Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Effects of Resveratrol (RSV) as a Single Agent against Lung Cancer: In Vitro Studies
3. Effects of Resveratrol (RSV) in a Combination Treatment against Lung Cancer: In Vitro Studies
4. Effects of Resveratrol (RSV) in Lung Cancer: In Vivo Studies
5. Molecular Targets/Signaling Molecules Contributing to Anticancer Effects of RSV
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr. Int. Rev. J. 2016, 7, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.Y.; Hudson, T.S.; Wang, T.-C.; Remsberg, C.M.; Davies, N.M.; Takahashi, Y.; Kim, Y.S.; Seifried, H.; Vinyard, B.T.; Perkins, S.N.; et al. Differential Effects of Resveratrol on Androgen-Responsive LNCaP Human Prostate Cancer Cells in vitro and in vivo. Carcinogenesis 2008, 29, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Yousef, M.; Tsiani, E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Tsiani, E. Metformin in Lung Cancer: Review of in vitro and in vivo Animal Studies. Cancers 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Shamshoum, H.; Vlavcheski, F.; Tsiani, E. Anticancer Effects of Oleuropein. BioFactors Oxf. Engl. 2017, 43, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, A.R.; Chow, H.-H.S.; Martinez, J.A. Effects of Resveratrol on Drug- and Carcinogen-Metabolizing Enzymes, Implications for Cancer Prevention. Pharmacol. Res. Perspect. 2017, 5, e00294. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer Res. 2004, 24, 2783–2840. [Google Scholar] [PubMed]
- Latruffe, N.; Delmas, D.; Jannin, B.; Cherkaoui Malki, M.; Passilly-Degrace, P.; Berlot, J.-P. Molecular Analysis on the Chemopreventive Properties of Resveratrol, a Plant Polyphenol Microcomponent. Int. J. Mol. Med. 2002, 10, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y. Pharmacological Studies on Resveratrol. Methods Find Exp. Clin. Pharmacol. 2003, 25, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Di, S.; Zhang, Z.; Wang, Y.; Shi, W. Analysis for Four Isomers of Resveratrol in Red Wine by High Performance Liquid Chromatography. Se Pu Chin. J. Chromatogr. 2004, 22, 424–427. [Google Scholar]
- Sato, M.; Suzuki, Y.; Okuda, T.; Yokotsuka, K. Contents of Resveratrol, Piceid, and their Isomers in Commercially Available Wines Made from Grapes Cultivated in Japan. Biosci. Biotechnol. Biochem. 1997, 61, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro de Lima, M.T.; Waffo-Téguo, P.; Teissedre, P.L.; Pujolas, A.; Vercauteren, J.; Cabanis, J.C.; Mérillon, J.M. Determination of Stilbenes (trans-astringin, cis- and trans-piceid, and cis- and trans-resveratrol) in Portuguese Wines. J. Agric. Food Chem. 1999, 47, 2666–2670. [Google Scholar] [CrossRef] [PubMed]
- Brownson, D.M.; Azios, N.G.; Fuqua, B.K.; Dharmawardhane, S.F.; Mabry, T.J. Flavonoid Effects Relevant to Cancer. J. Nutr. 2002, 132, 3482S–3489S. [Google Scholar] [PubMed]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, G.J.; Azuine, M.A.; Tokuda, H.; Takasaki, M.; Mukainaka, T.; Konoshima, T.; Nishino, H. Chemopreventive Effect of Resveratrol, Sesamol, Sesame Oil and Sunflower Oil in the Epstein-Barr Virus Early Antigen Activation Assay and the Mouse Skin Two-Stage Carcinogenesis. Pharmacol. Res. 2002, 45, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Bhat, K.P.L.; Kosmeder, J.W.; Pezzuto, J.M. Biological Effects of Resveratrol. Antioxid. Redox Signal. 2001, 3, 1041–1064. [Google Scholar] [CrossRef] [PubMed]
- Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: the in vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Pezzuto, J.M. The Phenomenon of Resveratrol: Redefining the Virtues of Promiscuity. Ann. N. Y. Acad. Sci. 2011, 1215, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an Anti-Cancer Agent: A review. Crit. Rev. Food Sci. Nutr. 2016, 0, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhou, J.; Jiang, Y. Resveratrol in lung cancer—A systematic review. J. BUON Off. J. Balk. Union Oncol. 2016, 21, 950–953. [Google Scholar]
- Ohshiro, K.; Rayala, S.K.; Kondo, S.; Gaur, A.; Vadlamudi, R.K.; El-Naggar, A.K.; Kumar, R. Identifying the Estrogen Receptor Coactivator PELP1 in Autophagosomes. Cancer Res. 2007, 67, 8164–8171. [Google Scholar] [CrossRef] [PubMed]
- Whyte, L.; Huang, Y.-Y.; Torres, K.; Mehta, R.G. Molecular Mechanisms of Resveratrol Action in Lung Cancer Cells Using Dual Protein and Microarray Analyses. Cancer Res. 2007, 67, 12007–12017. [Google Scholar] [CrossRef] [PubMed]
- Ebi, H.; Tomida, S.; Takeuchi, T.; Arima, C.; Sato, T.; Mitsudomi, T.; Yatabe, Y.; Osada, H.; Takahashi, T. Relationship of Deregulated Signaling Converging onto mTOR with Prognosis and Classification of Lung Adenocarcinoma Shown by Two Independent In silico Analyses. Cancer Res. 2009, 69, 4027–4035. [Google Scholar] [CrossRef] [PubMed]
- Perdew, G.H.; Hollingshead, B.D.; DiNatale, B.C.; Morales, J.L.; Labrecque, M.P.; Takhar, M.K.; Tam, K.J.; Beischlag, T.V. Estrogen Receptor Expression Is Required for Low-Dose Resveratrol-Mediated Repression of Aryl Hydrocarbon Receptor Activity. J. Pharmacol. Exp. Ther. 2010, 335, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tsai, K.; Shee, J.; Li, Y.; Chen, C.; Chuang, J.; Liu, Y. 4′-Chloro-3,5-dihydroxystilbene, a Resveratrol Derivative, Induces Lung Cancer Cell Death. Acta Pharmacol. Sin. 2010, 31, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Bao, P.; Qi, H.; You, H. Resveratrol Down-regulates Survivin and Induces Apoptosis in Human Multidrug-Resistant SPC-A-1/CDDP Cells. Oncol. Rep. 2009, 23. [Google Scholar] [CrossRef]
- Bae, S.; Lee, E.-M.; Cha, H.J.; Kim, K.; Yoon, Y.; Lee, H.; Kim, J.; Kim, Y.-J.; Lee, H.G.; Jeung, H.-K.; et al. Resveratrol Alters MicroRNA Expression Profiles in A549 Human Non-Small Cell Lung Cancer Cells. Mol. Cells 2011, 32, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xu, M.S.; Barnett, T.L.; Xu, C.W. Resveratrol Induces Cellular Senescence with Attenuated Mono-Ubiquitination of Histone H2B in Glioma Cells. Biochem. Biophys. Res. Commun. 2011, 407, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Yang, Q.; Liu, B.; Wu, J.; Li, Y.; Yang, C.; Jiang, Y. MicroRNA-622 Functions as a Tumor Suppressor by Targeting K-Ras and Enhancing the Anticarcinogenic Effect of Resveratrol. Carcinogenesis 2012, 33, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, X.; Hu, C.; Hu, T. Inhibition of Proliferation and Induction of Apoptosis by Trimethoxyl Stilbene (TMS) in a Lung Cancer Cell Line. Asian Pac. J. Cancer Prev. APJCP 2011, 12, 2263–2269. [Google Scholar] [PubMed]
