Retinol and α-Tocopherol in the Breast Milk of Women after a High-Risk Pregnancy
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Population
2.2. Milk Sampling
2.3. Type of Milk
2.4. Laboratory Methods
2.5. Evaluating Maternal Body Mass Index (BMI) and Morbidity in Mothers and Newborns/Infants
3. Statistical Analysis
4. Ethical Aspects
5. Results
6. Discussion
6.1. Concentration of Retinol and α-Tocopherol
6.2. Preterm Childbirth
6.3. Does the BMI Affect the Concentrations of Retinol and α-Tocopherol?
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
HPLC | High-performance liquid chromatography |
BMI | Body mass index |
WHO | World Health Organization |
PAHO | Pan American Health Organization |
IQR | Interquartile range |
References
- Simmons, H.A.; Goldberg, L.S. ‘High-risk’ pregnancy after perinatal loss: Understanding the label. Midwifery 2011, 27, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Saugstad, O.D.; Henriksen, T.; Tonstad, S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: A systematic review and meta-analysis. JAMA 2014, 311, 1536–1546. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Salud. Encuesta Nacional de Salud y Nutrición 2012, Resultados Nacionales; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2012. [Google Scholar]
- Institute of Medicine Report Brief. Weight Gain during Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Langford, A.; Joshu, C.; Chang, J.J.; Myles, T.; Leet, T. Does gestational weight gain affect the risk of adverse maternal and infant outcomes in overweight women? Matern. Child Health J. 2011, 15, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Surapaneni, K.M. Oxidant–antioxidant status in gestational diabetes patients. J. Clin. Diagn. Res. 2007, 1, 235–238. [Google Scholar]
- Resende, F.B.; Clemente, H.A.; Bezerra, D.F.; Grilo, E.C.; de Melo, L.R.; Bellot, P.E.; Dantas, R.C.; Dimenstein, R. Alpha-tocopherol concentration in serum and colostrum of mothers with gestational diabetes mellitus. Rev. Paul. Pediatr. 2014, 32, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Debier, C.; Larondelle, Y. Vitamins A and E: Metabolism, roles and transfer to offspring. Br. J. Nutr. 2005, 93, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Lira, L.Q.; Dimenstein, R. Vitamin A and gestational diabetes. Rev. Assoc. Med. Bras. 2010, 56, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowska, K.; Zemany, L.; Krugluger, W.; Schernthaner, G.H.; Mittermayer, F.; Schnack, C.; Rahman, R.; Brix, J.; Kahn, B.B.; Schernthaner, G. Serum concentrations of retinol-binding protein 4 in women with and without gestational diabetes. Diabetologia 2008, 51, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Resende, F.B.; De Lira, L.Q.; Grilo, E.C.; Lima, M.S. Dimenstein, R. Gestational diabetes: A risk of puerperal hypovitaminosis A? An. Acad. Bras. Cienc. 2015, 87, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Begum, K. Long-term consequences of stunting in early life. Matern. Child Nutr. 2011, 7 (Suppl. 3), 5–18. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Abd el-Maksoud, A.; Nassar, M.F. Nutritional stunting in Egypt: Which nutrient is responsible? East. Mediterr. Health J. 2002, 8, 272–280. [Google Scholar] [PubMed]
