 7, 7995–8009. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hall, J.; Byles, J.; Shi, Z. Dietary Pattern Is Associated with Obesity in Older People in China: Data from China Health and Nutrition Survey (CHNS). Nutrients 2015, 7, 8170–8188. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.; Friche, A.A.; Caiaffa, W.T.; Proietti, F.A.; Xavier, C.C.; Diez, R.A. Association of socioeconomic factors with body mass index, obesity, physical activity, and dietary factors in Belo Horizonte, Minas Gerais State, Brazil: The BH Health Study. CAD Saude Publica 2015, 31 (Suppl. S1), 182–194. [Google Scholar] [CrossRef] [PubMed]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Wang, H.J.; Wang, Z.H.; Yu, W.T.; Zhang, B.; Zhai, F.Y. Changes of waist circumference distribution and the prevalence of abdominal adiposity among Chinese adults from 1993 to 2006. Zhonghua Liu Xing Bing Xue Za Zhi 2008, 29, 953–958. (In Chinese) [Google Scholar] [PubMed]
- Kang, Y.; Kim, J. Gender difference on the association between dietary patterns and metabolic syndrome in Korean population. Eur. J. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Vergnaud, A.C.; Norat, T.; Romaguera, D.; Mouw, T.; May, A.M.; Travier, N.; Luan, J.; Wareham, N.; Slimani, N.; Rinaldi, S.; et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am. J. Clin. Nutr. 2010, 92, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, B.; Zhai, F.; Wang, H.; Zhang, J.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Popkin, B.M. Fatty and lean red meat consumption in China: Differential association with Chinese abdominal obesity. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrian, S.; Costa, A.G.; Navas-Carretero, S.; Zabala, M.; Martinez, J.A.; Moreno-Aliaga, M.J. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: A review of the evidence. J. Physiol. Biochem. 2013, 69, 633–651. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Taylor, A.W.; Hu, G.; Gill, T.; Wittert, G.A. Rice intake, weight change and risk of the metabolic syndrome development among Chinese adults: The Jiangsu Nutrition Study (JIN). Asia Pac. J. Clin. Nutr. 2012, 21, 35–43. [Google Scholar] [PubMed]
- Kim, J.; Jo, I.; Joung, H. A rice-based traditional dietary pattern is associated with obesity in Korean adults. J. Acad. Nutr. Diet. 2012, 112, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Buijsse, B.; Feskens, E.J.; Schulze, M.B.; Forouhi, N.G.; Wareham, N.J.; Sharp, S.; Palli, D.; Tognon, G.; Halkjaer, J.; Tjonneland, A.; et al. Fruit and vegetable intakes and subsequent changes in body weight in European populations: Results from the project on Diet, Obesity, and Genes (DiOGenes). Am. J. Clin. Nutr. 2009, 90, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Vergnaud, A.C.; Norat, T.; Romaguera, D.; Mouw, T.; May, A.M.; Romieu, I.; Freisling, H.; Slimani, N.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; et al. Fruit and vegetable consumption and prospective weight change in participants of the European Prospective Investigation into Cancer and Nutrition-Physical Activity, Nutrition, Alcohol, Cessation of Smoking, Eating Out of Home, and Obesity study. Am. J. Clin. Nutr. 2012, 95, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lee, K.S.; Park, H.Y. Dietary carbohydrate intake is associated with cardiovascular disease risk in Korean: Analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). Int. J. Cardiol. 