Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities
Abstract
:1. Introduction
2. Water Soluble Vitamins
2.1. B Vitamins
2.1.1. Introduction
2.1.2. Assessment
2.1.3. Vitamin B in Critical Illness
2.2. Vitamin C
2.2.1. Introduction
2.2.2. Assessment
2.2.3. Vitamin C in Critical Illness
3. Fat Soluble Vitamins
3.1. Vitamin A
3.1.1. Introduction
3.1.2. Assessment
3.1.3. Vitamin A in Critical Illness
3.2. Vitamin D
3.2.1. Introduction
3.2.2. Assessment
3.2.3. Vitamin D in Critical Illness
3.3. Vitamin E
3.3.1. Introduction
3.3.2. Assessment
3.3.3. Vitamin E in Critical Illness
3.4. Vitamin K
3.4.1. Introduction
3.4.2. Assessment
3.4.3. Vitamin K in Critical Illness
4. Trace Elements
4.1. Iron
4.1.1. Introduction
4.1.2. Assessment
4.1.3. Iron in Critical Illness
4.2. Zinc
4.2.1. Introduction
4.2.2. Assessment
4.2.3. Zinc in Critical Illness
4.3. Selenium
4.3.1. Introduction
4.3.2. Assessment
4.3.3. Selenium in Critical Illness
4.4. Copper
4.4.1. Introduction
4.4.2. Assessment
4.4.3. Copper in Critical Illness
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shenkin, A. Micronutrients in health and disease. Postgrad. Med. J. 2006, 82, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Thurnham, D.I.; Northrop-Clewes, C.A. Inflammation and biomarkers of micronutrient status. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Herrmann, W. Homocysteine, folic acid and vitamin B12 in relation to pre- and postnatal health aspects. Clin. Chem. Lab. Med. 2005, 43, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Opladen, T.; Ramaekers, V.T.; Heimann, G.; Blau, N. Analysis of 5-methyltetrahydrofolate in serum of healthy children. Mol. Genet. Metab. 2006, 87, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Minet, J.C.; Bisse, E.; Aebischer, C.P.; Beil, A.; Wieland, H.; Lutschg, J. Assessment of vitamin B-12, folate, and vitamin B-6 status and relation to sulfur amino acid metabolism in neonates. Am. J. Clin. Nutr. 2000, 72, 751–757. [Google Scholar] [PubMed]
- Donnino, M.W.; Carney, E.; Cocchi, M.N.; Barbash, I.; Chase, M.; Joyce, N.; Chou, P.P.; Ngo, L. Thiamine deficiency in critically ill patients with sepsis. J. Crit. Care 2010, 25, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, W.; Hardy, G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr. Metab. Care 2011, 14, 610. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.L. Thiamin in Clinical Practice. JPEN. J. Parenter. Enteral Nutr. 2015, 39, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Peixoto de Lima, L.F.; Leite, H.P.; de AC Taddei, J.A. Low blood thiamine concentrations in children upon admission to the intensive care unit: Risk factors and prognostic significance. Am. J. Clin. Nutr. 2011, 93, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Seear, M.; Lockitch, G.; Jacobson, B.; Quigley, G.; MacNab, A. Thiamine, riboflavin, and pyridoxine deficiencies in a population of critically ill children. J. Pediatr. 1992, 121, 533–538. [Google Scholar] [CrossRef]
- Quasim, T.; McMillan, D.C.; Talwar, D.; Vasilaki, A.; O’Reilly, D.S.J.; Kinsella, J. The relationship between plasma and red cell B-vitamin concentrations in critically-ill patients. Clin. Nutr. 2005, 24, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Bjørke Monsen, A.L.; Ueland, P.M. Homocysteine and methylmalonic acid in diagnosis and risk assessment from infancy to adolescence. Am. J. Clin. Nutr. 2003, 78, 7–21. [Google Scholar] [PubMed]
- Sauberlich, H.E. Newer laboratory methods for assessing nutriture of selected B-complex vitamins. Annu. Rev. Nutr. 1984, 4, 377–407. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Fukuwatari, T.; Shibata, K. Fluorometric determination of pantothenic acid in human urine by isocratic reversed-phase ion-pair high-performance liquid chromatography with post-column derivatization. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 2168–2172. [Google Scholar] [CrossRef] [PubMed]
- Bjørke Monsen, A.L.; Ueland, P.M.; Vollset, S.E.; Guttormsen, A.B.; Markestad, T.; Solheim, E.; Refsum, H. Determinants of cobalamin status in newborns. Pediatrics 2001, 108, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Vasilaki, A.T.; McMillan, D.C.; Kinsella, J.; Duncan, A.; O’Reilly, D.S.J.; Talwar, D. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness. Clin. Chim. Acta 2010, 411, 1750–1755. [Google Scholar] [CrossRef] [PubMed]
- Talwar, D.; Quasim, T.; McMillan, D.C.; Kinsella, J.; Williamson, C.; O’Reilly, D.S.J. Pyridoxal phosphate decreases in plasma but not erythrocytes during systemic inflammatory response. Clin. Chem. 2003, 49, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.R.; Black, M.M. B12 in fetal development. Semin. Cell Dev. Biol. 2011, 22, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Manios, Y.; Moschonis, G.; Dekkers, R.; Mavrogianni, C.; Grammatikaki, E.; van den Heuvel, E. Vitamin B2, vitamin B12 and total homocysteine status in children and their associations with dietary intake of B-vitamins from different food groups: the Healthy Growth Study. Eur. J. Nutr. 2017, 56, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Fanjiang, G.; Kleinman, R.E. Nutrition and performance in children. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 342–347. [Google Scholar] [CrossRef] [PubMed]
- dos Reis Santos, M.; Leite, H.P.; Luiz Pereira, A.M.; Dell’Acqua Cassão, B.; de Oliveira Iglesias, S.B. Factors associated with not meeting the recommendations for micronutrient intake in critically ill children. Nutrition 2016, 32, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.; Ueland, P.M.; Selhub, J. Mechanistic perspective on the relationship between pyridoxal 5’-phosphate and inflammation. Nutr. Rev. 2013, 71, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Ulvik, A.; Midttun, Ø.; Pedersen, E.R.; Eussen, S.J.; Nygård, O.; Ueland, P.M. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am. J. Clin. Nutr. 2014, 100, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Chang, S.-J.; Lee, B.-J.; Lin, K.-L.; Huang, Y.-C. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 2006, 60, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, T.B.; O’Neill, M.P.; Webb, S.A.R.; Ho, K.M. Inflammation, vitamin deficiencies and organ failure in critically ill patients. Anaesth. Intensive Care 2009, 37, 740–747. [Google Scholar] [PubMed]
- Sviri, S.; Khalaila, R.; Daher, S.; Bayya, A.; Linton, D.M.; Stav, I.; van Heerden, P.V. Increased Vitamin B12 levels are associated with mortality in critically ill medical patients. Clin. Nutr. 2012, 31, 53–59. [Google Scholar] [CrossRef] [PubMed]
- McGregor, G.P.; Biesalski, H.K. Rationale and impact of vitamin C in clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Oudemans-van Straaten, H.M.; Spoelstra-de Man, A.M.; de Waard, M.C. Vitamin C revisited. Crit. Care 2014, 18, 460. [Google Scholar] [CrossRef] [PubMed]
- Berger, M. M. Vitamin C Requirements in Parenteral Nutrition. Gastroenterology 2009, 137, S70–S78. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Oudemans-van Straaten, H.M. Vitamin C supplementation in the critically ill patient. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Bei, R.; Mistretta, A.; Marventano, S.; Calabrese, G.; Masuelli, L.; Giganti, G.; Modesti, A.; Galvano, F.; Gazzolo, D. Effects of Vitamin C on health: A review of evidence. Front. Biosci. 2013, 1017–1029. [Google Scholar] [CrossRef]