- Fares, S.; Sethom, M.M.; Khouaja-Mokrani, C.; Jabnoun, S.; Feki, M.; Kaabachi, N. Vitamin A, E, and D deficiencies in Tunisian very low birth weight neonates: Prevalence and risk factors. Pediatr. Neonatol. 2014, 55, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Weissgerber, T.L.; Gandley, R.E.; McGee, P.L.; Spong, C.Y.; Myatt, L.; Leveno, K.J.; Thorp, J.M., Jr.; Mercer, B.M.; Peaceman, A.M.; Ramin, S.M.; et al. Haptoglobin phenotype, preeclampsia risk and the efficacy of vitamin C and E supplementation to prevent preeclampsia in a racially diverse population. PLoS ONE 2013, 8, e60479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissgerber, T.L.; Gandley, R.E.; Roberts, J.M.; Patterson, C.C.; Holmes, V.A.; Young, I.S.; McCance, D.R. Haptoglobin phenotype, pre-eclampsia, and response to supplementation with vitamins C and E in pregnant women with type-1 diabetes. BJOG 2013, 120, 1192–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bártfai, L.; Bártfai, Z.; Nedeczky, I.; Puho, E.H.; Bánhidy, F.; Czeizel, A.E. Rate of preterm birth in pregnant women with vitamin E treatment: A population-based study. J. Matern. Fetal Neonatal Med. 2012, 25, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Schmölz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of vitamin E metabolism. World J. Biol. Chem. 2016, 7, 14–43. [Google Scholar] [CrossRef] [PubMed]
- Stam, J.; Sauer, P.J.J.; Boelm, G. Can we define an infant’s need from the composition of human milk? Am. J. Clin. Nutr. 2013, 98, 521S–528S. [Google Scholar] [CrossRef] [PubMed]
- American College Obstetrician and Gynecologists Committee on Practice bulletin–Obstetrics. ACGO Practice Bulletin. Clinical Management Guidelines for Obstetrician-Gynecologists, No. 30, September 2001 (replaces Technical Bulletin No. 200, December 1994); Gestational diabetes. Available online: http://c.ymcdn.com/sites/chronicdisease.site-ym.com/resource/resmgr/Womens_Health_Council_GDM/pb030_gestational_diabetes_r.pdf (accessed on 1 July 2016).
- American College Obstetrician and Gynecologists Committee on Practice bulletin–Obstetrics. ACGO Practice Bulletin. Diagnosis and Management of Preeclampsia and Eclampsia, No. 33, January 2002; American College Obstetrician and Gynecologists. Available online: https://www.scribd.com/document/116952914/No-33-Diagnosis-and-Management-of-Preeclampsia-and-Eclampsia (accessed on 1 July 2016).
- Xue, X.; You, J.; He, P. Simultaneous determination of five fat-soluble vitamins in feed by high-performance liquid chromatography following solid-phase extraction. J. Chromatogr. Sci. 2008, 46, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Rish, L.; Yaqoob, M.; Waseem, A.; Nabi, A. Vitamin A determination in milk sample based on the luminol-periodate chemiluminescence system. J. Nutr. Sci. Vitaminol. 2014, 60, 9–16. [Google Scholar] [CrossRef]
