A National Dietary Assessment Reference Database (NDARD) for the Dutch Population: Rationale behind the Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Dietary Intake Assessment
2.2.1. General FFQ
2.2.2. Flower FFQ
2.2.3. Telephone-Based and Web-Based 24-h Recalls
2.3. Anthropometric Measurements
2.4. Blood Collection
2.5. Urine Collection
2.6. Health and Lifestyle Questionnaires
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Willet, W. Nutritional Epidemiology, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Van Rossum, C.T.M.; Fransen, H.P.; Verkaik-Kloosterman, J.; Buurma-Rethans, E.J.M.; Ocké, M.C. Dutch National Food Consumption Survey 2007–2010: Diet of Children and Adults Aged 7 to 69 Years; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2011. [Google Scholar]
- Molag, M.L.; de Vries, J.H.; Duif, N.; Ocke, M.C.; Dagnelie, P.C.; Goldbohm, R.A.; van ’t Veer, P. Selecting informative food items for compiling food-frequency questionnaires: Comparison of procedures. Br. J. Nutr. 2010, 104, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef] [PubMed]
- Jenab, M.; Slimani, N.; Bictash, M.; Ferrari, P.; Bingham, S.A. Biomarkers in nutritional epidemiology: Applications, needs and new horizons. Hum. Genet. 2009, 125, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Al-Delaimy, W.K.; Ferrari, P.; Slimani, N.; Pala, V.; Johansson, I.; Nilsson, S.; Mattisson, I.; Wirfalt, E.; Galasso, R.; Palli, D.; et al. Plasma carotenoids as biomarkers of intake of fruits and vegetables: Individual-level correlations in the european prospective investigation into cancer and nutrition (EPIC). Eur. J. Clin. Nutr. 2005, 59, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Saadatian-Elahi, M.; Slimani, N.; Chajes, V.; Jenab, M.; Goudable, J.; Biessy, C.; Ferrari, P.; Byrnes, G.; Autier, P.; Peeters, P.H.; et al. Plasma phospholipid fatty acid profiles and their association with food intakes: Results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2009, 89, 331–346. [Google Scholar] [CrossRef] [PubMed]
- The Dutch Nutrition Centre. Zo eet Nederland: Resultaten van de Voedselconsumptiepeiling 1997–1998 (Results of the Dutch Food Consumption Survey 1997/1998); Voedingscentrum: Den Haag, The Netherlands, 1998. [Google Scholar]
- The Dutch National Institute for Public Health and the Environment (RIVM). Nevo-Tabel. Nederlands Voedingsstoffenbestand 2011; Voedingscentrum: Den Haag, The Netherlands, 2011. [Google Scholar]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [PubMed]
- Siebelink, E.; Geelen, A.; de Vries, J.H.M. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br. J. Nutr. 2011, 106, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Streppel, M.T.; De Vries, J.H.; Meijboom, S.; Beekman, M.; De Craen, A.J.; Slagboom, P.E.; Feskens, E.J. Relative validity of the food frequency questionnaire used to assess dietary intake in the Leiden longevity study. Nutr. J. 2013, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Scholtens, S.; Smidt, N.; Swertz, M.A.; Bakker, S.J.; Dotinga, A.; Vonk, J.M.; van Dijk, F.; van Zon, S.K.; Wijmenga, C.; Wolffenbuttel, B.H.; et al. Cohort profile: Lifelines, a three-generation cohort study and biobank. Int. J. Epidemiol. 2014, 44, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Voedingsstoffenbestand. Nevo-Tabel: Nederlands Voedingsstoffenbestand 2006; Voedingscentrum: Den Haag, The Netherlands, 2006. [Google Scholar]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [PubMed]
- Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: An observational validation study. J. Am. Diet. Assoc. 2004, 104, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Ingwersen, L.A.; Vinyard, B.T.; Moshfegh, A.J. Effectiveness of the US department of agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am. J. Clin. Nutr. 2003, 77, 1171–1178. [Google Scholar] [PubMed]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US department of agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [PubMed]
- Jakobsen, J.; Ovesen, L.; Fagt, S.; Pedersen, A.N. Para-aminobenzoic acid used as a marker for completeness of 24 h urine: Assessment of control limits for a specific HPLC method. Eur. J. Clin. Nutr. 1997, 51, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, J.T.; Patterson, K.Y.; Bodner, J.E. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 1984, 40, 786–793. [Google Scholar] [PubMed]
- Freisling, H.; van Bakel, M.M.; Biessy, C.; May, A.M.; Byrnes, G.; Norat, T.; Rinaldi, S.; Santucci de Magistris, M.; Grioni, S.; Bueno-de-Mesquita, H.B.; et al. Dietary reporting errors on 24 h recalls and dietary questionnaires are associated with bmi across six european countries as evaluated with recovery biomarkers for protein and potassium intake. Br. J. Nutr. 2012, 107, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Kjeldahl, J. Neue methode zur bestimmung des stickstoffs in organischen körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Bingham, S.A. Urine nitrogen as a biomarker for the validation of dietary protein intake. J. Nutr. 2003, 133, 921S–924S. [Google Scholar] [PubMed]
- Wendel-Vos, G.C.; Schuit, A.J.; Saris, W.H.; Kromhout, D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J. Clin. Epidemiol. 2003, 56, 1163–1169. [Google Scholar] [CrossRef]
- Chinapaw, M.J.; Slootmaker, S.M.; Schuit, A.J.; van Zuidam, M.; van Mechelen, W. Reliability and validity of the activity questionnaire for adults and adolescents (AQUAA). BMC Med. Res. Methodol. 2009, 9, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Arab, L.; Baer, D.J.; Kipnis, V.; Midthune, D.; Moshfegh, A.J.; Neuhouser, M.L.; Prentice, R.L.; et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am. J. Epidemiol. 2014, 180, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Trijsburg, L.; de Vries, J.H.; Boshuizen, H.C.; Hulshof, P.J.; Hollman, P.C.; van ’t Veer, P.; Geelen, A. Comparison of duplicate portion and 24 h recall as reference methods for validating a FFQ using urinary markers as the estimate of true intake. Br. J. Nutr. 2015, 114, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Trijsburg, L.; Geelen, A.; Hollman, P.C.; Hulshof, P.J.; Feskens, E.J.; van ’t Veer, P.; Boshuizen, H.C.; de Vries, J.H. BMI was found to be a consistent determinant related to misreporting of energy, protein and potassium intake using self-report and duplicate portion methods. Public Health Nutr. 2017, 20, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Van Lee, L.; Feskens, E.J.; Meijboom, S.; Hooft van Huysduynen, E.J.; van ’t Veer, P.; de Vries, J.H.; Geelen, A. Evaluation of a screener to assess diet quality in the Netherlands. Br. J. Nutr. 2016, 115, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Sluik, D.; Geelen, A.; de Vries, J.H.; Eussen, S.J.; Brants, H.A.; Meijboom, S.; van Dongen, M.C.; Bueno-de-Mesquita, H.B.; Wijckmans-Duysens, N.E.; van ’t Veer, P.; et al. A national FFQ for the Netherlands (the FFQ-NL 1.0): Validation of a comprehensive FFQ for adults. Br. J. Nutr. 2016, 116, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Molag, M.L. The dutch FFQ-tool™: Development and use of a computer system to generate and process FFQs. In Towards Transparent Development of Food Frequency Questionnaires. Scientific Basis of the Dutch FFQ-Tool™; Wageningen University & Research: Wageningen, The Netherlands, 2010. [Google Scholar]