- Fukushima, R.; Yamazaki, E. Vitamin C requirement in surgical patients. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Shaharyar, A.; Kumar, A.; Bhat, M.S.; Mishra, M. Scurvy in pediatric age group—A disease often forgotten? J. Clin. Orthop. Trauma 2015, 6, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Duerbeck, N.B.; Dowling, D.D.; Duerbeck, J.M. Vitamin C: Promises Not Kept. Obstet. Gynecol. Surv. 2016, 71, 187–193. [Google Scholar] [CrossRef]
- Karlsen, A.; Blomhoff, R.; Gundersen, T.E. High-throughput analysis of Vitamin C in human plasma with the use of HPLC with monolithic column and UV-detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 824, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Long, C.L.; Maull, K.I.; Krishnan, R.S.; Laws, H.L.; Geiger, J.W.; Borghesi, L.; Franks, W.; Lawson, T.C.; Sauberlich, H.E. Ascorbic acid dynamics in the seriously ill and injured. J. Surg. Res. 2003, 109, 144–148. [Google Scholar] [CrossRef]
- Greaves, R. Vitamin A—Serum Vitamin A Analysis. In Vitamin A and Carotenoids: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2012; pp. 162–183. [Google Scholar]
- Prelack, K.; Sheridan, R.L. Micronutrient supplementation in the critically ill patient: Strategies for clinical practice. J. Trauma 2001, 51, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.; Esteban-Pretel, G.; Marin, M.P.; Timoneda, J. Vitamin A Deficiency: An Overview. In Vitamin A and Carotenoids: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2012; pp. 396–416. [Google Scholar]
- Darlow, B.A.; Graham, P.J.; Rojas-Reyes, M.X. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Mactier, H.; Weaver, L.T. Vitamin A and preterm infants: What we know, what we don’t know, and what we need to know. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F103–F108. [Google Scholar] [CrossRef] [PubMed]
- Shenai, J.P.; Chytil, F.; Jhaveri, A.; Stahlman, M.T. Plasma vitamin A and retinol-binding protein in premature and term neonates. J. Pediatr. 1981, 99, 302–305. [Google Scholar] [CrossRef]
- Shenai, J.P.; Rush, M.G.; Stahlman, M.T.; Chytil, F. Plasma retinol-binding protein response to vitamin A administration in infants susceptible to bronchopulmonary dysplasia. J. Pediatr. 1990, 116, 607–614. [Google Scholar] [CrossRef]
- Zachman, R.D.; Samuels, D.P.; Brand, J.M.; Winston, J.F.; Pi, J.T. Use of the intramuscular relative-dose-response test to predict bronchopulmonary dysplasia in premature infants. Am. J. Clin. Nutr. 1996, 63, 123–129. [Google Scholar] [PubMed]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Vitamin A Review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef] [PubMed]
- Stephensen, C.B.; Gildengorin, G. Serum retinol, the acute phase response, and the apparent misclassification of vitamin A status in the third National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 2000, 72, 1170–1178. [Google Scholar] [PubMed]
- Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O’Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; McMillan, D.C.; Wilson, C.; Williamson, C.; O’Reilly, D.S.J.; Talwar, D. The relationship between the acute changes in the systemic inflammatory response, lipid soluble antioxidant vitamins and lipid peroxidation following elective knee arthroplasty. Clin. Nutr. 2005, 24, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Conway, F.J.S.; Talwar, D.; McMillan, D.C. The relationship between acute changes in the systemic inflammatory response and plasma ascorbic acid, alpha-tocopherol and lipid peroxidation after elective hip arthroplasty. Clin. Nutr. 2015, 34, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.K.; Alvarez, J.O.; Stephensen, C.B. Increased urinary retinol loss in children with severe infections. Lancet 1998, 351, 1033–1034. [Google Scholar] [CrossRef]
- Stephensen, C.B.; Alvarez, J.O.; Kohatsu, J.; Hardmeier, R.; Kennedy, J.I.; Gammon, R.B. Vitamin A is excreted in the urine during acute infection. Am. J. Clin. Nutr. 1994, 60, 388–392. [Google Scholar] [PubMed]
- Darlow, B.; Graham, P. Vitamin A supplementation for preventing morbidity and mortality in very low birthweight infants. In Cochrane Database of Systematic Reviews; Darlow, B., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2002. [Google Scholar]
- Mahalanabis, D.; Lahiri, M.; Paul, D.; Gupta, S.; Gupta, A.; Wahed, M.A.; Khaled, M.A. Randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc or vitamin A in infants and young children with severe acute lower respiratory infection. Am. J. Clin. Nutr. 2004, 79, 430–436. [Google Scholar] [PubMed]
- Hussey, G.D.; Klein, M. A Randomized, Controlled Trial of Vitamin A in Children with Severe Measles. N. Engl. J. Med. 1990, 323, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Deluca, H.F. Historical overview of vitamin D. In Vitamin D, 3rd ed.; Feldman, D., Pike, J.W., Adams, J.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–12. [Google Scholar]
- Blunt, J.W.; Deluca, H.F.; Schnoes, K. 25-Hydroxycholecalciferol. A Biologically Active Metabolite of Vitamin D3. Biochemistry 1968, 7, 3317–3322. [Google Scholar] [CrossRef] [PubMed]
- Brommage, R.; Deluca, H.F. Evidence That 1,25-Dihydroxyvitamin D3 Is the Physiologically Active Metabolite of Vitamin D3. Endocr. Rev. 1985, 6, 491–511. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Bianchini, S.; Baggi, E.; Esposito, S. Implications of maternal vitamin D deficiency for the fetus, the neonate and the young infant. Eur. J. Nutr. 2013, 52, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Zipitis, C.S.; Akobeng, A.K. Vitamin D supplementation in early childhood and risk of type 1 diabetes: A systematic review and meta-analysis. Arch. Dis. Child. 2008, 93, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.L.; Greer, F.R. Prevention of Rickets and Vitamin D Deficiency in Infants, Children, and Adolescents and the Section on Breastfeeding and Committee on Nutrition. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. The vitamin D binding protein DBP. In Vitamin D, 3rd ed.; Feldman, D., Pike, J.W., Adams, J.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 57–72. [Google Scholar]
- Zella, L.A.; Shevde, N.K.; Hollis, B.W.; Cooke, N.E.; Pike, J.W. Vitamin D-binding protein influences total circulating levels of 1,25-dihydroxyvitamin D3 but does not directly modulate the bioactive levels of the hormone in vivo. Endocrinology 2008, 149, 3656–3667. [Google Scholar] [CrossRef] [PubMed]
- Chun, R.F.; Peercy, B.E.; Orwoll, E.S.; Nielson, C.M.; Adams, J.S.; Hewison, M. Vitamin D and DBP: The free hormone hypothesis revisited. J. Steroid Biochem. Mol. Biol. 2014, 144, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.D.; Phinney, K.W. Assessing Vitamin D Status: Time for a Rethink? Clin. Chem. 2014, 60, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.; Feldman, H.A.; Chun, R.F.; Smith, E.M.; Sullivan, R.M.; Agan, A.A.; Keisling, S.M.; Panoskaltsis-Mortari, A.; Randolph, A.G. Critically Ill Children Have Low Vitamin D-Binding Protein, Influencing Bioavailability of Vitamin D. Ann. Am. Thorac. Soc. 2015, 12, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D; Del Valle, H., Yaktine, A., Taylor, C., Ross, A., Eds.; National Academies Press: Washington, DC, USA, 2011.
