Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Acute Effects of Beetroot Juice Supplementation on Performance in Cardiorespiratory Endurance
3.2. Effects of Chronic Supplementation with Beetroot Juice on Cardiorespiratory Endurance
3.3. Effects of Beetroot Juice Supplementation on Performance in Cardiorespiratory Endurance under Hypoxic Conditions
3.4. Effects of the Combination of Beetroot Juice Supplementation with Other Supplements on Cardiorespiratory Endurance
3.5. Dosage
Practical Considerations
4. Conclusions
- Acute supplementation with beetroot juice may have an ergogenic effect on reducing VO2 at less than or equal to VO2max intensity, while improving the relationship between watts required and VO2 level, mechanisms that make it possible to enable increase time-to-exhaustion at less than or equal to VO2max intensity.
- In addition to improving efficiency and performance in various time trials or increasing time-to-exhaustion at submaximal intensities, chronic supplementation with beetroot juice may improve cardiorespiratory performance at the anaerobic threshold and VO2max intensities.
- Apparently, the effects of supplementation with beetroot juice might not have a positive interaction with caffeine supplementation, mitigating the effects of beetroot juice intake on cardiorespiratory performance, however, more work is needed to confirm the results of these investigations because the number of studies analyzing the effects of the combination of beetroot juice with other supplements, such as caffeine, is limited.
- Intake of beetroot juice should be initiated within 90 min before athletic effort, since the peak value of NO3− occurs within 2–3 h after ingestion. At least 6–8 mmol of NO3− intake is required, which can be increased in athletes with a high level of training.
Author Contributions
Conflicts of Interest
References
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Bassett, D.R.; Howley, E.T. Limiting factors for máximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.J.; Newell, J.; Bishop, D. Incremental Exercise Test Design and Analysis: Implications for Performance Diagnostics in Endurance Athletes. Sports Med. 2007, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Burnley, B.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport. Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Jung, A.P. The Impact of Resistance Training on Distance Running Performance. Sports Med. 2003, 33, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Hopkins, W.G. Performance Enhancement at the Fifth World Congress on Sport Sciences; University of Otago: Dunedin, New Zealand, 1999; Volume 3. [Google Scholar]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Leberman, H.R. Prevalence of dietary supplement use by athletes: Systematic review and meta-analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, N.R.; Rodríguez, N.S.; Di Marc, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [PubMed]
- Australian Institute of Sport. ABCD Classification System. 2016. Available online: http://www.ausport.gov.au/ais/nutrition/supplements/classification (accessed on 5 January 2017). [Google Scholar]
- Close, G.L.; Hamilton, L.; Philps, A.; Burke, L.; Morton, J.P. New strategies in sport nutrition to increase Exercise Performance. Free Radic. Biol. Med. 2016, 98, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Burke, L. Nutrición en el Deporte; Medica Panamericana: Madrid, Spain, 2010. [Google Scholar]