Months | |||||||
---|---|---|---|---|---|---|---|
Measurement | 0 | 6 | 12 | 18 | 24 | 30 | 36 |
All subjects (n = 2048) | |||||||
Anthropometric measurements | x | x | x | ||||
Blood collection | x | x | x | ||||
24-h urine collection | x | x | x | ||||
Health questionnaires | x | x | x | ||||
Demographic/lifestyle questionnaires | x | x | x | ||||
FFQ group (n = 959) | |||||||
General FFQ | x | ||||||
Flower basic FFQ | x | x | x | ||||
Flower special FFQ1 | x | x | x | ||||
Flower special FFQ2 | x | x | x | ||||
Flower special FFQ3 | x | x | x | ||||
24-h recall (web based) | x | x | x | x | x | x | |
Recall group (n = 1089) | |||||||
General FFQ | x | x | x | ||||
24-h phone based recall | x | x | x | x | x | ||
24-h web based recall | x | x | x | x | x |
All (n = 2048) | Men (n = 1063) | Women (n = 985) | FFQ Group (n = 959) | Recall Group (n = 1089) | |
---|---|---|---|---|---|
Complete data collection, n (%) | |||||
Anthropometric measures | 2047 (100) | 1062 (100) | 985 (100) | 959 (100) | 1088 (100) |
Blood samples | 1881 (92) | 959 (90) | 922 (94) | 886 (92) | 995 (91) |
Urine samples | 1881 (92) | 959 (90) | 922 (94) | 883 (92) | 998 (92) |
Health questionnaires | 1955 (95) | 1005 (95) | 950 (96) | 920 (96) | 1035 (95) |
Demographic and lifestyle questionnaires | 2038 (100) | 1060 (100) | 978 (99) | 954 (99) | 1084 (100) |
General FFQ | 1647 (80) | 857 (81) | 790 (80) | 666 (69) | 981 (90) |
Flower basic FFQ | 772 (38) | 404 (38) | 368 (37) | 772 (81) | - |
Flower special FFQ1 | 709 (35) | 353 (33) | 356 (36) | 709 (74) | - |
Flower special FFQ2 | 593 (29) | 296 (28) | 297 (30) | 593 (62) | - |
Flower special FFQ3 | 558 (27) | 277 (26) | 281 (29) | 558 (58) | - |
Web based 24-h recall | 1783 (87) | 920 (87) | 863 (88) | 832 (87) | 951 (87) |
Phone-based 24-h recall | 1113 (54) | 585 (55) | 528 (54) | 53 (0) | 1060 (97) |
n | All | Men | Women | FFQ Group | Recall Group | DNFCS 19–69 Year * | |
---|---|---|---|---|---|---|---|
Men, % | 2048 | 52 | 100 | 0 | 50 | 53 | 50 |
Age (years), mean (SD) ** | 2045 | 51 (12) | 54 (12) | 49 (13) | 51 (13) | 52 (12) | - |
Education level, % | 2038 | ||||||
Low | 7 | 9 | 6 | 7 | 7 | 32 | |
Intermediate | 30 | 28 | 32 | 31 | 30 | 45 | |
High | 63 | 63 | 62 | 62 | 63 | 23 | |
Area, % | 2048 | ||||||
Ede/Wageningen/Renkum | 45 | 32 | 60 | 52 | 40 | - | |
Arnhem | 11 | 7 | 15 | 11 | 11 | - | |
Veenendaal | 44 | 61 | 25 | 37 | 49 | - | |
Smoking status, % | 1541 | ||||||
Current | 9 | 10 | 8 | 9 | 10 | 25 | |
Former | 40 | 45 | 34 | 40 | 39 | 32 | |
Never | 51 | 45 | 58 | 51 | 51 | 43 | |
BMI (kg/m2), mean (SD) | 2047 | 26 (4) | 27 (4) | 26 (5) | 26 (4) | 26 (4) | 26 (-) |
Waist (cm), mean (SD) | 2044 | 92 (13) | 97 (11) | 86 (12) | 92 (13) | 92 (13) | - |
Disease history, % | |||||||
Myocardial infarction | 1945 | 2 | 3 | 1 | 2 | 2 | - |
Stroke | 1946 | 1 | 1 | 1 | 1 | 1 | - |
Diabetes mellitus | 1955 | 4 | 5 | 2 | 4 | 4 | - |
Cancer | 1949 | 5 | 5 | 6 | 5 | 5 | - |
ALT (U/L), mean (SD) | 1879 | 27.0 (14.9) | 31.3 (15.2) | 22.5 (13.2) | 27.5 (16.4) | 26.5 (13.1) | - |