- Kovacs, C.S. Vitamin D in pregnancy and lactation: Maternal, fetal, and neonatal outcomes from human and animal studies. Am. J. Clin. Nutr. 2008, 88, 520S–528S. [Google Scholar] [PubMed]
- Kovacs, C.S.; Kronenberg, H.M. Maternal-Fetal Calcium and Bone Metabolism During Pregnancy, Puerperium, and Lactation. Endocr. Rev. 1997, 18, 832–872. [Google Scholar] [CrossRef] [PubMed]
- Steichen, J.J.; Tsang, R.C.; Gratton, T.L.; Hamstra, A.; DeLuca, H.F. Vitamin D Homeostasis in the Perinatal Period. N. Engl. J. Med. 1980, 302, 315–319. [Google Scholar] [CrossRef] [PubMed]
- McNally, J.D.; Menon, K.; Chakraborty, P.; Fisher, L.; Williams, K.A.; Al-Dirbashi, O.Y.; Doherty, D.R. Canadian Critical Care Trials Group The Association of Vitamin D Status With Pediatric Critical Illness. Pediatrics 2012, 130, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Duggan, C.P. Nutritional Deficiencies During Critical Illness. Pediatr. Clin. N. Am. 2009, 56, 1143–1160. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.; Toole, B.J.; Knox, S.; Talwar, D.; Harten, J.; O’Reilly, D.S.J.; Blackwell, S.; Kinsella, J.; McMillan, D.C.; Wallace, A.M. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am. J. Clin. Nutr. 2011, 93, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.; Feldman, H.A.; Smith, E.M.; Gordon, C.M.; Keisling, S.M.; Sullivan, R.M.; Hollis, B.W.; Agan, A.A.; Randolph, A.G. Vitamin D Deficiency in Critically Ill Children. Pediatrics 2012, 130, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Rippel, C.; South, M.; Butt, W.W.; Shekerdemian, L.S. Vitamin D status in critically ill children. Intensive Care Med. 2012, 38, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Rey, C.; Sánchez-Arango, D.; López-Herce, J.; Martínez-Camblor, P.; García-Hernández, I.; Prieto, B.; Pallavicini, Z. Vitamin D deficiency at pediatric intensive care admission. J. Pediatr. 2014, 90, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ayulo, M.; Katyal, C.; Agarwal, C.; Sweberg, T.; Rastogi, D.; Markowitz, M.; Ushay, H.M. The prevalence of vitamin D deficiency and its relationship with disease severity in an urban pediatric critical care unit. Endocr. Regul. 2014, 48, 69–76. [Google Scholar] [PubMed]
- Ebenezer, K.; Job, V.; Antonisamy, B.; Dawodu, A.; Manivachagan, M.N.; Steinhoff, M. Serum Vitamin D Status and Outcome among Critically Ill Children Admitted to the Pediatric Intensive Care Unit in South India. Indian J. Pediatr. 2016, 83, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Rebouche, C.J.; Panagides, D.D.; Nelson, S.E. Role of carnitine in utilization of dietary medium-chain triglycerides by term infants. Am. J. Clin. Nutr. 1990, 52, 820–824. [Google Scholar] [PubMed]
- Ponnarmeni, S.; Kumar Angurana, S.; Singhi, S.; Bansal, A.; Dayal, D.; Kaur, R.; Patial, A.; Verma Attri, S. Vitamin D deficiency in critically ill children with sepsis. Paediatr. Int. Child Health 2016, 36, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gottschlich, M.M.; Mayes, T.; Khoury, J.; Warden, G.D. Hypovitaminosis D in acutely injured pediatric burn patients. J. Am. Diet. Assoc. 2004, 104, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Ochola, J.; Mundy, J.; Jones, M.; Kruger, P.; Duncan, E.; Venkatesh, B. Acute fluid shifts influence the assessment of serum vitamin D status in critically ill patients. Crit. Care 2010, 14, R216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghashut, R.A.; Talwar, D.; Kinsella, J.; Duncan, A.; McMillan, D.C. The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin. PLoS ONE 2014, 9, e92614. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.K. Vitamin E and oxidative stress. Free Radic. Biol. Med. 1991, 11, 215–232. [Google Scholar] [CrossRef]
- Pope, S.A.; Clayton, P.T.; Muller, D.P. A new method for the analysis of urinary vitamin E metabolites and the tentative identification of a novel group of compounds. Arch. Biochem. Biophys. 2000, 381, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Fernandez-Estivariz, C.; Jones, D.P.; Accardi, C.R.; Alteheld, B.; Bazargan, N.; Hao, L.; Griffith, D.P.; Blumberg, J.B.; Galloway, J.R.; et al. Depletion of plasma antioxidants in surgical intensive care unit patients requiring parenteral feeding: Effects of parenteral nutrition with or without alanyl-glutamine dipeptide supplementation. Nutrition 2008, 24, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nathens, A.B.; Neff, M.J.; Jurkovich, G.J.; Klotz, P.; Farver, K.; Ruzinski, J.T.; Radella, F.; Garcia, I.; Maier, R. V Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann. Surg. 2002, 236, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Koekkoek, W.A.C.K.; van Zanten, A.R.H. Antioxidant vitamins and trace elements in critical illness. Nutr. Clin. Pract. 2016, 31, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Hacquebard, M.; Carpentier, Y.A. Vitamin E: Absorption, plasma transport and cell uptake. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Iuliano, L.; Micheletta, F.; Natoli, S.; Ginanni Corradini, S.; Iappelli, M.; Elisei, W.; Giovannelli, L.; Violi, F.; Diczfalusy, U. Measurement of oxysterols and a-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal. Biochem. 2003, 312, 217–223. [Google Scholar] [CrossRef]
- Ford, L.; Farr, J.; Morris, P.; Berg, J. The value of measuring serum cholesterol-adjusted vitamin E in routine practice. Ann. Clin. Biochem. 2006, 43, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Doise, J.M.; Aho, L.S.; Quenot, J.P.; Guilland, J.C.; Zeller, M.; Vergely, C.; Aube, H.; Blettery, B.; Rochette, L. Plasma antioxidant status in septic critically ill patients: A decrease over time. Fundam. Clin. Pharmacol. 2008, 22, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Baines, M.; Wenstone, R.; Shenkin, A. Markers of oxidative damage, antioxidant status and clinical outcome in critically ill patients. Ann. Clin. Biochem. 2005, 42, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Bocca, B.; Ciccarelli, S.; Agostino, R.; Alimonti, A. Trace elements, oxidative status and antioxidant capacity as biomarkers in very low birth weight infants. Environ. Res. 2017, 156, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, J.; Marinova, M.; Müller-Reible, C.; Watzka, M. The Vitamin K Cycle. 2008, 78, 35–62. [Google Scholar] [CrossRef]