2010, 139, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Bermudez, O.I.; Tucker, K.L. Dietary patterns of Hispanic elders are associated with acculturation and obesity. J. Nutr. 2003, 133, 3651–3657. [Google Scholar] [PubMed]
- Mittendorfer, B.; Sidossis, L.S. Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets. Am. J. Clin. Nutr. 2001, 73, 892–899. [Google Scholar] [PubMed]
- Sayon-Orea, C.; Bes-Rastrollo, M.; Basterra-Gortari, F.J.; Beunza, J.J.; Guallar-Castillon, P.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A. Consumption of fried foods and weight gain in a Mediterranean cohort: The SUN project. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Wang, L.; Lee, I.M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Higher Intake of Fruit, but Not Vegetables or Fiber, at Baseline Is Associated with Lower Risk of Becoming Overweight or Obese in Middle-Aged and Older Women of Normal BMI at Baseline. J. Nutr. 2015, 145, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Berg, C.; Lappas, G.; Wolk, A.; Strandhagen, E.; Toren, K.; Rosengren, A.; Thelle, D.; Lissner, L. Eating patterns and portion size associated with obesity in a Swedish population. Appetite 2009, 52, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Bes-Rastrollo, M.; Sanchez-Villegas, A.; Basterra-Gortari, F.J.; Nunez-Cordoba, J.M.; Toledo, E.; Serrano-Martinez, M. Prospective study of self-reported usual snacking and weight gain in a Mediterranean cohort: The SUN project. Clin. Nutr. 2010, 29, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Zizza, C.A.; Tayie, F.A.; Lino, M. Benefits of snacking in older Americans. J. Am. Diet. Assoc. 2007, 107, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Keast, D.R.; Nicklas, T.A.; O’Neil, C.E. Snacking is associated with reduced risk of overweight and reduced abdominal obesity in adolescents: National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am. J. Clin. Nutr. 2010, 92, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhai, F.; Zhang, B.; Popkin, B.M. Trends in Chinese snacking behaviors and patterns and the social-demographic role between 1991 and 2009. Asia Pac. J. Clin. Nutr. 2012, 21, 253–262. [Google Scholar] [PubMed]
- Zemel, M.B. Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr. 2004, 79, 907S–912S. [Google Scholar] [PubMed]
- Thielecke, F.; Boschmann, M. The potential role of green tea catechins in the prevention of the metabolic syndrome—A review. Phytochemistry 2009, 70, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A.; Tucker, J.M.; Bailey, B.W.; Le Cheminant, J.D. Dietary patterns as predictors of body fat and BMI in women: A factor analytic study. Am. J. Health Promot. 2015, 29, e136–e146. [Google Scholar] [CrossRef] [PubMed]
- Haidari, F.; Shirbeigi, E.; Cheraghpour, M.; Mohammadshahi, M. Association of dietary patterns with body mass index, waist circumference, and blood pressure in an adult population in Ahvaz, Iran. Saudi Med. J. 2014, 35, 967–974. [Google Scholar] [PubMed]