- Murphy, M.; Eliot, K.; Heuertz, R.; Weiss, E. Whole Beetroot Consumption Acutely Improves Running Performance. J. Acad. Nutr. Diet. 2012, 112, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Duncan, H.; Dougall, P.; Johnston, P.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin, N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1995, 1, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 2004, 37, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Di Menna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.K.; Hirai, D.M.; Copp, S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J. Physiol. 2013, 591, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Erzurum, S.C.; Ghosh, S.; Janocha, A.J.; Xu, W.; Bauer, S.; Bryan, N.S.; Tejero, J.; Hermann, C.; Hille, R.; Stuehr, D.J.; et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc. Natl. Acad. Sci. USA 2007, 104, 17593–17598. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.S.; Meissner, G. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 2001, 81, 209–237. [Google Scholar] [PubMed]
- Andrade, F.H.; Reid, M.B.; Allen, D.G.; Westerblad, H. Effect of nitric oxide on single skeletal muscle fibres from the mouse. J. Physiol. 1998, 509, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Wink, D.A.; Hines, H.B.; Cheng, R.Y.; Switzer, C.H.; Flores-Santana, W.; Vitek, M.P.; Ridnour, L.A.; Colton, C.A. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol. 2011, 89, 873–891. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Heim, R.A.; Wu, S. Nitric oxide: A regulator of eukaryotic initiation factor 2 kinases. Free Radic. Biol. Med. 2011, 50, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Kerley, C.P.; Cahill, K.; Bolger, K.; McGowan, A.; Burke, C.; Faul, J.; Cromican, L. Dietary nitrate supplementation in COPD: An acute, double-blind, randomized, placebo-controlled, crossover trial. Nitric Oxide 2015, 44, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension 2015, 65, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Zamani, P.; Rawat, D.; Shiva-Kumar, P.; Geraci, S.; Bhuva, R.; Konda, P.; Doulias, P.T.; Ischiropoulos, H.; Townsend, R.R.; Margulies, K.B.; et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation 2015, 131, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Nyström, T.; Ortsäter, H.; Huang, Z.; Zhang, F.; Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Sjöholm, Å. Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. Free Radic. Biol. Med. 2012, 53, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute Dietary Nitrate Supplementation Improves Cycling Time Trial Performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Berthon, P.; Fellman, N.; Bedu, M.; Beaune, B.; Dabonneville, M.; Coudert, J.; Chamouz, A. A 5-min running test as a mesaurement of maximal aerobic velocity. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Cox, G.; Bullock, N.; Burke, L. Beetroot Juice Improves On-Water 500 M Time-Trial Performance, and Laboratory-Based Paddling Economy in National and International-Level Kayak Athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.; Gibala, M.; Van Loon, J. Nitrate Supplementation’s Improvement of 10-km Time-Trial Performance in Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, J.; Ludzki, A.; Heigenhauser, G.; Senden, S.; Verdijk, L.; Van, L.; Spriet, L.L.; Holloway, G.P. Beetroot Juice Supplementation Reduces Whole Body Oxygen Consumption But Does Not Improve Indices Of Mitochondrial Efficiency in Human Skeletal Muscle. J. Physiol. 2016, 594, 421–435. [Google Scholar] [CrossRef]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef]