- Bolton-Smith, C.; Price, R.J.; Fenton, S.T.; Harrington, D.J.; Shearer, M.J. Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foods. Br. J. Nutr. 2000, 83, 389–399. [Google Scholar] [PubMed]
- Tsugawa, N.; Shiraki, M.; Suhara, Y.; Kamao, M.; Tanaka, K.; Okano, T. Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am. J. Clin. Nutr. 2006, 83, 380–386. [Google Scholar] [PubMed]
- Sato, T.; Schurgers, L.J.; Uenishi, K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr. J. 2012, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Suttie, J.W. The importance of menaquinones in human nutrition. Annu. Rev. Nutr. 1995, 15, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Newman, P. Metabolism and cell biology of vitamin K. Thromb. Haemost. 2008, 530–547. [Google Scholar] [CrossRef]
- Clarke, P.; Mitchell, S.J.; Shearer, M.J. Total and differential phylloquinone (Vitamin K1) intakes of preterm infants from all sources during the neonatal period. Nutrients 2015, 7, 8308–8320. [Google Scholar] [CrossRef] [PubMed]
- Burke, C.W. Vitamin K Deficiency Bleeding: Overview and Considerations. J. Pediatr. Heal. Care 2013, 27, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.; Shearer, M.J. Vitamin K deficiency bleeding: the readiness is all. Arch. Dis. Child. 2007, 92, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Andrew, M. The relevance of developmental hemostasis to hemorrhagic disorders of newborns. Semin. Perinatol. 1997, 21, 70–85. [Google Scholar] [CrossRef]
- Andrew, M.; Paes, B.; Milner, R.; Johnston, M.; Mitchell, L.; Tollefsen, D.M.; Castle, V.; Powers, P. Development of the human coagulation system in the healthy premature infant. Blood 1988, 72, 1651–1657. [Google Scholar] [PubMed]
- Thane, C.W.; Wang, L.Y.; Coward, W.A. Plasma phylloquinone (vitamin K1) concentration and its relationship to intake in British adults aged 19–64 years. Br. J. Nutr. 2006, 96, 1116. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Jacques, P.F.; Gundberg, C.M.; Peterson, J.W.; Tucker, K.L.; Kiel, D.P.; Wilson, P.W.F.; Booth, S.L. Dietary and nondietary determinants of vitamin K biochemical measures in men and women. J. Nutr. 2002, 132, 1329–1334. [Google Scholar] [PubMed]
- Sokoll, L.J.; Sadowski, J.A. Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am. J. Clin. Nutr. 1996, 63, 566–573. [Google Scholar] [PubMed]
- Azharuddin, M.K.; O’Reilly, D.S.J.; Gray, A.; Talwar, D. HPLC method for plasma vitamin K1: Effect of plasma triglyceride and acute-phase response on circulating concentrations. Clin. Chem. 2007, 53, 1706–1713. [Google Scholar] [CrossRef] [PubMed]
- von Kries, R.; Greer, F.R.; Suttie, J.W. Assessment of vitamin K status of the newborn infant. J. Pediatr. Gastroenterol. Nutr. 1993, 16, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Greer, F.R.; Marshall, S.; Cherry, J.; Suttie, J.W. Vitamin K status of lactating mothers, human milk, and breast-feeding infants. Pediatrics 1991, 88, 751–756. [Google Scholar] [PubMed]
- Greer, F.R.; Marshall, S.P.; Severson, R.R.; Smith, D.A.; Shearer, M.J.; Pace, D.G.; Joubert, P.H. A new mixed micellar preparation for oral vitamin K prophylaxis: Randomised controlled comparison with an intramuscular formulation in breast fed infants. Arch. Dis. Child. 1998, 79, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Widdershoven, J.; Lambert, W.; Motohara, K.; Monnens, L.; de Leenheer, A.; Matsuda, I.; Endo, F. Plasma concentrations of vitamin K1 and PIVKA-II in bottle-fed and breast-fed infants with and without vitamin K prophylaxis at birth. Eur. J. Pediatr. 1988, 148, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, E.A.; Kollée, L.A.; De Abreu, R.A.; van Baal, J.M.; Motohara, K.; Verbruggen, B.; Monnens, L.A. Effects of oral and intramuscular vitamin K prophylaxis on vitamin K1, PIVKA-II, and clotting factors in breast fed infants. Arch. Dis. Child. 1992, 67, 1250–1254. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, E.A.; Kollée, L.A.; De Abreu, R.A.; Motohara, K.; Monnens, L.A. Prevention of vitamin K deficiency in infancy by weekly administration of vitamin K. Acta Paediatr. 1993, 82, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, E.A.; Kollée, L.A.; van Lith, T.G.; Motohara, K.; Monnens, L.A. Evaluation of a daily dose of 25 micrograms vitamin K1 to prevent vitamin K deficiency in breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 1993, 16, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Witt, M.; Kvist, N.; Jorgensen, M.H.; Hulscher, J.B.F.; Verkade, H.J. Netherlands Study group of Biliary Atresia Registry (NeSBAR) Prophylactic Dosing of Vitamin K to Prevent Bleeding. Pediatrics 2016, 137, e20154222. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Bechtold, H.; Andrassy, K.; Koderisch, J.; McCarthy, P.T.; Trenk, D.; Jähnchen, E.; Ritz, E. Mechanism of cephalosporin-induced hypoprothrombinemia: Relation to cephalosporin side chain, vitamin K metabolism, and vitamin K status. J. Clin. Pharmacol. 1988, 28, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.V.; Deshmukh, C.T. A study of Vitamin K status in children on prolonged antibiotic therapy. Indian Pediatr. 2003, 40, 36–40. [Google Scholar] [PubMed]
- Aziz, F.; Patil, P. Role of Prophylactic Vitamin K in Preventing Antibiotic Induced Hypoprothrombinemia. Indian J. Pediatr. 2015, 82, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Costakos, D.T.; Greer, F.R.; Love, L.A.; Dahlen, L.R.; Suttie, J.W. Vitamin K prophylaxis for premature infants: 1 mg versus 0.5 mg. Am. J. Perinatol. 2003, 20, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Raith, W.; Fauler, G.; Pichler, G.; Muntean, W. Plasma concentrations after intravenous administration of phylloquinone (vitamin K(1)) in preterm and sick neonates. Thromb. Res. 2000, 99, 467–472. [Google Scholar] [CrossRef]