- Paradis, A.M.; Perusse, L.; Vohl, M.C. Dietary patterns and associated lifestyles in individuals with and without familial history of obesity: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 38. [Google Scholar] [CrossRef] [PubMed]
Food Groups | Examples of Food Items |
---|---|
Rice | Long-grained rice, round-grained rice, glutinous rice and products |
Wheat | Wheat noodles, wheat buns and other wheat flour products |
Deep fried wheat | Deep-fried dough sticks, deep-fried dough cakes |
Instant noodles | Instant noodles |
Coarse grains | Corn, oats, barley, sorghum foxtail millet |
Starchy roots and tubers | Potatoes, taros, yams, lotus roots, sweet potatoes cassavas |
Vegetables | Cabbage, spinach, tomatoes, cucumbers, zucchinis and products |
Fruits | Fresh fruits and products |
Pork | Pork |
Poultry | Chickens, ducks, geese |
Other livestock meats | Beef, lamb and other livestock meats |
Organ meats | Livers, kidneys, large intestines, blood |
Processed meats | Ham, luncheon meats, sausages, smoked meats, dried meats |
Fresh water fish and seafood | Freshwater fish, saltwater fish, shrimp, crab and shellfish |
Dairy | Animal-based milk, cheese, yogurt |
Legumes | Soybeans, peas, mung beans, azuki beans and products |
Eggs | Whole eggs, yolks, whites, preserved eggs |
Seeds and nuts | Sesame seeds, peanuts, walnuts, almonds, cashews, pistachios |
Fungi and algae | Mushroom, kelp and laver |
Western fast food | Sandwiches, hamburgers, hotdogs, pizzas |
Cakes and pastries | Cakes, cookies, moon cakes, pies and pastries |
Candy and chocolates | Honey, sugar, candies, chocolate, Jelly |
Soft drinks | Carbonated drinks, fruit juices and vegetable juices |
Alcoholic beverages | Liquors, wine, beer vodka, cocktails, whiskey |
Tea | Black tea, green tea, oolong tea |
Variable | Total | Men | Women | p Value |
---|---|---|---|---|
No. (%) | 2046 | 968 (47.3%) | 1078 (52.7%) | |
Age in years (%) | 60.1 ± 10.8 | 60.0 ± 10.7 | 60.2 ± 10.9 | |
45–59 | 1031 | 477 (49.3) | 554 (51.4) | 0.340 |
60– | 1015 | 491 (50.7) | 524 (48.6) | |
BMI (%) | ||||
under weight | 72 (3.5) | 30 (3.0) | 42 (3.9) | 0.017 |
normal | 1039 (50.8) | 476 (49.2) | 563 (52.2) | |
overweight | 745 (36.4) | 384 (39.7) | 361 (33.5) | |
general obesity | 190 (9.3) | 78 (8.1) | 112 (10.4) | |
abdominal obesity (%) | 972 (47.5) | 512 (52.9) | 460 (42.7) | <0.001 |
education level (%) | ||||
Lower | 1432 (70.0) | 646 (66.7) | 786 (72.9) | 0.002 |
Higher | 614 (30.0) | 322 (33.3) | 292 (27.1) | |
marital status2 (%) | ||||
married | 1864 (91.1) | 912 (94.2) | 952 (88.3) | <0.001 |
other marital status | 182 (8.9) | 56 (5.8) | 126 (11.7) | |
smoking status (%) | ||||
never | 1485 (72.6) | 415 (42.9) | 1070 (99.3) | <0.001 |
former | 52 (2.5) | 52 (5.4) | 0 (0.0) | |
current | 509 (24.9) | 501 (51.8) | 8 (0.7) | |
occupation (%) | ||||
retired | 1228 (63) | 572 (59.1) | 716 (66.4) | <0.001 |
others | 758 (37) | 396 (40.9) | 362 (33.6) | |
physical activity (%) | ||||
light | 1105 (54) | 550 (56.8) | 555 (51.5) | 0.054 |
moderate | 370 (18,1) | 164 (16.9) | 206 (19.1) | |