- IOM (Institute of Medicine) and NRC (National Research Council). Weight Gain During Pregnancy: Reexamining the Guidelines; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Schweigert, F.J.; Bathe, K.; Chen, F.; Büscher, U.; Dudenhausen, J.W. Effect of the stage of lactation in humans on carotenoid levels in milk, blood plasma and plasma lipoprotein fractions. Eur. J. Nutr. 2004, 43, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Quiles, J.L.; Ochoa, J.J.; Ramirez-Tortosa, M.C.; Linde, J.; Bompadre, S.; Battino, M.; Narbona, E.; Maldonado, J.; Mataix, J. Coenzyme Q concentration and total antioxidant capacity of human milk at different stages of lactation in mothers of preterm and full-term infants. Free Radic. Res. 2006, 40, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, L.; Nazrul Islam, S.; Khan, M.N.; Huque, S.; Ahsan, M. Antioxidant micronutrient profile (Vitamin E, C, A, copper, zinc, iron) of colostrum: Association with maternal characteristics. J. Trop. Pediatr. 2004, 50, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Szlagatys-Sidorkiewicz, A.; Zagierski, M.; Jankowska, A.; Łuczak, G.; Macur, K.; Baczek, T.; Korzon, M.; Krzykowski, G.; Martysiak-Żurowska, D.; Kamińska, B. Longitudinal study of vitamins A, E and lipid oxidative damage in human milk throughout lactation. Early Hum. Dev. 2012, 88, 421–424. [Google Scholar] [CrossRef] [PubMed]
- De Lira, L.Q.; Ribeiro, P.P.; Grilo, E.C.; Lima, M.S.; Dimenstein, R. Alpha-tocopherol level in serum and colostrum of breastfeeding women and association with maternal variables. Rev. Bras. Ginecol. Obstet. 2012, 34, 362–368. (In Portuguese) [Google Scholar] [PubMed]
- Shi, Y.D.; Sun, G.Q.; Zhang, Z.G.; Deng, X.; Kang, X.H.; Liu, Z.D.; Ma, Y.; Sheng, Q.H. The chemical composition of human milk from Inner Mongolia of China. Food Chem. 2011, 127, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Martysiak-Zurowska, D.; Szlagatys-Sidorkiewicz, A.; Zagierski, C. Concentrations of alpha- and gamma-tocopherols in human breast milk during the first months of lactation and in infant formulas. Matern. Child Nutr. 2013, 9, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.R.; Ribeiro, K.D.; Araújo, K.F.; Azevedo, G.M.; Pires, J.F.; Batista, S.D.; Dimenstein, R. Níveis de alfa-tocoferol no soro e leite maternos de puérperas atendidas em maternidade pública de Natal. Rio Grande do Norte Rev. Bras. Saude. Matern. Infant. 2009, 9, 423–428. [Google Scholar] [CrossRef]
- Sakurai, T.; Furukawa, M.; Asha, M.; Kanno, T.; Kojima, T.; Yonekubo, A. Fat-soluble and water-soluble vitamin contents of breast milk from Japanese women. J. Nutr. Sci. Vitaminol. 2005, 5, 239–247. [Google Scholar] [CrossRef]
- Engle-Stone, R.; Haskell, M.J.; Nankap, M.; Ndjebayi, A.O.; Brown, K.H. Breast milk retinol and plasma retinol-binding protein concentrations provide similar estimates of vitamin A deficiency prevalence and identify similar risk groups among women in Cameroon but breast milk retinol underestimates the prevalence of deficiency among young children. J. Nutr. 2014, 144, 209–217. [Google Scholar] [PubMed]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of nutrition for development (BOND)-vitamin A Review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef] [PubMed]
- Kodentsova, V.M.; Vrzhesinskaya, O.A. Evaluation of the vitamin status in nursing women by vitamin content in breast milk. Bull. Exp. Biol. Med. 2006, 141, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Kamao, M.; Tsugawa, N.; Suahra, Y.; Okano, T. Determination of fat-soluble vitamins in human plasma, breast milk, and food samples: Application in nutrition survey for establishment of “Dietary Reference Intakes for Japanese”. J. Health Sci. 2007, 53, 257–262. [Google Scholar] [CrossRef]