- Zhang, J.; Ma, K.; Qi, T.; Wei, X.; Zhang, Q.; Li, G.; Chiu, J.-F. P62 Regulates Resveratrol-Mediated Fas/Cav-1 Complex Formation and Transition from Autophagy to Apoptosis. Oncotarget 2015, 6, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Ferraz da Costa, D.C.; Casanova, F.A.; Quarti, J.; Malheiros, M.S.; Sanches, D.; dos Santos, P.S.; Fialho, E.; Silva, J.L. Transient Transfection of a Wild-Type p53 Gene Triggers Resveratrol-Induced Apoptosis in Cancer Cells. PLoS ONE 2012, 7, e48746. [Google Scholar] [CrossRef] [PubMed]
- Mena, S.; Rodríguez, M.L.; Ponsoda, X.; Estrela, J.M.; Jäättela, M.; Ortega, A.L. Pterostilbene-Induced Tumor Cytotoxicity: A Lysosomal Membrane Permeabilization-Dependent Mechanism. PLoS ONE 2012, 7, e44524. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-H.; Lee, J.H.; Thien Quach, C.H.; Paik, J.-Y.; Oh, H.; Park, J.W.; Lee, E.J.; Moon, S.-H.; Lee, K.-H. Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species-Mediated Hypoxia-Inducible Factor-1 Activation. J. Nucl. Med. 2013, 54, 2161–2167. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yang, A.; Schulte, B.A.; Wargovich, M.J.; Wang, G.Y. Resveratrol Induces Premature Senescence in Lung Cancer Cells via ROS-Mediated DNA Damage. PLoS ONE 2013, 8, e60065. [Google Scholar] [CrossRef] [PubMed]
- Ulasli, S.S.; Celik, S.; Gunay, E.; Ozdemir, M.; Hazman, O.; Ozyurek, A.; Koyuncu, T.; Unlu, M. Anticancer Effects of Thymoquinone, Caffeic Acid Phenethyl Ester and Resveratrol on A549 Non-small Cell Lung Cancer Cells Exposed to Benzo(a)pyrene. Asian Pac. J. Cancer Prev. 2013, 14, 6159–6164. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.-T.; Tian, Q.-Z.; Guan, L.; Zhou, Y.; Huang, X.-E.; Zhang, H. In vitro and in vivo Evaluation of the Antitumor Efficiency of Resveratrol against Lung Cancer. Asian Pac. J. Cancer Prev. 2013, 14, 1703–1706. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-H.; Chen, H.-A.; Chen, P.-S.; Cheng, Y.-J.; Hsu, W.-H.; Chang, Y.-W.; Chen, Y.-H.; Jan, Y.; Hsiao, M.; Chang, T.-Y.; et al. MiR-520h-Mediated FOXC2 Regulation is Critical for Inhibition of Lung Cancer Progression by Resveratrol. Oncogene 2013, 32, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.X.; Yao, X.J.; Xu, S.W.; Wong, V.K.W.; He, J.X.; Ding, J.; Xue, W.W.; Mujtaba, T.; Michelangeli, F.; Huang, M.; et al. (Z)3,4,5,4′-Trans-Tetramethoxystilbene, a New Analogue of Resveratrol, Inhibits Gefitinb-Resistant Non-Small Cell Lung Cancer via Selectively Elevating Intracellular Calcium Level. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, I.; Kolodziej, H. Trans-Resveratrol Induces Apoptosis through ROS-Triggered Mitochondria-Dependent Pathways in A549 Human Lung Adenocarcinoma Epithelial Cells. Planta Med. 2015, 81, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Pulliero, A.; Wu, Y.; Fenoglio, D.; Parodi, A.; Romani, M.; Soares, C.P.; Filaci, G.; Lee, J.L.; Sinkam, P.N.; Izzotti, A. Nanoparticles Increase the Efficacy of Cancer Chemopreventive Agents in Cells Exposed to Cigarette Smoke Condensate. Carcinogenesis 2015, 36, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xu, E.; Dai, J.; Liu, B.; Han, Z.; Wu, J.; Zhang, S.; Peng, B.; Zhang, Y.; Jiang, Y. A Novel Long Noncoding RNA AK001796 Acts as an Oncogene and is Involved in Cell Growth Inhibition by Resveratrol in Lung Cancer. Toxicol. Appl. Pharmacol. 