- Pietersma-de Bruyn, A.L.; van der Straaten, P.J.; van Haard, P.M.; Kuijpers, J.C.; Hamulyák, K.; Ruys, J.H. Vitamin K1 levels and K1-dependent coagulation factors II and X in preterm and small-for-date neonates. Eur. J. Pediatr. 1990, 149, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Clarke, P.; Mitchell, S.J.; Wynn, R.; Sundaram, S.; Speed, V.; Gardener, E.; Roeves, D.; Shearer, M.J. Vitamin K Prophylaxis for Preterm Infants: A Randomized, Controlled Trial of 3 Regimens. Pediatrics 2006, 118, e1657–e1666. [Google Scholar] [CrossRef] [PubMed]
- Sann, L.; Leclercq, M.; Guillaumont, M.; Trouyez, R.; Bethenod, M.; Bourgeay-Causse, M. Serum vitamin K1 concentrations after oral administration of vitamin K1 in low birth weight infants. J. Pediatr. 1985, 107, 608–611. [Google Scholar] [CrossRef]
- Kumar, D.; Greer, F.R.; Super, D.M.; Suttie, J.W.; Moore, J.J. Vitamin K status of premature infants: implications for current recommendations. Pediatrics 2001, 108, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Hesse, L.; Eberl, W.; Schlaud, M.; Poets, C.F. Blood transfusion. Iron load and retinopathy of prematurity. Eur. J. Pediatr. 1997, 156, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Shah, P.S. Transfusion associated necrotizing enterocolitis: a meta-analysis of observational data. Pediatrics 2012, 129, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Beard, J. Recent evidence from human and animal studies regarding iron status and infant development. J. Nutr. 2007, 137, 524S–530S. [Google Scholar] [PubMed]
- Shouman, B.O.; Mesbah, A.; Aly, H. Iron metabolism and lipid peroxidation products in infants with hypoxic ischemic encephalopathy. J. Perinatol. 2008, 28, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Ling, E.A. Periventricular white matter damage in the hypoxic neonatal brain: Role of microglial cells. Prog. Neurobiol. 2009, 87, 264–280. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Georgieff, M.K. Perinatal aspects of iron metabolism. Acta Paediatr. Suppl. 2002, 91, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.C. Iron absorption by the premature infant. The effect of transfusion and iron supplements on the serum ferritin levels. Acta Paediatr. Scand. Suppl. 1982, 299, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.L. Storage iron in foetal livers. Acta Paediatr. Scand. 1973, 62, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.L. Iron, plasma antioxidants, and the “oxygen radical disease of prematurity”. Am. J. Dis. Child. 1988, 142, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Siimes, M.A.; Addiego, J.E.; Dallman, P.R. Ferritin in serum: D iagnosis of iron deficiency and iron overload in infants and children. Blood 1974, 43, 581–590. [Google Scholar] [PubMed]
- Lasocki, S.; Longrois, D.; Montravers, P.; Beaumont, C. Hepcidin and Anemia of the Critically Ill Patient. Anesthesiology 2011, 114, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Labbé, R.F.; Vreman, H.J.; Stevenson, D.K. Zinc protoporphyrin: A metabolite with a mission. Clin. Chem. 1999, 45, 2060–2072. [Google Scholar] [PubMed]
- Milman, N.; Ibsen, K.K.; Christensen, J.M. Serum ferritin and iron status in mothers and newborn infants. Acta Obstet. Gynecol. Scand. 1987, 66, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Juul, S.E.; Zerzan, J.C.; Strandjord, T.P.; Woodrum, D.E. Zinc protoporphyrin/heme as an indicator of iron status in NICU patients. J. Pediatr. 2003, 142, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; McPherson, R.J.; Juul, S.E. Iron sulfate supplementation decreases zinc protoporphyrin to heme ratio in premature infants. J. Pediatr. 2006, 148, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, E.D. Iron withholding: A defense against infection and neoplasia. Physiol. Rev. 1984, 64, 65–102. [Google Scholar] [PubMed]
- Marx, J.J.M. Iron and infection: competition between host and microbes for a precious element. Best Pract. Res. Clin. Haematol. 2002, 15, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 2010, 142, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, D.; Jiang, X.; Yu, X.; Ma, L.; Zhong, J.; Feng, X. Blood Zinc, Iron, and Copper Levels in Critically Ill Neonates. Biol. Trace Elem. Res. 2015, 164, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Feng, X.; Yu, X.; Xu, X.; Wang, D.; Yang, H.; Shi, X. Prognostic Value of Blood Zinc, Iron, and Copper Levels in Critically Ill Children with Pediatric Risk of Mortality Score III. Biol. Trace Elem. Res. 2013, 152, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Secher, E.L.; Stensballe, J.; Afshari, A. Transfusion in critically ill children: An ongoing dilemma. Acta Anaesthesiol. Scand. 2013, 57, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Bateman, S.T.; Lacroix, J.; Boven, K.; Forbes, P.; Barton, R.; Thomas, N.J.; Jacobs, B.; Markovitz, B.; Goldstein, B.; Hanson, J.H.; Li, H.A.; Randolph, A.G. Pediatric Acute Lung Injury and Sepsis Investigators Network Anemia, blood loss, and blood transfusions in North American children in the intensive care unit. Am. J. Respir. Crit. Care Med. 2008, 178, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Stark, M.J.; Keir, A.K.; Andersen, C.C. Does non-transferrin bound iron contribute to transfusion related immune-modulation in preterms? Arch. Dis. Child.-Fetal Neonatal Ed. 2013, 98, F424–F429. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Morinobu, T.; Kim, H.; Hiroi, M.; Ban, R.; Ogawa, S.; Ogihara, H.; Tamai, H.; Ogihara, T. Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 84, F188–F193. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.W.; Drury, J.A.; Yoxall, C.W.; James, C. Blood transfusion and chronic lung disease in preterm infants. Eur. J. Pediatr. 1997, 156, 47–50. [Google Scholar] [CrossRef] [PubMed]
- King, J.C. Zinc: an essential but elusive nutrient. Am. J. Clin. Nutr. 2011, 94, 679S–684S. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc in growth and development and spectrum of human zinc deficiency. J. Am. Coll. Nutr. 1988, 7, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Baer, M.T.; King, J.C. Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. Am. J. Clin. Nutr. 1984, 39, 556–570. [Google Scholar] [PubMed]