- Thompson, K.; Turnerb, L.; Prichardb, J.; Doddb, F.; Kennedyb, D.; Haskellb, C.; Blackwell, J.R.; Jones, A.M. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir. Physiol. Neurobiol. 2014, 193, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Muggeridge, D.; Howe, D.; Spendiff, O.; Pedlar, C.; James, P.; Easton, C. The Effects of a Single Dose of Concentrated Beetroot Juice on Performance in Trained Flatwater Kayakers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Vanhatalo, A.; Wilkerson, D.; Wylie, L.; Jones, A.M. Effects of Nitrate on the Power-Duration Relationship for Severe-Intensity Exercise. Med. Sci. Sports Exerc. 2013, 45, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Breese, B.C.; McNarry, M.A.; Marwood, S.; Blackwell, J.R.; Bailey, S.J.; Jones, A.M. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, 1441–1450. [Google Scholar] [CrossRef]
- Pinna, M.; Roberto, S.; Milia, R.; Maronquiu, E.; Olla, S.; Loi, A.; Migliaccio, G.M.; Padulo, J.; Orlandi, C.; Tocco, F.; et al. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients 2014, 6, 605–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muggeridge, D.J.; Howe, C.; Spendiff, O.; Pedlar, C.; James, P.; Easton, C. A Single Dose of Beetroot Juice Enhances Cycling Performance in Simulated Altitude. Med. Sci. Sports Exerc. 2014, 46, 143–150. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, K.E.; Nugent, S.F.; Barr, S.; Khoele, M.S.; Sporer, B.C.; Maclnnis, M.J. Acute Beetroot Juice Supplementation Does Not Improve Cycling Performance in Normoxia or Moderate Hypoxia. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; James, L.; Jones, T.; Wylie, L.; Macdonald, J. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl. Physiol. Nutr. Metab. 2015, 40, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Boorsma, R.K.; Whitfield, S.L. Beetroot Juice Supplementation Does Not Improve Performance of Elite 1500-m Runners. Med. Sci. Sports Exerc. 2014, 46, 2326–2334. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Vanhatalo, A.; Bailey, S.J.; Wylie, L.J.; Tucker, C.; List, S.; Winyard, P.G.; Jones, A.M. Dietary nitrate supplementation: Effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Masschelein, E.; Van Thienen, R.; Wang, X.; Van Schepdael, A.; Thomis, M.; Hespel, P. Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. J. Appl. Physiol. 2012, 113, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Handzlik, L.; Gleeson, M. Likely Additive Ergogenic Effects of Combined Preexercise Dietary Nitrate and Caffeine Ingestion in Trained Cyclists. ISRN Nutr. 2013, 2013, 396581. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Pattison, J.R.; Muniz-Pumares, D.; Patterson, S.D.; Foley, P. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J. Strength Cond. Res. 2015, 29, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.; Hawley, J.; Desbrow, B.; Jones, A.M.; Blackwell, J.; Ross, M.L.; Zemski, A.J.; Burke, L.M. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Puype, J.; Ramaekers, M.; Thienen, R.; Deldicque, L.; Hespel, P. No effect of dietary nitrate supplementation on endurance training in hipoxia. Scand. J. Med. Sci. Sports 2015, 25, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, S.; Bescós, R.; Martorell, M.; Pons, A.; Garnham, A.P.; Stathis, C.C.; McConell, G.K. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males. J. Appl. Physiol. 2016, 120, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Rhodes, E.C. Oxygen uptake kinetics during exercise. Sports Med. 1999, 27, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Lucía, A.; Pardo, J.; Durántez, A.; Hoyos, J.; Chicharro, J.L. Physiological differences between professional and elite road cyclists. Int. J. Sports Med. 1998, 19, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Santalla, A.; Chicharro, J.L. Effects of electrical stimulation on VO2 kinetics and delta efficiency in healthy young men. Br. J. Sports Med. 2003, 37, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Lucía, A.; Sánchez, O.; Carvajal, A.; Chicharro, J.L. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br. J. Sports Med. 1999, 33, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Santalla, A.; Pérez, M.; Montilla, M.; Vicente, L.; Davison, R.; Earnest, C.; Lucía, A. Sodium bicarbonate ingestion does not alter the slow component of oxygen uptake kinetics in professional cyclists. J. Sports Sci. 2003, 1, 39–47. [Google Scholar] [CrossRef]