- Tijerina-Sáenz, A.; Innis, S.M.; Kitts, D.D. Antioxidant capacity of human milk and its association with vitamins A and E and fatty acid composition. Acta Paediatr. 2009, 98, 1793–1798. [Google Scholar] [CrossRef] [PubMed]
- Antonakou, A.; Chiou, A.; Andrikopoulos, N.K.; Bakoula, C.; Matalas, A.L. Breast milk tocopherol content during the first six months in exclusively breastfeeding Greek women. Eur. J. Nutr. 2011, 50, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Szlagatys-Sidorkiewicz, A.; Zagierski, M.; Luczak, G.; Macur, K.; Baczek, T.; Kaminska, B. Maternal smoking does not influence vitamin A and E concentrations in mature breastmilk. Breastfeed. Med. 2012, 7, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Wallingford, J.; Underwood, B. Vitamin A deficiency in pregnancy, lactation and the nursing child. In Vitamin A deficiency and Its Control; Bauernfeind, J., Ed.; Academic Press: Orlando, FL, USA, 1986; pp. 101–152. [Google Scholar]
- Agne-Djigo, A.; Idohou-Dossou, N.; Kwadjode, K.M.; Tanumihardjo, S.A.; Wade, S. High prevalence of vitamin A deficiency is detected by the modified relative dose-response test in six-month-old Senegalese breast-fed infants. J. Nutr. 2012, 142, 1991–1996. [Google Scholar] [CrossRef] [PubMed]
- Tyndall, J.A.; Okoye, V.; Elumelu, F.; Dahiru, A.; Pariya, H.B. Vitamin A and iron deficiency in pregnant women, lactating mothers and their infants in Adamawa State, Nigeria: A prospective cohort study. Am. J. Food Nutr. 2012, 2, 14–20. [Google Scholar] [CrossRef]
- Azeredo, V.B.; Trugo, N.M. Retinol, carotenoids, and tocopherols in the milk of lactating adolescents and relationships with plasma concentrations. Nutrition 2008, 24, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Tokusoglu, O.; Tansug, N.; Aksit, S.; Dinc, G.; Kasirga, E.; Ozcan, C. Retinol and α-tocopherol concentrations in breast milk of Turkish lactating mothers under different socio-economic status. Int. J. Food Sci. Nutr. 2008, 59, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Debier, C. Vitamin E during pre- and postnatal periods. Vitam. Horm. 2007, 76, 357–373. [Google Scholar] [PubMed]
- Sziklai-László, I.; Majchrzak, D.; Elmadfa, I.; Cser, M.A. Selenium and vitamin E concentrations in human milk and formula milk from Hungary. J. Radioanalytical Nuclear Chem. 2009, 279, 585–590. [Google Scholar] [CrossRef]
- Fujita, M.; Shell-Ducan, B.; Ndemwa, P.; Brindle, E.; Lo, Y.J.; Kombe, Y.; O’Connor, K. Vitamin A Dynamics in breastmilk and liver stores: A life history perspective. Am. J. Hum. Biol. 2011, 23, 664–673. [Google Scholar] [CrossRef] [PubMed]
- De Lira, L.Q.; Lima, M.S.; de Medeiros, J.M.; da Silva, I.F.; Dimenstein, R. Correlation of vitamin A nutritional status on alpha-tocopherol in the colostrum of lactating women. Matern. Child Nutr. 2013, 9, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Pires Medeiros, J.F.; Ribeiro, K.D.; Lima, M.S.; das Neves, R.A.; Lima, A.C.; Dantas, R.C.; da Silva, A.B.; Dimenstein, R. α-tocopherol in breast milk of women with preterm delivery after a single postpartum oral dose of vitamin E. Br. J. Nutr. 2016, 115, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Haug, M.; Laubach, C.; Burke, M.; Harzer, G. Vitamin E in human from mothers of preterm