vigorous | 571 (27.9) | 254 (26.2) | 317 (29.4) | |
housework status (%) | ||||
yes | 1654 (80.8) | 657 (67.9) | 997 (92.5) | <0.001 |
no | 392 (19.2) | 311 (32.1) | 81 (7.5) |
Food Groups | Men (n = 968) | Women (n = 1078) | ||||||
---|---|---|---|---|---|---|---|---|
Rice Staple | Wheat Staple | Snacks | Prudent | Rice Staple | Wheat Staple | Snacks | Prudent | |
Rice | 0.413 | −0.503 | −0.462 | 0.415 | −0.565 | |||
Wheat | 0.619 | 0.575 | ||||||
Deep fried wheat | 0.213 | |||||||
Instant noodles | −0.221 | 0.213 | ||||||
Coarse grains | 0.966 | 0.278 | 0.929 | |||||
Starchy roots and tubers | 0.295 | −0.439 | 0.352 | 0.428 | ||||
Vegetables | 0.580 | −0.370 | 0.684 | |||||
Fruits | 0.277 | 0.966 | 0.280 | 0.464 | 0.928 | |||
Pork | 0.244 | −0.216 | −0.202 | 0.267 | −0.279 | |||
Poultry | 0.571 | 0.319 | ||||||
Other livestock meats | - | |||||||
Organ meats | 0.226 | |||||||
Processed meats | 0.466 | −0.355 | 0.274 | |||||
Fresh water fish and seafood | −0.447 | 0.286 | 0.203 | |||||
Dairy | 0.383 | 0.317 | 0.591 | |||||
Legumes | 0.370 | 0.264 | ||||||
Eggs | −0.446 | 0.464 | ||||||
Seeds and nuts | 0.288 | 0.201 | 0.669 | |||||
Fungi and algae | 0.312 | 0.474 | 0.200 | |||||
Western fast food | ||||||||
Cakes and pastries | 0.433 | 0.541 | ||||||
Candy and chocolates | ||||||||
Soft drinks | 0.407 | 0.363 | ||||||
Alcoholic beverages | 0.306 | |||||||
Tea | 0.344 | 0.201 | 0.220 | 0.236 |
Rice Staple | Wheat Staple | Snacks | Prudent | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 (Low) | Q4 (High) | p | Q1 (Low) | Q4 (High) | p | Q1 (Low) | Q4 (High) | p | Q1 (Low) | Q4(High) | p | |
Men | ||||||||||||
No. | 242 | 242 | 242 | 242 | 242 | 242 | 242 | 242 | ||||
Age in year | 61.0 ± 11.0 | 58.8 ± 10.8 | 0.024 | 59.4 ± 9.9 | 60.1 ± 11.0 | 0.460 | 58.5 ± 9.8 | 61.0 ± 11.7 | 0.011 | 58.1 ± 9.8 | 62.1 ± 11.6 | <0.001 |
BMI (kg/m2) | 23.5 ± 3.2 | 24.1 ± 3.4 | 0.059 | 23.7 ± 3.5 | 23.9 ± 2.8 | 0.495 | 23.8 ± 3.3 | 23.6 ± 3.1 | 0.471 | 23.9 ± 3.3 | 23.8 ± 3.3 | 0.510 |
WC (cm) | 84.5 ± 9.2 | 86.4 ± 8.5 | 0.021 | 84.5 ± 8.9 | 86.6 ± 8.6 | 0.010 | 85.1 ± 8.9 | 86.0 ± 9.5 | 0.292 | 86.1 ± 9.9 | 86.0 ± 9.5 | 0.950 |
General obesity (%) | 16 (6.6) | 30 (12.4) | 0.030 | 23 (9.5) | 13 (5.4) | 0.083 | 19 (7.9) | 14 (5.8) | 0.367 | 18 (7.4) | 23 (9.5) | 0.414 |
Abdominal obesity (%) | 103 (42.6) | 138 (57.0) | 0.001 | 105 (43.4) | 142 (58.7) | 0.001 | 122 (50.4) | 125 (51.7) | 0.785 | 126 (52.1) | 133 (55.0) | 0.524 |
Education (high,%) | 70 (28.9) | 81 (33.5) | 0.280 | 41 (16.9) | 131 (54.1) | <0.001 | 57 (23.6) | 101 (41.7) | <0.001 | 47 (19.4) | 121 (50) | <0.001 |
Married (%) | 210 (89.4) | 225 (95.7) | 0.008 | 222 (94.5) | 226 (95.0) | 0.812 | 225 (95.7) | 219 (93.6) | 0.299 | 217 (91.9) | 229 (95.8) | 0.078 |
Smoking status (%) | ||||||||||||
Never | 99 (40.9) | 111 (45.9) | 0.355 | 110 (45.5) | 102 (42.1) | 0.764 | 111 (45.9) | 104 (43.0) | 0.393 | 81 (33.5) | 121 (50.0) | <0.001 |
Former | 13 (5.4) | 8 (3.3) | 15 (6.2) | 16 (6.6) | 8 (3.3) | 14 (5.8) | 9 (3.7) | 17 (7.0) | ||||
Current | 130 (53.7) | 123 (50.8) | 117 (48.3) | 124 (51.2) | 123 (50.8) | 124 (51.2) | 152 (62.8) | 104 (43.0) | ||||