- Jones, L.W.; Liang, Y.; Pituskin, E.N.; Battaglini, C.L.; Scott, J.M.; Hornsby, W.E.; Haykowsky, M. Effect of Exercise Training on Peak Oxygen Consumption in Patients with Cancer: A Meta-Analysis. Oncologist 2011, 16, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Clerc, P.; Rigoulet, M.; Leverve, X.; Fontaine, E. Nitric oxide increases oxidative phosphorylation efficiency. J. Bioenerg. Biomembr. 2007, 39, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts. Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [PubMed]
- Galler, S.; Hilber, K.; Gobesberger, A. Effects of nitric oxide on force-generating proteins of skeletal muscle. Pflug. Arch. 1997, 434, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of Nitric-Oxide-related supplements on human performance. Sports Med. 2012, 42, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef] [PubMed]
- Koehle, M.S.; Cheng, I.; Sporer, B. Canadian academy of sport and exercise medicine position statement: Athletes at high altitude. Clin. J. Sport Med. 2014, 24, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Droma, Y.; Hanaoka, M.; Ota, M.; Katsuyama, Y.; Koizumi, T.; Fujimoto, K.; Kobayashi, T.; Kubo, K. Positive association of the endothelial nitric oxide synthase gene polymorphisms with highaltitude pulmonary edema. Circulation 2002, 106, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Duplain, H.; Sartori, C.; Lepori, M.; Eqli, M.; Alemann, Y.; Nicod, P.; Scherrer, U. Exhaled nitric oxide in highaltitude pulmonary edema: Role in the regulation of pulmonary vascular tone and evidence for a role against inflammation. Am. J. Respir. Crit. Care Med. 2000, 162, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Casey, D.P.; Madery, B.D.; Curry, T.B.; Eisenach, J.H.; Wilkins, B.W.; Joyner, M.J. Nitric oxide contributes to the augmented vasodilation during hypoxic exercise. J. Physiol. 2010, 588, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Kang, J.; Ratamess, N.A.; Jennings, P.F.; Mangine, G.T.; Faigenbaum, A.D. Effect of nutritionally enriched coffee consumption on aerobic and anaerobic exercise performance. J. Strength Cond. Res. 2007, 21, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Stear, S.J.; Castell, L.M.; Burke, L.M.; Spriet, L.L. BJSM reviews: A-Z of supplements: Dietary supplements, sports nutrition foods and ergogenic aids for health and performance—Part 6. Br. J. Sports Med. 2010, 44, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H. Caffeine, neuromuscular function and high-intensity exercise performance. J. Sports Med. Phys. 1991, 31, 481–489. [Google Scholar]
- Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Jacobs, P.L.; Whiterhurst, M.; Penhollow, T.; Antonio, J. Caffeine airnticele enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010, 14, 7–18. [Google Scholar]
- Bell, D.G.; McLellan, T.M. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J. Appl. Physiol. 2002, 93, 1227. [Google Scholar] [CrossRef] [PubMed]