2015, 285, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Zhang, Y.; Xia, J.; Liu, B.; Zhang, Q.; Liu, J.; Luo, L.; Peng, Z.; Song, Z.; Zhu, R. Resveratrol Induces Cell Cycle Arrest via a p53-independent Pathway in A549 Cells. Mol. Med. Rep. 2015, 11, 2459–2464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dai, F.; Sheng, P.; Chen, Z.; Xu, Q.; Guo, Y. Resveratrol Analogue 3,4,4′-Trihydroxy-Trans-Stilbene Induces Apoptosis and Autophagy in Human Non-Small-Cell Lung Cancer Cells in vitro. Acta Pharmacol. Sin. 2015, 36, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Park, E.-Y.; Ha, H.-K.; Jo, C.-M.; Lee, W.-J.; Lee, S.S.; Kim, J.W. Resveratrol-Loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress. Asian-Australas. J. Anim. Sci. 2015, 29, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Savio, M.; Ferraro, D.; Maccario, C.; Vaccarone, R.; Jensen, L.D.; Corana, F.; Mannucci, B.; Bianchi, L.; Cao, Y.; Stivala, L.A. Resveratrol Analogue 4,4′-Dihydroxy-Trans-Stilbene Potently Inhibits Cancer Invasion and Metastasis. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Gopalakrishnan, V.; Hegde, M.; Kumar, S.; Karki, S.S.; Raghavan, S.C.; Choudhary, B. A Novel Resveratrol Based Tubulin Inhibitor Induces Mitotic Arrest and Activates Apoptosis in Cancer Cells. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Tang, L.; Chen, H.; Wu, C.; Zhao, M.; Yang, Y.; Chen, X.; Liu, G. Resveratrol Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition and Suppresses Lung Cancer Invasion and Metastasis. Toxicology 2013, 303, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.C.; Moore, J.; Tsakiridis, T.; Pickering, G.; Tsiani, E. Inhibition of Human Lung Cancer Cell proliferation and Survival by Wine. Cancer Cell Int. 2014, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, H.; Huang, W.; Ding, M.; Xiao, J.; Yang, D.; Li, H.; Liu, X.-Y.; Chu, L. Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus. J. Cell. Mol. Med. 2015, 19, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, L.; Schulte, B.A.; Yang, A.; Tang, S.; Wang, G.Y. Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. Int. J. Oncol. 2013, 43, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Hwang, I.-S.; Lee, Y.-J.; Lee, C.-H.; Kim, S.-H.; Nam, H.-S.; Choi, Y.-J.; Lee, S.-H. Knockdown of Bcl-xL Enhances Growth-Inhibiting and Apoptosis-Inducing Effects of Resveratrol and Clofarabine in Malignant Mesothelioma H-2452 Cells. J. Korean Med. Sci. 2014, 29, 1464. [Google Scholar] [CrossRef] [PubMed]
- Nie, P.; Hu, W.; Zhang, T.; Yang, Y.; Hou, B.; Zou, Z. Synergistic Induction of Erlotinib-Mediated Apoptosis by Resveratrol in Human Non-Small-Cell Lung Cancer Cells by Down-Regulating Survivin and Up-Regulating PUMA. Cell. Physiol. Biochem. 2015, 35, 2255–2271. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; He, W.; Gao, X.; Li, B.; Mei, C.; Xu, R.; Chen, H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci. Rep. 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Gharaee-Kermani, M.; Moore, B.B.; Macoska, J.A. Resveratrol-Mediated Repression and Reversion of Prostatic Myofibroblast Phenoconversion. PLoS ONE 2016, 11, e0158357. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, H.; Chen, J.; Dehennaut, V.; Zhao, Y.; Yang, Y.; Iwasaki, Y.; Kahn-Perles, B.; Leprince, D.; Chen, Q.; et al. A SUMOylation-Dependent Pathway Regulates SIRT1 Transcription and Lung Cancer Metastasis. JNCI J. Natl. Cancer Inst. 2013, 105, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Nair, P.; Dhawan, D.K. Study to Evaluate Molecular Mechanics behind Synergistic Chemo-Preventive Effects of Curcumin and Resveratrol during Lung Carcinogenesis. PLoS ONE 2014, 9, e93820. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, B.; Jiang, R.; Li, J.; Wang, B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell. Immunol. 2017, 311, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.C.; Bilan, P.J.; Tsakiridis, T.; Tsiani, E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism 2016, 65, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; de Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med. 2014, 46, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Drilon, A. KRAS-Mutant Lung Cancers in the Era of Targeted Therapy. Adv. Exp. Med. Biol. 2016, 893, 155–178. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Yao, H.; Caito, S.; Hwang, J.-W.; Arunachalam, G.; Rahman, I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch. Biochem. Biophys. 2010, 501, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta 2015, 1852, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Buhrmann, C.; Shayan, P.; Kraehe, P.; Popper, B.; Goel, A.; Shakibaei, M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem. Pharmacol. 2015, 98, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Buhrmann, C.; Shayan, P.; Popper, B.; Goel, A.; Shakibaei, M. Sirt1 Is Required for Resveratrol-Mediated Chemopreventive Effects in Colorectal Cancer Cells. Nutrients 2016, 8, 145. [Google Scholar] [CrossRef] [PubMed]
Cancer Cell | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
A549 and H460 | 100 μM RSV for 24 h | ↓growth | ↑LC3 ↑PELP1 accumulation in autophagosomes with GFP-LC3 | [22] |
A549 | 25, 50, 100 μM RSV for 48, 72, 96 h | ↑apoptosis ↑cell cycle arrest | ↑p53 and p21 ↑caspases ↑disruption of the mitochondrial membrane complex G1 cell cycle arrest Altered expression of cyclin A, chk1, CDC27 and Eg5 ↓Smad activators 2 and 4 ↑repressor Smad 7 | [23] |
A549, A427 and NCI-H23 | 20, 50, 100 μM RSV for 2, 4 or 8 h | ↓PI3K pathway ↓tumor formation | ↓mTOR phosphorylation | [24] |
BEAS-2B | 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) + 0.01, 0.05, 0.1, 0.5, 1, 5, 10 μM RSV for 6 h | RSV is a potent repressor of TCDD inducible gene transcription in estrogen receptor (ER+) human lung cancer | RSV completely abrogates TCDD-induced CYP1A1 gene transcription | [25] |
A549 | 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100 μM DHS for 48 h | ↓cell proliferation | ↑ROS species Sub G1 formation (cell cycle arrest) ↓mitochondrial membrane potential ↓Poly (ADP-ribose) polymerase degradation ↑intracellular acidic vacuoles ↑LC3-II formation and intracellular GFP-LC3 aggregation | [26] |
SPC-A-1 | 25 μM, 50 μM or 100 μM RSV, for up to 96 h | ↓proliferation ↑apoptosis ↑cell cycle arrest | ↑caspase-3 ↓survivin levels | [27] |
A549 | 60, 120 μM RSV for 24 h | Altered miRNA expression (miRNA is involved in initiating lung cancer) | - | [28] |
H1299 | 10 mM–500 mM RSV, for 4 h | ↓glycolysis | ↓mono-ubiquitination of histone H2B | [29] |
16HBE-T and H460 | 12.5, 25, 50 μM RSV for 48 h | ↓cell viability ↓cell proliferation. ↑cell cycle arrest | ↑miR-622 expression ↑G0 cell cycle arrest K-ras is downstream target of miR-622 | [30] |
A549 | 1.25, 2.5, 5, 7.5, 10 μM Trimethoxyl Stilbene (TMS) for 48 h | TMS inhibited proliferation and induced apoptosis in a dose-dependent manner | ↑Up-regulation and cleavage of caspase-3 ↑IKB ↓NF-κB, STAT3, STAT5b and JAK2 signal transduction | [31] |