Occupation (retired, %) | 154 (63.6) | 126 (52.1) | 0.010 | 120 (49.6) | 158 (65.3) | <0.001 | 130 (53.7) | 154 (63.6) | 0.027 | 125 (51.7) | 176 (72.7) | <0.001 |
Physical activity | ||||||||||||
Light | 146 (60.3) | 131 (54.1) | 0.143 | 158 (65.3) | 108 (44.6) | <0.001 | 154 (63.6) | 122 (50.4) | 0.002 | 180 (74.4) | 104 (43.0) | <0.001 |
Moderate | 43 (17.8) | 39 (16.1) | 46 (19.0) | 41 (16.9) | 45 (18.6) | 44 (18.2) | 29 (12.0) | 54 (22.3) | ||||
Vigorous | 53 (21.9) | 72 (29.8) | 38 (15.7) | 93 (38.4) | 43 (17.8) | 76 (31.4) | 33 (13.6) | 84 (34.7) | ||||
Doing housework (%) | 157 (64.9) | 170 (70.2) | 0.207 | 163 (67.4) | 166 (68.6) | 0.770 | 164 (67.8) | 168 (69.4) | 0.695 | 139 (57.4) | 182 (75.2) | <0.001 |
Total energy intake (Kcal/day) | 1580.30 ± 589.63 | 1661.78 ± 557.47 | 0.119 | 1583.66 ± 614.50 | 1646.20 ± 534.41 | 0.233 | 1611.21 ± 602.33 | 1642.67 ± 588.04 | 0.561 | 1574.59 ± 614.65 | 1639.56 ± 518.05 | 0.209 |
Women | ||||||||||||
No. | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | ||||
Age in year | 63.0 ± 12.4 | 58.9 ± 9.5 | <0.001 | 59.6 ± 10.7 | 61.0 ± 10.9 | 0.123 | 58.2 ± 9.6 | 61.2 ± 11.5 | 0.001 | 60.4 ± 11.1 | 59.6 ± 10.9 | 0.397 |
BMI (kg/m2) | 23.6 ± 3.8 | 23.8 ± 3.1 | 0.698 | 23.9 ± 3.6 | 23.4 ± 3.0 | 0.056 | 23.8 ± 3.5 | 24.1 ± 3.4 | 0.339 | 23.7 ± 3.4 | 23.7 ± 3.5 | 0.858 |
WC (cm) | 80.7 ± 9.1 | 79.6 ± 8.4 | 0.149 | 80.1 ± 8.4 | 79.2 ± 8.7 | 0.246 | 79.8 ± 8.6 | 80.2 ± 8.7 | 0.588 | 80.5 ± 9.1 | 78.9 ± 8.7 | 0.042 |
General obesity (%) | 38 (14.1) | 24 (8.9) | 0.059 | 26 (9.7) | 20 (7.4) | 0.355 | 33 (12.3) | 30 (11.2) | 0.688 | 32 (11.9) | 25 (9.3) | 0.327 |
Abdominal obesity (%) | 132 (49.1) | 105 (39.9) | 0.019 | 116 (43.1) | 112 (41.6) | 0.727 | 111 (41.3) | 122 (45.4) | 0.339 | 120 (44.6) | 106 (39.4) | 0.221 |
Education (high, %) | 204 (75.8) | 196 (72.9) | 0.430 | 25 (9.3) | 133 (49.4) | <0.001 | 60 (22.3) | 83 (30.9) | 0.025 | 36 (13.4) | 106 (39.4) | <0.001 |
Married (%) | 211 (79.0) | 234 (91.1) | <0.001 | 224 (86.8) | 231 (88.2) | 0.643 | 236 (91.5) | 222 (84.4) | 0.013 | 225 (86.9) | 230 (87.1) | 0.933 |
Occupation (retired, %) | 186 (69.1) | 183 (68.0) | 0.781 | 140 (52.0) | 207 (77.0) | <0.001 | 164 (61.0) | 191 (71.0) | 0.014 | 162 (60.2) | 208 (77.3) | <0.001 |
Physical activity | ||||||||||||
light | 149 (55.4) | 125 (46.5) | 0.054 | 175 (65.1) | 100 (37.2) | <0.001 | 144 (53.5) | 127 (47.2) | 0.305 | 160 (59.5) | 128 (47.6) | <0.016 |
moderate | 41 (15.2) | 60 (22.3) | 52 (19.3) | 51 (19.0) | 52 (19.3) | 55 (20.4) | 43 (16.0) | 49 (18.2) | ||||
vigorous | 79 (29.4) | 84 (31.2) | 42 (15.6) | 118 (43.9) | 73 (27.1) | 87 (32.3) | 66 (24.5) | 92 (34.2) | ||||
Doing housework (%) | 241 (89.6) | 255 (94.8) | 0.024 | 249 (92.6) | 249 ((92.6) | 1.000 | 256 (95.2) | 246 (91.4) | 0.084 | 248 (92.2) | 249 (92.6) | 0.871 |
Total energy intake (Kcal/day) | 1510.02 ± 672.77 | 1634.41 ± 744.62 | 0.043 | 1540.94 ± 656.87 | 1627.23 ± 690.34 | 0.138 | 1611.21 ± 706.96 | 1705.35 ± 866.22 | 0.168 | 1603.25 ± 736.61 | 1631.64 ± 606.10 | 0.626 |
Gender | Dietary Patterns | General Obesity | Abdominal Obesity | ||||
---|---|---|---|---|---|---|---|
Q1 | Q4 | p | Q1 | Q4 | p | ||
Men | Rice staple | ||||||