and term infants. J. Pediatr. Gastroenterol. Nutr. 1987, 6, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Bishara, R.; Dunn, M.S.; Merko, S.E.; Darling, P. Nutrient composition of hindmilk produced by mothers of very low mothers of very low birth weight infants born at less than 28 weeks gestation. J. Hum. Lact. 2008, 24, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Grilo, E.C.; Lira, L.Q.; Dimenstein, R.; Ribeiro, K.D. Influence of prematurity and birth weight on the concentration of α-tocopherol in colostrum milk. Rev. Paul. Pediatr. 2013, 31, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Souza, G.; Dolinsky, M.; Matos, A.; Chagas, C.; Ramalho, A. Vitamin A concentration in human milk and its relationship with liver reserve formation and compliance with the recommended daily intake of vitamin A in preterm and full term infants in exclusive breastfeeding. Arch. Gynecol. Obstet. 2015, 291, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.Y.; Yen, Y.H. Trend of nutritional support in preterm infants. Pediatr. Neonatol. 2016, 57, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Shamim, A.A.; Schulze, K.; Merrill, R.D.; Kabir, A.; Christian, P.; Shaikh, S.; Wu, L.; Ali, H.; Labrique, A.B.; Mehra, S.; et al. First-trimester plasma tocopherols are associated with risk of miscarriage in rural Bangladesh. Am. J. Clin. Nutr. 2015, 101, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.M.; Kramer, M.S.; Platt, R.W.; Basso, O.; Evans, R.W.; Kahn, S.R. The association between maternal antioxidant levels in midpregnancy and preeclampsia. Am. J. Obstet. Gynecol. 2015, 213, 695.e1–695.e13. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Peng, R.; Cao, J.; Kang, Y.; Qu, P.; Liu, Y.; Xiao, X.; Li, T. Serum vitamin A status is associated with obesity and the metabolic syndrome among school-age children in Chongqing, China. Asia Pac. J. Clin. Nutr. 2016, 25, 563–570. [Google Scholar] [PubMed]
- Hrolfsdottir, L.; Schalkwijk, C.G.; Birgisdottir, B.E.; Gunnarsdottir, I.; Maslova, E.; Granström, C.; Strøm, M.; Olsen, S.F.; Halldorsson, T.I. Maternal diet, gestational weight gain, and inflammatory markers during pregnancy. Obesity (Silver Spring) 2016, 24, 2133–2139. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, C.E.; Schenk, S.; Hetrick, B.; Houck, J.; Drew, B.G.; Kaye, S.; Lashbrook, M.; Bergman, B.C.; Takahashi, D.L.; Dean, T.A.; et al. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques. JCI Insight 2016, 1, e86612. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.S.R.; Dimenstein, R.; Ribeiro, K.D.S. Vitamin E concentration in human milk and associated factors: A literature review. J. Pediatr. (Rio J.) 2014, 90, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Fares, S.; Sethom, M.M.; Kacem, S.; Ksibi, I.; Feki, M.; Jebnoun, S.; Kaabachi, N. Retinol and alpha-tocopherol in the colostrum of lactating Tunisian women delivering prematurely: Associations with maternal characteristics. Pediatr. Neonatol. 2016, 57, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Debier, C.; Pottier, J.; Goffe, C.H.; Larondelle, Y. Present knowledge and unexpected behaviors of vitamins A and E in colostrum and milk. Liviest. Prod. Sci. 2005, 98, 135–147. [Google Scholar] [CrossRef]
Clinical and Anthropometric Characteristics | |||