- King, J.C.; Shames, D.M.; Lowe, N.M.; Woodhouse, L.R.; Sutherland, B.; Abrams, S.A.; Turnlund, J.R.; Jackson, M.J. Effect of acute zinc depletion on zinc homeostasis and plasma zinc kinetics in men. Am. J. Clin. Nutr. 2001, 74, 116–124. [Google Scholar] [PubMed]
- Heyland, D.K.; Jones, N.; Cvijanovich, N.Z.; Wong, H. Zinc supplementation in critically ill patients: A key pharmaconutrient? JPEN J. Parenter. Enter. Nutr. 2008, 32, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Hess, S.Y.; Hotz, C.; Brown, K.H. Indicators of zinc status at the population level: A review of the evidence. Br. J. Nutr. 2008, 99. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M.; Woodhouse, L.R.; Sutherland, B.; Shames, D.M.; Burri, B.J.; Abrams, S.A.; Turnlund, J.R.; Jackson, M.J.; King, J.C. Kinetic parameters and plasma zinc concentration correlate well with net loss and gain of zinc from men. J. Nutr. 2004, 134, 2178–2181. [Google Scholar] [PubMed]
- Wessells, K.R.; Jorgensen, J.M.; Hess, S.Y.; Woodhouse, L.R.; Peerson, J.M.; Brown, K.H. Plasma zinc concentration responds rapidly to the initiation and discontinuation of short-term zinc supplementation in healthy men. J. Nutr. 2010, 140, 2128–2133. [Google Scholar] [CrossRef] [PubMed]
- Eide, D.J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.G.; Vallee, B.L. The Metallothionein/Thionein System: An Oxidoreductive Metabolic Zinc Link. Chem. Bio. Chem. 2009, 10, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: the multipurpose protein. Cell. Mol. Life Sci. 2002, 59, 627–647. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc deficiency in human subjects. Prog. Clin. Biol. Res. 1983, 129, 1–33. [Google Scholar] [PubMed]
- Sato, M.; Mehra, R.K.; Bremner, I. Measurement of plasma metallothionein-I in the assessment of the zinc status of zinc-deficient and stressed rats. J. Nutr. 1984, 114, 1683–1689. [Google Scholar] [PubMed]
- Liuzzi, J.P.; Lichten, L.A.; Rivera, S.; Blanchard, R.K.; Aydemir, T.B.; Knutson, M.D.; Ganz, T.; Cousins, R.J. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. USA 2005, 102, 6843–6848. [Google Scholar] [CrossRef] [PubMed]
- Uckan, D.; Cetin, M.; Dincer, N.; Kalkan, G.; Tuncer, M.; Tezcan, I. Serum zinc and alkaline phosphatase values in pediatric bone marrow transplantation patients. Pediatr. Hematol. Oncol. 2003, 20, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.R.; Shanley, T.P.; Sakthivel, B.; Cvijanovich, N.; Lin, R.; Allen, G.L.; Thomas, N.J.; Doctor, A.; Kalyanaraman, M.; Tofil, N.M.; et al. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiol. Genomics 2007, 30, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Cvijanovich, N.Z.; King, J.C.; Flori, H.R.; Gildengorin, G.; Wong, H.R. Zinc homeostasis in pediatric critical illness. Pediatr. Crit. Care Med. 2009, 10, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Heidemann, S.M.; Holubkov, R.; Meert, K.L.; Dean, J.M.; Berger, J.; Bell, M.; Anand, K.J.S.; Zimmerman, J.; Newth, C.J.L.; Harrison, R.; Willson, D.F.; et al. Baseline serum concentrations of zinc, selenium, and prolactin in critically ill children. Pediatr. Crit. Care Med. 2013, 14, e202–e206. [Google Scholar] [CrossRef] [PubMed]
- Manzoli, T.; Delgado, A.; Troster, E.; Carvalho, E.; Antunes, A.; Marques, D.; Zamberlan, P. Lymphocyte count as a sign of immunoparalysis and its correlation with nutritional status in pediatric intensive care patients with sepsis: A pilot study. Clinics 2016, 71, 644–649. [Google Scholar] [CrossRef]
- Oshiro, M.; Mimura, S.; Hayakawa, M.; Watanabe, K. Plasma and erythrocyte levels of trace elements and related antioxidant enzyme activities in low-birthweight infants during the early postnatal period. Acta Paediatr. 2001, 90, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Hatano, S.; Aihara, K.; Nishi, Y.; Usui, T. Trace elements (copper, zinc, manganese, and selenium) in plasma and erythrocytes in relation to dietary intake during infancy. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Barbarot, S.; Chantier, E.; Kuster, A.; Hello, M.; Roze, J.-C.; Blouin, E.; Stalder, J.-F. Symptomatic acquired zinc deficiency in at-risk premature infants: High dose preventive supplementation is necessary. Pediatr. Dermatol. 2010, 27, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Wulf, K.; Wilhelm, A.; Spielmann, M.; Wirth, S.; Jenke, A. Frequency of Symptomatic Zinc Deficiency in Very Low Birth Weight Infants. Klin. Padiatr. 2012, 225, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Carcillo, J.A.; Michael Dean, J.; Holubkov, R.; Berger, J.; Meert, K.L.; Anand, K.J.S.; Zimmerman, J.; Newth, C.J.L.; Harrison, R.; Burr, J.; et al. The randomized comparative pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. Pediatr. Crit. Care Med. 2012, 13, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Cvijanovich, N.Z.; King, J.C.; Flori, H.R.; Gildengorin, G.; Vinks, A.A.; Wong, H.R. Safety and Dose Escalation Study of Intravenous Zinc Supplementation in Pediatric Critical Illness. J. Parenter. Enter. Nutr. 2016, 40, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, N.; Chandran, A.; Aneja, S.; Lodha, R.; Kabra, S.K.; Chaturvedi, M.K.; Sodhi, J.; Fitzwater, S.P.; Chandra, J.; Rath, B.; et al. Efficacy of zinc given as an adjunct in the treatment of severe and very severe pneumonia in hospitalized children 2-24 mo of age: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2013, 97, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Valavi, E.; Hakimzadeh, M.; Shamsizadeh, A.; Aminzadeh, M.; Alghasi, A. The efficacy of zinc supplementation on outcome of children with severe pneumonia. A randomized double-blind placebo-controlled clinical trial. Indian J. Pediatr. 2011, 78, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Brooks, W.A.; Yunus, M.; Santosham, M.; Wahed, M.A.; Nahar, K.; Yeasmin, S.; Black, R.E. Zinc for severe pneumonia in very young children: double-blind placebo-controlled trial. Lancet 2004, 363, 1683–1688. [Google Scholar] [CrossRef]