ASTC-A-1 | 0 μM–125 μM RSV for 48 h | Induction of apoptosis | ↑caspase-3 and-9 | [32] |
A549, H1299 and H460 | 100, 200, 300, 400, 500 μM RSV for 5 min, 24, 48 h | ↓cell viability (p53 dependent) Transient transfection of WT p53-GFP gene caused H1299 cells to become more responsive to the pro-apoptotic properties of RSV | ↑caspase-9 and -7 activation ↑PARP cleavage | [33] |
A549 | 20, 40, 60, 80, 100 μM Pterostilbene for 48 h | ↓cell growth. ↑apoptosis. Autophagosome accumulation Lysosomal membrane permeabilization | HSP70 protein deficiency showed high susceptibility to pterostilbene. | [34] |
LLC | 50 μM RSV for 24 h | ↓18F-FDG uptake | ↓glycolytic flux and Glut-1 expression ↑ROS ↓HIF-1a expression ↓Akt activation | [35] |
A549 and H460 | 10, 20, 50 μM RSV for 10 to 12 days | Inhibition of growth in a dose-dependent manner. No effect on expression of cleaved PARP and activated caspase-3, suggesting that low dose RSV treatment inhibits growth in an apoptosis-independent mechanism | (1) Increase in SA-B-gal (2) Increased p53 and p21 expression (3) Decreased EF1A expression (4) Increased double-stranded DNA breaks (5) Increased ROS (6) Upregulated Nox5 expression | [36] |
A549 | 20 μM Benzo(a)pyrene for 48 h pre-treatment + 10 μM RSV for 24 h | Decreased cell viability. Increased p53 levels. Cell cycle arrest. Apoptosis | (1) Down-regulation of Bcl-2 expression (2) Decreased cyclin D expression (3) Increased p21 expression (4) Increased TRAIL receptors 1 and 2 expression (5) Down-regulation of NF-KB and IKK1 expression (6) Induction of G2/M cell cycle arrest | [37] |
A549 | 0 μM–40 μM RSV, for 48 h | Decreased proliferation and EMT. Suppression of cell adhesion | Inhibition of the morphological changes of TGF-β1 induced EMT. | [49] |
A549 | 2, 4, 8, 16, 32, 64 μM RSV for 48 h | RSV exerts dose-dependent cell inhibition | Activation of caspase-3 | [38] |
CL1-5, A549, H322 and H1435 | 20 μM RSV, for 48 h | Suppression of tumor growth | Downregulation of Akt, I-κB and NF-κB | [39] |
A549 and H1299 | 0.02, 2% red wine (equivalent to 4, 400 nM RSV) and 0.5, 2% white wine | Inhibition of cell proliferation. Wine mixture induced effects that were only reproducible at 50 μM RSV treatment alone | (1) Reduced basal and EGF-stimulated Akt and Erk phosphorylation (2) Increased p53 expression and phosphorylation | [50] |
H1975 | 20, 40, 60, 80 nM TMS for 24 h | Elevated intracellular calcium levels in Gef resistant NSCLC. Anti-proliferative effect only in G-R NSCLC but not normal NSCLC and normal lung epithelial cells | (1) Decreased EGFR phosphorylation and activation (2) Induction of caspase-independent apoptosis and autophagy by directly binding to SERCA and causing ER stress and AMPK activation (3) Suppressed the mTOR pathway (4) Increased JNK activity | [40] |
A549 | 5.5 μM–175.2 μM RSV, for 24h | Inhibition of growth | Induction of caspase-3 | [41] |
A549 | 0.05, 0.10, 0.23 μM RSV + 8.14 μg/mL NP for 24 h pre-treatment followed by 100 μg/mL Cigarette Smoke Condensate (CSC) for 48 h | RSV at all doses attenuated CSC-induced DNA fragmentation. NPs dramatically increased RSV induced apoptosis in CSC-treated cells | Not provided, but results indicate that NPs are capable of increasing the efficacy of lipophilic drugs such as RSV | [42] |