Model 1. | 1 | 1.873 (1.062, 3.441) | 0.035 | 1 | 1.383 (1.153, 1.668) | 0.001 | |
Model 2. | 1 | 1.836 (1.031, 3.399) | 0.044 | 1 | 1.358 (1.132, 1.639) | 0.001 | |
Model 3. | 1 | 1.800 (0.998, 3.226) | 0.054 | 1 | 1.358 (1.132, 1.639) | 0.001 | |
Wheat staple | |||||||
Model 1. | 1 | 0.566 (0.285, 1.074) | 0.089 | 1 | 1.349 (1.131, 1.619) | 0.001 | |
Model 2. | 1 | 0.631 (0.297, 1.290) | 0.216 | 1 | 1.331 (1.094, 1.627) | 0.005 | |
Model 3. | 1 | 0.621 (0.294, 1.260) | 0.196 | 1 | 1.331 (1.094, 1.627) | 0.005 | |
Snacks | |||||||
Model 1. | 1 | 0.830 (0.519, 1.169) | 0.362 | 1 | 1.006 (0.844, 1.201) | 0.942 | |
Model 2. | 1 | 0.891 (0.545, 1.083) | 0.587 | 1 | 1.022 (0.854, 1.224) | 0.809 | |
Model 3. | 1 | 0.887 (0.541, 1.078) | 0.574 | 1 | 1.023 (0.856, 1.225) | 0.797 | |
Prudent | |||||||
Model 1. | 1 | 1.236 (0.896, 1.270) | 0.362 | 1 | 1.031 (0.872, 1.221) | 0.719 | |
Model 2. | 1 | 1.022 (0.939, 1.245) | 0.799 | 1 | 0.996 (0.816, 1.216) | 0.967 | |
Model 3. | 1 | 1.022 (0.939, 1.245) | 0.770 | 1 | 0.997 (0.817, 1.217) | 0.978 | |
Women | Rice staple | ||||||
Model 1. | 1 | 0.863 (0.613, 1.136) | 0.076 | 1 | 0.826 (0.678, 1.001) | 0.053 | |
Model 2. | 1 | 0.749 (0.626, 0.912) | 0.038 | 1 | 0.839 (0.687, 1.018) | 0.079 | |
Model 3. | 1 | 0.745 (0.673, 0.807) | 0.031 | 1 | 0.832 (0.681, 1.011) | 0.067 | |
Wheat staple | |||||||
Model 1. | 1 | 0.857 (0.583, 1.157) | 0.375 | 1 | 0.948 (0.781, 1.150) | 0.586 | |
Model 2. | 1 | 1.008 (0.706, 2.397) | 0.950 | 1 | 1.000 (0.802, 1.244) | 0.997 | |
Model 3. | 1 | 1.014 (0.694, 1.028) | 0.903 | 1 | 1.000 (0.802, 1.244) | 0.997 | |
Snacks | |||||||
Model 1. | 1 | 0.941 (0.697, 1.201) | 0.660 | 1 | 1.066 (0.883, 1.291) | 0.507 | |
Model 2. | 1 | 0.976 (0.711, 1.259) | 0.865 | 1 | 1.100 (0.905, 1.339) | 0.337 | |
Model 3. | 1 | 0.972 (0.849, 1.080) | 0.823 | 1 | 1.100 (0.904, 1.340) | 0.340 | |
Prudent | |||||||
Model 1. | 1 | 0.863 (0.613, 1.136) | 0.345 | 1 | 0.916 (0.751, 1.113) | 0.380 | |
Model 2. | 1 | 0.915 (0.672, 1.085) | 0.544 | 1 | 0.961 (0.777, 1.183) | 0.710 | |
Model 3. | 1 | 0.915 (0.784, 1.085) | 0.545 | 1 | 0.959 (0.776, 1.179) | 0.692 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.-Q.; Li, F.; Meng, P.; You, J.; Wu, M.; Li, S.-G.; Chen, B. Gender Difference on the Association between Dietary Patterns and Obesity in Chinese Middle-Aged and Elderly Populations. Nutrients 2016, 8, 448. https://doi.org/10.3390/nu8080448
Yuan Y-Q, Li F, Meng P, You J, Wu M, Li S-G, Chen B. Gender Difference on the Association between Dietary Patterns and Obesity in Chinese Middle-Aged and Elderly Populations. Nutrients. 2016; 8(8):448. https://doi.org/10.3390/nu8080448
Chicago/Turabian StyleYuan, Ya-Qun, Fan Li, Pai Meng, Jie You, Min Wu, Shu-Guang Li, and Bo Chen. 2016. "Gender Difference on the Association between Dietary Patterns and Obesity in Chinese Middle-Aged and Elderly Populations" Nutrients 8, no. 8: 448. https://doi.org/10.3390/nu8080448
APA StyleYuan, Y. -Q., Li, F., Meng, P., You, J., Wu, M., Li, S. -G., & Chen, B. (2016). Gender Difference on the Association between Dietary Patterns and Obesity in Chinese Middle-Aged and Elderly Populations. Nutrients, 8(8), 448. https://doi.org/10.3390/nu8080448