- Schneiker, K.T.; Bishop, D.; Dawson, B.; Hackett, L.P. Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med. Sci. Sports Exerc. 2006, 38, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Stuart, G.R.; Hopkins, W.G.; Cook, C.; Cairns, S.P. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med. Sci. Sports Exerc. 2005, 37, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Biddulph, C.; Devlin, B.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. The effects of different doses of caffeine on endurance cycling time trial performance. J. Sports Sci. 2012, 30, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Govoni, M.; Jansson, E.A.; Weitzberg, E.; Lundberg, J.O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 2008, 19, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. Dietary Nitrate Supplementation and Exercise Performance. Sports Med. 2014, 44, 35–45. [Google Scholar] [CrossRef] [PubMed]
Category | Sub-Categories | Supplements |
---|---|---|
High level of evidence | Will improve athletic performance with adequate dosing and specific types of effort | β-alanine |
Sodium bicarbonate | ||
Caffeine | ||
Creatinine | ||
Beetroot juice | ||
Moderate level of evidence | May improve performance, under specific dosing and effort conditions, although additional research is needed | Fish oils |
Carnitine | ||
Curcumin | ||
Glucosamine | ||
Glutamine | ||
HMB | ||
Quercetin | ||
Vitamins C and E | ||
Tart cherry juice | ||
Low level of evidence | No demonstrated beneficial effects | Supplements not found in other categories |
Prohibited supplements | May result in positive doping tests and therefore are prohibited | Substances on the list published annually by the World Anti-Doping Agency (WADA) |
Reference | Participants | Experimental Conditions | Supplementation Protocol | Variables | Results |
---|---|---|---|---|---|
[12] | M (n: 5) and W (n: 6), trained athletes | EC1: beet juice, EC2: placebo | EC1: beet juice (8 mmol nitrate) (90 min before) | Test 5 km: Performance, HR, RPE | Performance: Last mile 1.1: faster EC1 vs. EC2 (5%), RPE: 1 mile: lower in EC1 vs. EC2 |
[27] | M, competitive cyclists (n: 9) | EC1: beet juice, EC2: placebo | EC1: 500 mL beet juice (6.2 mmol nitrate) (120 min before) | Tests 4 km and 16 km: respiratory parameters, performance | Performance in test 4 km: Time: lower in EC1 vs. EC2 (6.27 ± 0.35 vs. 6.45 ± 0.42 min), Power: Higher in EC1 vs. EC2 (292 ± 44 vs. 279 ± 51 W), W/VO2: Higher in EC1 vs. EC2 (93 ± 17 vs. 83 ± 9 W/L/min), Performance test of 16 km: Time: lower in EC1 vs. EC2 (26.9 ± 1.8 vs. 27.7 ± 2.1 min), Power: Higher in EC1 vs. EC2 (247 ± 44 vs. 233 ± 43 W), W/VO2: Higher in EC1 vs. EC2 (69 ± 3 vs. 64 ± 6 W/L/min) |
[29] | M, national level athletes kayak (n: 5) | EC1: beet juice, EC2: placebo | Study A: EC1: 140 mL beet juice (4.8 mmol nitrate) (150 min before), Study B: EC1: 140 mL beet juice (9.6 mmol nitrate) (150 min before) | Study A: kayaking incremental test: Test 10 min (10 min + 5 min LT1 LT2) + 4 min test: respiratory parameters, lactate, performance (test 4 min), HR, RPE. Study B: Test 500 m | Study A: 4 min test: VO2: decreases in EC1 vs. EC2 (46.87 ± 2.56 vs. 47.83 ± 2.77 mL/kg/min), Economy: improved EC1 vs. EC2 (189.67 ± 8.17 vs. 193.90 ± 8.17 mL/kg/km). Study B: Test 500 m: Time: improved EC1 vs. EC2 (114.6 + 1.5 s vs. 116.7 + 2.2 s), Rowing often partially 100–400 m: increases in EC1 vs. EC2 (108 + 2 vs. 105 + 2 strokes), Partial speed 100–400 m: increases in EC1 vs. EC2 (4.40 + 0.03 vs. 4.30 + 0.05 m/s) |
[30] | M, trained cyclists-triathletes (n: 13) | EC1: beet juice, EC2: placebo | EC1: beet juice 140 mL (8 mmol nitrate) (6 days) | Test 30 min at 45% MAP + 30 min at 65% MAP + test 10 km: respiratory parameters, lactate, glucose, performance (test to exhaustion at 80% VO2max), HR, RPE | Respiratory parameters VO2 at 45% MAP: lower in EC1 vs. EC2 (1.93 ± 0.05 vs. 2.0 ± 0.07 L/min), VO2 at 65% MAP: lower in EC1 vs. EC2 (2.94 ± 0.10 vs. 3.1 ± 0.09 L/min), Performance (test 10 km): improvement in EC1 vs. EC2 (953 ± 21 vs. 965 ± 21 s) |