---|---|---|---|
High-risk pregnancy n = 95 | Normal pregnancy n = 32 | ||
Mean ± SD | p | ||
Age (years) a | 28 ± 5 | 27 ± 8 | 0.456 |
Pregestational weight (kg) a | 62.2 ± 10 | 59.9 ± 10 | 0.253 |
Maximum gestational weight (kg) a | 70.4 ± 13 | 67 ± 13 | 0.239 |
Height (cm) a | 156 ± 6 | 156 ± 5 | 0.632 |
Pregestational BMI a | 25.5 ± 4 | 24.5 ± 3 | 0.176 |
Number of prenatal check-ups a | 4 ± 2 | 4 ± 0.5 | 0.211 |
Gynecological age (years) a | 15 ± 8 | 16.5 ± 5 | 0.890 |
Menarche (age in years) a | 12 ± 2 | 12 ± 1 | 0.878 |
Weight of the newborn (g) a | 1686 ± 843 | 2167 ± 689 | 0.004 |
Length of the newborn (cm) a | 40 ± 5 | 48.2 ± 5 | 0.006 |
Sociodemographic characteristics b | Frequency (%) | ||
Marital status | |||
Single | 23 (24) | 4 (13) | 0.556 |
Married | 35 (37) | 11 (34) | |
Cohabitation | 37 (39) | 17 (53) | |
Occupation | 0.883 | ||
Homemaker | 73 (77) | 24 (75) | |
Working outside the home | 22 (23) | 8 (25) | |
Level of education | 0.823 | ||
Primary or less | 10 (11) | 2 (6) | |
Middle school | 40 (42) | 14 (44) | |
High school | 33 (35) | 13 (41) | |
Professional | 12 (12) | 3 (9) | |
Socioeconomic level | 0.983 | ||
Lower to lower-middle class | 95 (100) | 31 (96) |
Retinol | α-Tocopherol | |||||||
---|---|---|---|---|---|---|---|---|
n | Colostrum µg/dL | Transition Milk µg/dL | Mature Milk µg/dL | Colostrum µg/dL | Transition Milk µg/dL | Mature Milk µg/dL | ||
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | |||
Maternal age (years) | ≤19 | 21 | 73 (37–93) | 57 (52–70) | 67 (49–70) | 500 (103–654) | 276 (55–445) | 207 (48–270) |
20–29 | 29 | 67 (35–128) | 84 (64–103) | 60 (49–82) | 298 (127–492) | 204 (103–321) | 321 (68–436) | |
30–34 | 23 | 42 (33–50) | 93 (64–120) | 42 (35–56) | 500 (405–597) | 654 (348–727) | 103 (46–255) | |
≥35 | 22 | 79 (52–106) | 62 (39–81) | 67 (49–70) | 275 (192–570) | 201 (167–475) | 339 (180–423) | |
p a | 0.225 | 0.340 | 0.173 | 0.632 | 0.407 | 0.330 | ||
Pregestational BMI | Normal weight | 41 | 60 (47–96) | 80 (66–97) | 60 (42–80) | 575 (154–654) | 180 (131–410) | 321 (55–448) |
Overweight | 40 | 60 (38–94) | 64 (41–93) | 45 (34–64) | 321 (130–540) | 249 (90–450) | 190 (54–340) | |
Obesity | 14 | 33 (33–33) | 42 (32–52) | 49 (38–55) | 455 (410–500) | 295 (146–445) | 146 (103–423) | |
p a | 0.209 | 0.095 | 0.003 | 0.575 | 0.945 | 0.620 | ||
Gestational weight increase | Adequate | 19 | 31 (29–33) | 72(44–120) | 50 (34–60) | 270 (130–410) | 549 (323–727) | 340 (61–423) |
Low | 35 | 60 (42–93) | 73 (70–110) | 62 (49–90) | 470 (120–654) | 180 (107–433) | 218 (63–339) | |
Excessive | 41 | 61 (45–94) | 64 (53–89) | 55 (40–79) | 400 (253–602) | 249 (103–372) | 180 (103–423) | |
p a | 0.090 | 0.136 | 0.337 | 0.802 | 0.911 | 0.951 | ||
Gestational age | To term | 47 | 60 (46–102) | 103 (73–120) | 59 (49–91) | 470 (275–654) | 445 (160–676) | 330 (63–441) |
Preterm | 48 | 41 (33–89) | 62 (47–77) | 48 (38–70) | 400 (125–525) | 132 (233–371) | 135 (61–276) | |
p b | 0.069 | 0.005 | 0.058 | 0.260 | 0.290 | 0.118 | ||
Complication during pregnancy | Gestational diabetes | 12 | 49 (44–93) | 94 (70–119) | 47 (35–99) | 400 (321–500) | 433 (189–676) | 38 (18–431) |
Preeclampsia | 40 | 60 (41–92) | 62 (40–76) | 59 (46–76) | 343 (230–654) | 233 (115–445) | 218 (104–450) | |