AST (U/L), mean (SD) | 1878 | 22.8 (8.5) | 23.6 (8.7) | 21.9 (8.3) | 22.6 (9.2) | 23.0 (7.6) | - |
GGT (U/L), mean (SD) | 1881 | 24.8 (25.2) | 29.7 (28.8) | 19.8 (19.6) | 24.8 (26.1) | 25.0 (24.2) | - |
GFR (mL/min/1.73 m2), mean (SD) | 1881 | 89.9 (14.6) | 88.4 (14.3) | 91.2 (14.8) | 89.3 (14.1) | 90.3 (15.2) | - |
Dietary Factor | NDARD All | NDARD Men | NDARD Women | NDARD FFQ Group | NDARD Recall Group | DNFCS Men 31–50 Year * | DNFCS Women 31–50 Year * |
---|---|---|---|---|---|---|---|
N | 1647 | 857 | 790 | 666 | 981 | 348 | 351 |
Total energy (kcal), mean (SD) | 2051 (605) | 2244 (631) | 1842 (499) | 2033 (623) | 2064 (593) | 2647 (2299–3022) | 1956 (1700–2227) |
Total protein (energy%), mean (SD) | 15 (2) | 15 (2) | 15 (2) | 15 (2) | 15 (2) | 15 (14–17) | 16 (14–17) |
Total carbohydrates (energy%), mean (SD) | 43 (6) | 43 (6) | 43 (6) | 43 (6) | 43 (6) | 43 (40–47) | 45 (42–49) |
Mono- and disaccharides (energy%), mean (SD) | 19 (5) | 18 (5) | 20 (5) | 19 (5) | 19 (5) | - | - |
Polysaccharides (% of energy), mean (SD) | 24 (5) | 25 (4) | 24 (5) | 24 (5) | 24 (5) | - | - |
Total fat, energy% | 36 (5) | 36 (5) | 36 (6) | 36 (5) | 36 (6) | 35 (32–37) | 34 (31–37) |
Saturated fatty acids (energy%), mean (SD) | 12 (3) | 12 (3) | 12 (3) | 12 (3) | 12 (3) | 13 (11–14) | 13 (11–14) |
Monounsaturated fatty acids (energy%), mean (SD) | 13 (2) | 13 (2) | 13 (3) | 13 (2) | 13 (2) | - | - |
Polyunsaturated fatty acids (energy%), mean (SD) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 8 (2) | 7 (6–8) | 7 (6–8) |
Trans fatty acids (energy%), mean (SD) | 0.6 (0.2) | 0.6 (0.2) | 0.5 (0.2) | 0.5 (0.2) | 0.6 (0.2) | 1.5 (1.2–2.0) | 1.2 (0.9–1.6) |
Alcohol (gram), mean (SD) | 11 (13) | 15 (15) | 7 (9) | 12 (14) | 11 (12) | 16 (6–29) | 4 (1–11) |
Dietary fiber (gram), mean (SD) | 24 (7) | 25 (8) | 23 (7) | 24 (8) | 24 (7) | 23 (19–27) | 18 (15–22) |
Following diet regimen during the past month, % | 9 | 7 | 12 | 10 | 9 | 9 | 19 |
Nutritional supplement use, % | 41 | 34 | 49 | 38 | 43 | 36 | 54 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brouwer-Brolsma, E.M.; Streppel, M.T.; Van Lee, L.; Geelen, A.; Sluik, D.; Van de Wiel, A.M.; De Vries, J.H.M.; Van ’t Veer, P.; Feskens, E.J.M. A National Dietary Assessment Reference Database (NDARD) for the Dutch Population: Rationale behind the Design. Nutrients 2017, 9, 1136. https://doi.org/10.3390/nu9101136
Brouwer-Brolsma EM, Streppel MT, Van Lee L, Geelen A, Sluik D, Van de Wiel AM, De Vries JHM, Van ’t Veer P, Feskens EJM. A National Dietary Assessment Reference Database (NDARD) for the Dutch Population: Rationale behind the Design. Nutrients. 2017; 9(10):1136. https://doi.org/10.3390/nu9101136
Chicago/Turabian StyleBrouwer-Brolsma, Elske M., Martinette T. Streppel, Linde Van Lee, Anouk Geelen, Diewertje Sluik, Anne M. Van de Wiel, Jeanne H. M. De Vries, Pieter Van ’t Veer, and Edith J. M. Feskens. 2017. "A National Dietary Assessment Reference Database (NDARD) for the Dutch Population: Rationale behind the Design" Nutrients 9, no. 10: 1136. https://doi.org/10.3390/nu9101136
APA StyleBrouwer-Brolsma, E. M., Streppel, M. T., Van Lee, L., Geelen, A., Sluik, D., Van de Wiel, A. M., De Vries, J. H. M., Van ’t Veer, P., & Feskens, E. J. M. (2017). A National Dietary Assessment Reference Database (NDARD) for the Dutch Population: Rationale behind the Design. Nutrients, 9(10), 1136. https://doi.org/10.3390/nu9101136