[31] | M, trained athletes (n: 13) | EC1: beet juice, EC2: placebo | EC1: 280 mL of beet juice (6.5 mmol nitrate) for 7 days. EC2: Control | Test 20 min (10 min to 10 min 50% + 70% VO2max): respiratory parameters | Respiratory parameters: 70% VO2max: oxygen consumption decrease in EC1 (3%) |
[32] | M, trained cyclists (n: 8) | EC1: beet juice, EC2: placebo | EC1: 500 mL beet juice (6.2 mmol nitrate) (150 min before) | Test 50 miles: respiratory parameters, lactate, performance | Performance: last 10 miles: lower time in EC1 vs. EC2, W/VO2: higher in EC1 vs. EC2 (67.4 ± 5.5 vs. 65.3 ± 4.8 W/L/min) |
[33] | M, trained athletes (n: 16) | EC1: beet juice, EC2: placebo | EC1: 450 mL beet juice (5 mmol nitrate) (115 min before) | Test 40 min [20 min at 50% VO2max + 20 min at 70% VO2max] + time to exhaustion at 90% VO2max: respiratory parameters, performance (test to exhaustion at 90% VO2max), lactate, HR, RPE | Respiratory parameters: RER: greater in EC1 vs. EC2 at 50% VO2max (0.89 ± 0.03 vs. 0.86 ± 0.06) and test to exhaustion (1.04 ± 0.06 vs. 1.01 ± 0.06), Performance (test to exhaustion at 90% VO2max): time increases in EC1 vs. EC2 (185 ± 122 s vs. 160 ± 109 s), Max lactate: Higher in EC1 vs. EC2 (8.80 ± 2.10 vs. 7.90 ± 2.30 mmol/L) |
[34] | M, kayakers (n: 8) | EC1: beet juice, EC2: placebo | CE1: beet juice 70 mL (5 mmol nitrate) (180 min before) | Test 15 min at 60% MAP + 5 × 10 s. R: 50 s + 5 min recovery + Test 1 km kayak: respiratory parameters, performance (5 × 10 s) performance (1 km time trial), HR | Test 15 min at 60% MAP: respiratory parameters: VO2 lower in EC1 vs. EC2 (35.6 ± 2.5 vs. 36.8 ± 2.4 mL/kg/min), Test 1 km: respiratory parameters: VO2 lower in EC1 vs. EC2 (results not specified) |
[35] | M, trained athletes (n: 9) | EC1: beet juice, EC2: placebo | EC1: 500 mL beet juice (8.2 mmol nitrate) | Tests to exhaustion at 60%, 70%, 80% and 100% VO2max: respiratory parameters, lactate, performance, HR | Performance: 60% VO2max: EC1 more time to exhaustion vs. EC2 (696 ± 120 vs. 593 ± 68 s), 70% VO2max: EC1 more time to exhaustion vs. EC2 (452 ± 106 vs. 390 ± 86 s), 80% VO2max: EC1 more time to exhaustion vs. EC2 (294 ± 50 vs. 263 ± 50 s) |
[36] | M (n: 5) and W (n: 3), trained athletes (n: 8) | EC1: beet juice, EC2: placebo | EC1: beet juice 500 mL (5.2 mmol nitrate) (15 days) | Test 5 min at 90% VT 1 + incremental test: respiratory parameters, lactate, performance, HR, glucose | Respiratory parameters: Test 5 min at 90% VT1 (day 15): VO2 lower in EC1 vs. EC2 (1.37 ± 0.23 vs. 1.43 ± 0.23 L/min), Incremental test: Wpeak: Higher EC1 vs. EC2 (331 ± 68 vs. 323 ± 68 W), WVT1: Higher EC1 vs. EC2 (105 ± 28 vs. 84 ± 18 W) |
[37] | M (n: 4) and W (n: 5), Healthy, physically active participants | EC1: beet juice, EC2: placebo | EC1: beet juice 140 mL (8 mmol nitrate) (6 days) | Test 4 min at 90% VT1 + test to exhaustion at 70% between VT1 and VO2max: respiratory parameters, lactate, performance (test to exhaustion at 70% between VT1 and VO2max), HR | Performance (test to exhaustion at 70% between VT1 and VO2max) higher EC1 vs. EC2 (635 ± 258 vs. 521 ± 158 s) |
[38] | M, trained swimmers (n: 14) | EC1: beet juice, EC2: placebo | EC1: beet juice 500 mL (5.5 mmol nitrate) (6 days), EC2: placebo (6 days) | Incremental test in swimming | VT1: improvement in EC1 vs. EC2 (6.7 ± 1.2 vs. 6.3 ± 1.0 kg), energy expenditure: decreases in EC1 vs. EC2 (1.7 ± 0.3 vs. 1.9 ± 0.5 kcal/kg/h) |