- Ganguly, A.; Chakraborty, S.; Datta, K.; Hazra, A.; Datta, S.; Chakraborty, J. A Randomized Controlled Trial of Oral Zinc in Acute Pneumonia in Children Aged between 2 Months to 5 Years. Indian J. Pediatr. 2011, 78, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Coles, C.L.; Gunavathi; John, H.; Moses, P.; Raghupathy, P.; Kirubakaran, C.; Black, R.E.; Brooks, W.A.; Santosham, M. Efficacy of zinc in the treatment of severe pneumonia in hospitalized children. Am. J. Clin. Nutr. 2006, 83, 1089–1096. [Google Scholar] [PubMed]
- Mathew, J.L. Zinc supplementation for prevention or treatment of childhood pneumonia: A systematic review of randomized controlled trials. Indian Pediatr. 2010, 47, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Forceville, X. Critically elucidating the role of selenium. Curr. Opin. Anaesthesiol. 2008, 21, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Litov, R.E.; Combs, G.F. Selenium in pediatric nutrition. Pediatrics 1991, 87, 339–351. [Google Scholar] [PubMed]
- Forceville, X. The effect of selenium therapy on mortality in patients with sepsis syndrome: Simple selenium supplementation or real (5 H2O)·Na2SeO3 pharmacological effect? Crit. Care Med. 2013, 41, 1591–1592. [Google Scholar] [CrossRef] [PubMed]
- Levander, O.A. A global view of human selenium nutrition. Annu. Rev. Nutr. 1987, 7, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, P.A.; Buchanan, B.E.; Hancock, R.G.; Zlotkin, S.H. Tissue selenium accretion in premature and full-term human infants and children. Biol. Trace Elem. Res. 1985, 7, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.; Gibson, R.; Simmer, K. Selenium status of preterm infants: the effect of postnatal age and method of feeding. Acta Paediatr. 1997, 86, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.A.; Gibson, R.A.; Simmer, K. Glutathione peroxidase is not a functional marker of selenium status in the neonatal period. J. Pediatr. Gastroenterol. Nutr. 1998, 26, 263–268. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Iglesias, S.; Leite, H.; Paes, Â.; de Oliveira, S.; Sarni, R. Low plasma selenium concentrations in critically ill children: The interaction effect between inflammation and selenium deficiency. Crit. Care 2014, 18, R101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broman, M.; Lindfors, M.; Norberg, Å.; Hebert, C.; Rooyackers, O.; Wernerman, J.; Fläring, U. Low serum selenium is associated with the severity of organ failure in critically ill children. Clin. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Leite, H.P.; Nogueira, P.C.K.; de Oliveira Iglesias, S.B.; de Oliveira, S.V.; Sarni, R.O.S. Increased plasma selenium is associated with better outcomes in children with systemic inflammation. Nutrition 2015, 31, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Dylewski, M.L.; Bender, J.C.; Smith, A.M.; Prelack, K.; Lydon, M.; Weber, J.M.; Sheridan, R.L. The Selenium Status of Pediatric Patients With Burn Injuries. J. Trauma Inj. Infect. Crit. Care 2010, 69, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Lockitch, G.; Jacobson, B.; Quigley, G.; Dison, P.; Pendray, M. Selenium deficiency in low birth weight neonates: An unrecognized problem. J. Pediatr. 1989, 114, 865–870. [Google Scholar] [CrossRef]
- Darlow, B.A.; Inder, T.E.; Graham, P.J.; Sluis, K.B.; Malpas, T.J.; Taylor, B.J.; Winterbourn, C.C. The relationship of selenium status to respiratory outcome in the very low birth weight infant. Pediatrics 1995, 96, 314–319. [Google Scholar] [PubMed]
- Huston, R.K.; Jelen, B.J.; Vidgoff, J. Selenium supplementation in low-birthweight premature infants: Relationship to trace metals and antioxidant enzymes. JPEN J. Parenter. Enter. Nutr. 1991, 15, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.; Gibson, R.; Simmer, K. Randomised clinical trial of parenteral selenium supplementation in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 74, F158–F164. [Google Scholar] [CrossRef] [PubMed]
- Bogye, G.; Alfthan, G.; Machay, T. Randomized clinical trial of enteral yeast-selenium supplementation in preterm infants. Biofactors 1998, 8, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Gathwala, G.; Yadav, S.; Kumar, P. Selenium Supplementation for Prevention of Late-Onset Sepsis in Very Low Birth Weight Preterm Neonates. J. Trop. Pediatr. 2016, 62, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.C. Trace elements in the fetus and young infant. II. Copper, manganese, selenium, and chromium. Am. J. Dis. Child. 1980, 134, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Hellman, N.E.; Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 2002, 22, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Reiser, S.; Smith, J.C.; Mertz, W.; Holbrook, J.T.; Scholfield, D.J.; Powell, A.S.; Canfield, W.K.; Canary, J.J. Indices of copper status in humans consuming a typical American diet containing either fructose or starch. Am. J. Clin. Nutr. 1985, 42, 242–251. [Google Scholar] [PubMed]
- Henkin, R.I.; Schulman, J.D.; Schulman, C.B.; Bronzert, D.A. Changes in total, nondiffusible, and diffusible plasma zinc and copper during infancy. J. Pediatr. 1973, 82, 831–837. [Google Scholar] [CrossRef]
- Samman, S.; Roberts, D.C. The effect of zinc supplements on lipoproteins and copper status. Atherosclerosis 1988, 70, 247–252. [Google Scholar] [CrossRef]
- Prasad, A.S.; Brewer, G.J.; Schoomaker, E.B.; Rabbani, P. Hypocupremia induced by zinc therapy in adults. JAMA 1978, 240, 2166–2168. [Google Scholar] [CrossRef] [PubMed]
- Fischer, P.W.; Giroux, A.; L’Abbé, M.R. Effect of zinc supplementation on copper status in adult man. Am. J. Clin. Nutr. 1984, 40, 743–746. [Google Scholar] [PubMed]
- Sann, L.; Rigal, D.; Galy, G.; Bienvenu, F.; Bourgeois, J. Serum copper and zinc concentration in premature and small-for-date infants. Pediatr. Res. 1980, 14, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- L’Abbé, M.R.; Friel, J.K. Copper status of very low birth weight infants during the first 12 months of infancy. Pediatr. Res. 1992, 32, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Soo, T.L.; Simmer, K.; Carlson, L.; McDonald, L. Copper and very low birthweight babies. Arch. Dis. Child. 1988, 63, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Hillman, L.S.; Martin, L.; Fiore, B. Effect of oral copper supplementation on serum copper and ceruloplasmin concentrations in premature infants. J. Pediatr. 1981, 98, 311–313. [Google Scholar] [CrossRef]