Anemia, myomas | 29 | 49 (32–83) | 93 (70–103) | 47 (35–67) | 545 (125–654) | 321 (160–450) | 205 (59–416) | |
Advanced maternal age | 14 | 90 (62–96) | 76 (52–100) | 68 (49–85) | 360 (183–500) | 274 (103–445) | 180 (103–321) | |
p a | 0.690 | 0.260 | 0.378 | 0.905 | 0.906 | 0.661 |
Maternal variables | The Median Concentration in Mature Milk of Mothers Who Underwent a High-Risk Pregnancy | The Median Concentration in Mature Milk of Mothers Who Experienced a Normal Pregnancy | ||||
---|---|---|---|---|---|---|
OR | CI 95% | p * | OR | CI 95% | p * | |
Retinol concentration (≤60 µg/dL) | (≤76 µg/dL) | |||||
Preterm childbirth | 2.618 | 1.111–6.169 | 0.028 | 2.112 | 0.858–5.856 | 0.112 |
Preeclampsia | 1.512 | 0.429–5.450 | 0.512 | 0.992 | 0.992–1.138 | 0.102 |
Gestational diabetes | 0.879 | 0.277–3.122 | 0.575 | 0.272 | 0.023–3.249 | 0.273 |
Anemia | 0.877 | 0.281–3.629 | 0.258 | 0.955 | 0.906–1.006 | 0.331 |
Maternal age: under 19 or over 29 years | 0.818 | 0.364–1.838 | 0.390 | 2.189 | 0.858–5.586 | 0.101 |
Pregestational overweight or obesity | 1.179 | 1.822–2692 | 0.039 | 3.563 | 1.422–8.927 | 0.007 |
α-tocopherol concentration (≤276 µg/dL) a | (≤673 µg/dL) b | |||||
Preterm childbirth | 2.243 | 0.985–5.111 | 0.039 | 2.091 | 1.689–2.588 | 0.038 |
Preeclampsia | 1.304 | 0.567–3.001 | 0.532 | 1.063 | 0.992–1.138 | 0.051 |
Gestational diabetes | 0.892 | 0.228–3.483 | 0.869 | 0.289 | 0.023–2.951 | 0.336 |
Anemia | 0.914 | 0.252–3.319 | 0.892 | 0.955 | 0.906–1.006 | 0.331 |
Maternal age: under 19 or over 29 years | 1.879 | 0.459–2.484 | 0.879 | 0.402 | 0.035–4.591 | 0.441 |
Pregestational overweight or obesity | 1.056 | 0.447–2.494 | 0.870 | 0.772 | 0.064–9.302 | 0.838 |
Pregnancy Length | Colostrum | Transition | Mature |
Retinol, median (IQR), µg/dL | |||
Preterm (n = 48) | 36 (32–63) | 60 (39–81) | 43 (36–66) |
Full term (n = 47) | 49 (39–86) | 73 (49–115) | 52 (37–72) |
p a | 0.010 | 0.020 | 0.032 |
α-tocopherol, median (IQR), µg/dL | |||
Preterm (n = 48) | 405 (109–676) | 233 (90–372) | 175 (59–465) |
Full term (n = 47) | 654 (205–2313) | 676 (174–1884) | 285 (55–477) |
p a | 0.004 | 0.001 | 0.012 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sámano, R.; Martínez-Rojano, H.; Hernández, R.M.; Ramírez, C.; Flores Quijano, M.E.; Espíndola-Polis, J.M.; Veruete, D. Retinol and α-Tocopherol in the Breast Milk of Women after a High-Risk Pregnancy. Nutrients 2017, 9, 14. https://doi.org/10.3390/nu9010014
Sámano R, Martínez-Rojano H, Hernández RM, Ramírez C, Flores Quijano ME, Espíndola-Polis JM, Veruete D. Retinol and α-Tocopherol in the Breast Milk of Women after a High-Risk Pregnancy. Nutrients. 2017; 9(1):14. https://doi.org/10.3390/nu9010014
Chicago/Turabian StyleSámano, Reyna, Hugo Martínez-Rojano, Rosa M. Hernández, Cristina Ramírez, María E. Flores Quijano, José M. Espíndola-Polis, and Daniela Veruete. 2017. "Retinol and α-Tocopherol in the Breast Milk of Women after a High-Risk Pregnancy" Nutrients 9, no. 1: 14. https://doi.org/10.3390/nu9010014
APA StyleSámano, R., Martínez-Rojano, H., Hernández, R. M., Ramírez, C., Flores Quijano, M. E., Espíndola-Polis, J. M., & Veruete, D. (2017). Retinol and α-Tocopherol in the Breast Milk of Women after a High-Risk Pregnancy. Nutrients, 9(1), 14. https://doi.org/10.3390/nu9010014