[39] | M, trained cyclists-triathletes (n: 9) | EC1: hypoxia (2500 m) + beet juice, EC2: hypoxia (2500 m) + placebo | EC1: beet juice 70 mL (5 mmol nitrate) (150–180 min before) | Test 15 min at 60% VO2max + test of 16.1 km in hypoxia (2500 m): respiratory parameters, lactate, performance (16.1 km time trial) | Test 15 min at 60% VO2max: respiratory parameters: VO2 lower in EC1 vs. EC2 (improvement unspecified), performance (16.1 km time trial): Time: improved EC1 vs. EC2 (1664 ± 14 vs. 1716 ± 17 s), Power: improved EC1 vs. EC2 (224 ± 6 vs. 216 ± 6 W) |
[40] * | M, trained cyclists (n: 11) | EC1: normoxia + beet juice, EC2: normoxia + placebo, EC3: hypoxia (2500 m) + beet juice, EC4: hypoxia (2500 m) + placebo | EC1: beet juice 70 mL (6.5 mmol nitrate) (120 min before), EC3: beet juice 70 mL (6.5 mmol nitrate) (120 min before) | Test 15 min 50% + test MAP 10 km: respiratory parameters, performance (10 km), HR | No differences in analyzed variables |
[41] | M, trained runners (n: 10) | EC1: beet juice (n: 5), EC2: placebo (n: 5) | EC1: beet juice 70 mL (7 mmol nitrate) (150 min before) | Incremental test in hypoxia (4000 m). Test of 10 km in hypoxia (2500 m) | No differences between variables |
[42] | M, trained athletes (n: 10) | EC1: acute beet juice, EC2: acute placebo, EC1: chronic beet juice, EC2: chronic placebo | EC1: 210 mL beet juice (6.5 mmol nitrate) (150 min before), EC2: placebo (150 min before), EC1: 210 mL beet juice (6.5 mmol nitrate) (8 days), EC2: placebo (8 days) | 19 min test (7 min 50% VO2max + 7 min at 65% VO2max + 5 min at 80% VO2max) + test of 1500 m: respiratory parameters (test 19 min), performance (test 1500 m) | No significant differences between experimental conditions |
[43] * | M, trained athletes (n: 12) | EC1: normoxia + beet juice, EC2: normoxia placebo, EC3: hypoxia (2500 m) + beet juice, EC4: hypoxia (2500 m) | EC1: beet juice 140 mL (8.4 mmol nitrate) (3 days), EC3: beet juice 140 mL (8.4 mmol nitrate) (3 days) | Test 5 min to 80% VT1 + 5 min to 75% between VT1 and VO2max + time to exhaustion at 75% between VT1 and VO2max: respiratory parameters, performance, HR | Respiratory parameters (5 min at 80% VT1): VO2: lower in EC3 vs. EC4, performance (time to exhaustion at 75% between VT1 and VO2max): higher in EC3 vs. EC4 (214 ± 14 vs. 197 ± 28 s) |
[44] * | M, trained athletes (n: 15) | EC1: normoxia + chronic beet juice, EC2: normoxia + placebo, EC3: hypoxia (5000 m) + chronic beet juice, EC4: hypoxia (5000 m) + placebo | EC1: beet juice 500 mL (0.7 mmol nitrate/kg) (6 days), EC3: 70 mL beet juice (0.7 mmol nitrate/kg) (6 days) | Test 20 min at 45% VO2max + incremental test: respiratory parameters, lactate, performance, HR, RPE | Test 20 min at 45% VO2max: VO2: lower in EC3 vs. EC4 at rest (8%) and exercise (4%), Incremental test: time to exhaustion: higher EC2 vs. EC4 (527 ± 22 vs. 568 ± 23 s), Max. lactate: lower in EC1 vs. EC2 (9.1 ± 0.5 vs. 10.6 ± 0.3 mmol/L) |
[45] | M, trained athletes (n: 14) | EC1: beet juice + caffeine, EC2: caffeine + placebo, EC3: beet juice + placebo, EC4: placebo | EC1: 140 mL beet juice (8 mmol nitrate) (90 min before) + 5 mg·kg−1 of caffeine (60 min before), EC2: 5 mg·kg−1 of caffeine (40 min before), EC3: 2 × 70 mL beet juice (8 mmol nitrate) (90 min before) | Test 30 min 60% + test to exhaustion at 80% VO2max: respiratory parameters, performance (test to exhaustion at 80% VO2max), HR, RPE, cortisol | RPE: lower at 15 min in test to exhaustion at 80% VO2max in EC1 (17 ± 1) vs. EC2 (18 ± 1) and EC4 (19 ± 2) |