- Manser, J.I.; Tran, N.N.; Kotwal, M.; Hall, L. Copper supplementation in premature infants. J. Pediatr. 1982, 100, 511. [Google Scholar] [CrossRef]
Vitamin | Name | Function and Enzyme Co-Factor |
---|---|---|
B1 | Thiamine | Aerobic and carbohydrate metabolism |
B2 | Riboflavin | Oxidation-Reduction reactions: FAD and FMN |
B3 | Niacin | Oxidation-Reduction reactions: NAD and NADP |
B5 | Pantothenic acid | Acylation and acetylation: coenzyme A |
B6 | Pyridoxal Phosphate | Metabolism of proteins, carbohydrates, and fats |
B7 | Biotin | Carboxylase enzymes |
B9 | Folate | DNA and RBC synthesis |
B12 | Cobalamin | DNA, RBC, and myelin synthesis |
Test | Purpose | |
---|---|---|
Vitamin B1 | Erythrocyte thiamine pyrophosphate | Quantification of thiamine pyrophosphate in erythrocytes |
Erythrocyte transketolase | Functional assessment of coenzyme activity | |
Vitamin B2 | Erythrocyte glutathione reductase activity coefficient assay | Functional assessment of coenzyme activity |
Erythrocyte FAD | Measurement of the active form of riboflavin | |
Vitamin B3 | Erythrocyte NAD and NADP | Measurement of active coenzymes of niacin |
Urinary 1-MN and 2-PYR | Measurement of niacin metabolites | |
Vitamin B5 | Urine pantothenic acid | Direct quantification of vitamin B5 |
Vitamin B6 | Plasma pyridoxal phosphate | Direct quantification of the active form of vitamin B6 in plasma |
Erythrocyte pyridoxal phosphate | Direct quantification of the active form of vitamin B6 in erythrocytes | |
Plasma PA:(PL+PLP) ratio | Measurement of vitamin B6 catabolism in plasma | |
Vitamin B7 | Urinary 3-HIA and 3-HIAc | Indirect measurement of biotin-dependent mitochondrial carboxylase activity |
Holo-PCC and holo-MCC | Quantification of vitamin B7-dependent enzymes in lymphocytes | |
Vitamin B9 | Plasma 5-methyltetrahydrofolate | Measurement of the primary active form of folate |
Plasma homocysteine | Measurement of a precursor substrate for an enzyme that requires vitamin B9 | |
Vitamin B12 | Plasma cobalamin | Direct quantification of vitamin B12 |
Plasma homocysteine | Measurement of a precursor substrate for an enzyme that requires vitamin B12 | |
Plasma MMA | Measurement of a precursor substrate for an enzyme that requires vitamin B12 | |
Urine MMA | Measurement of a precursor substrate for an enzyme that requires vitamin B12 | |
Vitamin C | Plasma ascorbic acid | Direct quantification of vitamin C |
Vitamin A | Plasma retinol | Direct quantification of one of the three forms of vitamin A |
Plasma retinol/RBP molar ratio | Measurement of proportion of a form of vitamin A and one of its circulating carrier proteins in plasma | |
Relative-dose-response of retinol | Measurement of a form of vitamin A in response to its administration | |
Changes in RBP following vitamin A administration | Measurement of one of the circulating carrier proteins of vitamin A in plasma in response to administration of vitamin A | |
Fasting plasma retinyl esters | Direct quantification for vitamin A toxicity | |
Vitamin D | Plasma 25(OH)D | Direct quantification of free vitamin D metabolite |
Plasma bioavailable 25(OH)D | Direct quantification of free plus albumin-bound vitamin D metabolite | |
Vitamin E | Plasma alpha-tocopherol | Direct quantification of the major isoform of vitamin E (consider adjusting to cholesterol or total lipids in critically ill patients) |
Vitamin K | Plasma phylloquinone | Direct quantification of the major form of vitamin K in plasma |
Coagulation function (INR and PT) | Functional assessment of vitamin K-dependent coagulation factors | |
PIVKA-II and uOC | Measurement of undercarboxylated prothrombin and osteocalcin | |
Iron | Serum iron | Direct quantification of iron levels in serum |
Ferritin | Measurement of iron storage | |
Transferrin/TIBC | Measurement of the capacity for iron transport | |
Transferrin saturation | Quantification of the percentage of iron-bound transferrin | |
ZnPP/H | Measurement of the proportion of protoporphyrin molecules associated with zinc vs. iron | |
Calcium | Serum total calcium | Direct quantification of total circulating calcium in serum |
Serum ionized calcium | Direct quantification of free circulating calcium in serum | |
Magnesium | Serum magnesium | Direct quantification of magnesium levels in serum |
Serum ionized magnesium | Direct quantification of ionized magnesium in serum | |
24-hour urinary magnesium | Measurement of magnesium levels in urine | |
Phosphorus | Serum phosphate | Direct quantification of phosphate levels in serum |
Zinc | Serum or plasma zinc | Direct quantification of zinc levels in serum or plasma |
Metallothionein | Measurement of zinc storage | |
ALP | Functional assessment of a zinc-dependent enzyme | |
Selenium | Serum selenium | Direct quantification of selenium levels in serum |
GSHpx activity | Functional assessment of the main selenium-dependent enzyme | |
Copper | Serum copper | Direct quantification of copper levels in serum |
Ceruloplasmin | Measurement of the main protein for copper transport | |
SOD activity | Functional assessment of a major copper-dependent enzyme |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, D.T.; Anez-Bustillos, L.; Cho, B.S.; Li, Z.; Puder, M.; Gura, K.M. Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities. Nutrients 2017, 9, 1185. https://doi.org/10.3390/nu9111185
Dao DT, Anez-Bustillos L, Cho BS, Li Z, Puder M, Gura KM. Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities. Nutrients. 2017; 9(11):1185. https://doi.org/10.3390/nu9111185
Chicago/Turabian StyleDao, Duy T., Lorenzo Anez-Bustillos, Bennet S. Cho, Zhilling Li, Mark Puder, and Kathleen M. Gura. 2017. "Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities" Nutrients 9, no. 11: 1185. https://doi.org/10.3390/nu9111185
APA StyleDao, D. T., Anez-Bustillos, L., Cho, B. S., Li, Z., Puder, M., & Gura, K. M. (2017). Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities. Nutrients, 9(11), 1185. https://doi.org/10.3390/nu9111185