[46] | W, trained cyclists and triathletes (n: 14) | EC1: beet juice + caffeine, EC2: caffeine + placebo, EC3: beet juice + placebo, EC4: placebo | EC1: beet juice 70 mL (7.3 mmol nitrate) (150 min before) + 5 mg·kg−1 of caffeine (60 min before), EC2: 5 mg·kg−1 of caffeine (60 min before), EC3: beet juice 70 mL (7.3 mmol nitrate) (150 min before) | Test of 20 km: respiratory parameters, lactate, performance, HR, RPE | Respiratory parameters: RER: EC2 vs. EC3 (+0.034) and EC4 (+0.033), lactate: EC2 vs. EC3 (+2.28 mmol/L) and EC4 (+2.04 mmol/L) and EC1 vs. EC3 (+2.74 mmol/L) and EC4 (+2.50 mmol/L), Performance: power: EC2 vs. EC3 improvement (+10.3 W) and EC4 (+10.4 W), time: improved EC2 vs. EC3 (+42.4 s) and EC3 (+45.1 s), HR: EC1 vs. EC2 vs. (+8.0 bpm), EC3 (+ 5.2 bpm) and EC4 (+ 6.5 bpm) |
[47] | M (n: 12) and W (n: 12), trained cyclists-triathletes (n: 24) | EC1: beet juice + caffeine, EC2: caffeine + placebo, EC3: beet juice + placebo, EC4: placebo | EC1: 140 mL beet juice (8.4 mmol nitrate) (8–12 h before) + 3 mg·kg−1 of caffeine (60 min before), EC2: 3 mg·kg−1 of caffeine (40 min before), EC3: 140 mL beet juice (8.4 mmol nitrate) (8–12 h before) | Test of 43.83 km M and 29.35 km W: performance, HR, RPE | Performance: power: improvement in EC1 (258 ± 59 W) and EC2 (260 ± 58 W) vs. EC4 (250 ± 57 W), M time: improvement EC1 (1:02:38 ± 0:03:31 h:min:s) and EC2 (1:02:43 ± 0:03:04 h:min:s) vs. EC4 (1:03: 30 ± 0:03:16 h:min:s), W time: improving EC1 (0: 51: 1 ± 0:02:22 h:min:s) and EC2 (0:50:50 ± 0:02:56 h:min:s) vs. EC4 (0:51: 40 ± 0:02:31 h:min:s) in W |
[48] | M, trained athletes (n: 22) | EC1: Beet juice (n: 11), EC2: placebo (n: 11) | 6 weeks: EC1: 500 mL beet juice (5.8 mmol nitrate, approximately) + training in hypoxia (4000 m), EC2: placebo + hypoxia training (4000 m) | Progressive incremental test 30 min test: respiratory parameters, lactate, muscle glycogen, performance, HR | Incremental test: VO2max: improvement in EC1 60.1 ± 2.6 vs. 65.6 ± 2.1 L/min) and EC2 (60.8 ± 1.8 vs. 63.8 ± 1.6 L/min), HRmax: EC1 vs. EC2 lower in (186 ± 3 vs. 197 ± 2 lpm), Max Lactate: EC1 vs. EC2 lower in (10.4 ± 0.7 vs. 11.8 ± 0.4 mmol/L), W at 4 mmol/L lactate: improvement in EC1 (215 ± 10 vs. 252 ± 9 W) and EC2 (204 ± 12 vs. 231 ± 10 W), 30 min test: performance: Pmean increases in EC1 (215 ± 10 vs. 252 ± 9 W) and EC2 (204 ± 12 vs. 231 ± 10 W) |
[49] | M, trained athletes (n: 8) | EC1: beet juice, EC2: beet juice + Mouthwash with carbohydrates, EC3: placebo | EC1: 140 mL of beet juice (8 mmol nitrate) (150 min before), EC2: beet juice 140 mL (8 mmol nitrate) + mouthwash carbohydrates (150 min before) | Test 60 min at 65% VO2max: respiratory parameters, lactate, glucose, insulin, muscle glycogen, ATP, creatine | Lactate: increased EC1, EC2 and EC3. No differences between groups. Muscle glycogen: decline in EC1, EC2 and EC3. No differences between groups Creatine decline in EC1, EC2 and EC3. No differences between groups |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. https://doi.org/10.3390/nu9010043
Domínguez R, Cuenca E, Maté-Muñoz JL, García-Fernández P, Serra-Paya N, Estevan MCL, Herreros PV, Garnacho-Castaño MV. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients. 2017; 9(1):43. https://doi.org/10.3390/nu9010043
Chicago/Turabian StyleDomínguez, Raúl, Eduardo Cuenca, José Luis Maté-Muñoz, Pablo García-Fernández, Noemí Serra-Paya, María Carmen Lozano Estevan, Pablo Veiga Herreros, and Manuel Vicente Garnacho-Castaño. 2017. "Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review" Nutrients 9, no. 1: 43. https://doi.org/10.3390/nu9010043
APA StyleDomínguez, R., Cuenca, E., Maté-Muñoz, J. L., García-Fernández, P., Serra-Paya, N., Estevan, M. C. L., Herreros, P. V., & Garnacho-Castaño, M. V. (2017). Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients, 9(1), 43. https://doi.org/10.3390/nu9010043