H727 | 25 μM RSV for 48 h | Decreased cell proliferation and cell viability. Induction of cell cycle arrest | AK001796 a long noncoding RNA (lncRNA) knockdown by resveratrol | [51] |
A549 | 25, 50, 100, 150 μM RSV for 24, 48, 72 h | Inhibition of proliferation in a dose-dependent manner. G0/G1 cell cycle arrest. | (1) Upregulation of p53 nuclear expression (2) Downregulating expression levels of cyclin D1, CDK4, CDK6 (3) Upregulation of p21, p27 which are CDK inhibitors | [44] |
A549 | 50 μM RSV for 12, 24, 48, 72, 96 h | P62 links RSV induced autophagy to apoptosis. P62 inhibits apoptosis by inhibiting Fas/Cav1 complex formation. | (1) RSV degraded P62 allowing Fas/Cav1 complex formation (2) Fas/Cav1 activated caspase-8-mediated Beclin-1 cleavage, resulting in c-terminal Beclin-1 fragment translocation to the mitochondria to initiate apoptosis | [32] |
A549 | 10, 20, 40, 80 μM THS for 12 h | ↑apoptosis and autophagy (dose dependent) | ↑cleaved PARP ↑caspase-3 and -9 ↓Bcl-2 ↑LC3-II accumulation ↓mTOR pathway ↑ROS levels | [45] |
A549 | 50 μM RSV pre-treatment for 4h followed by H2O2 treatment (50–1000 μM) with or without RSV for 0.5, 1, 2, 3, 8, 16 and 24h | RSV-loaded nanoparticles restored H2O2 induced ROS levels | ↑RSV uptake ↑Nrf2-Keap1 signalling Accumulation of Nrf2 in abundance | [46] |
LLC | 1, 2.5, 5, 7.5, 10 μM DHS for 24 h | ↓LLC cell growth | ↓cell cycle progression ↓cell numbers arresting at G1 accumulation of pre-G1 events correlated with apoptotic behavior ↓LLC cell migration and matrigeal invasion | [47] |
CEM and A549 | 1, 5, 10 and 20 μM for 48 and 72 h | ↓proliferation ↑apoptosis | ↓tubulin polymerization G2/M cell cycle arrest at 12–18 h period ↓mitochondrial membrane potential ↑caspase-3 and -9, parp-cleavage | [48] |
Cancer Cell | Dose/Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
A549 and H460 | 20 μM RSV for 4 h pre-treatment followed by 2, 4, 6 Gy IR treatment | ↑IR-induced cell killing in NSCLC through an apoptosis-independent mechanism | ↑% of SA-B-gal positive senescent cells ↑double-stranded DNA breaks | [52] |
H-2452 | 10, 15, 20, 25, 30 μM RSV + 20, 40, 80, 160, 320 nM Clofarabine for 72 h | RSV + Clo decreased Msl-1 protein expression, no effect on Bcl-xL levels. Bcl-xL knockout enhanced RSV + Clo inhibition of cell proliferation and increase in apoptosis | G2/M phase cell cycle arrest ↑caspase-3 and -7 activity and ↑ caspase-3 cleavage | [53] |
H460, A549, PC-9 and H1975 | 5, 10, 15, 20, 40, 50 μM RSV + 1, 2, 4, 6, 8, 10, 12, 16, 20, 32, 40, 80, 160 μM Erlotinib for 24, 48, 72 h | ↓cell viability, colony formation and induction of apoptosis. ↑Erl-induced apoptosis | ↑ROS production ↓expression of anti-apoptotic proteins, such as survivin and Mcl-1 ↑p53 and PUMA expression ↑capase-3 activity Combination was more effective at inhibiting the Akt/mTOR/p70s6K pathway | [54] |
A549 (grown as spheroid bodies to resemble CSC) | ZD55 oncolytic adenovrius carrying the TRAIL gene (ZD55-TRAIL) + 50 μM RSV for 48 h | ZD55-TRAIL alone induced cytotoxicity. Combination of ZD55-TRAIL and RSV increased ZD55-TRAIL mediated cytotoxicity. Apoptosis induction was caspase dependent | ↓pro-caspase-9, 8, 3 | [51] |
PC9/G | 1 μM Gefitinib + 40 μM RSV (1) Gef pre-treatment for 24 h followed by RSV for 48 h (2) RSV pre-treatment for 24 h followed by Gef for 48 h (3) Gef + RSV concurrently for 72 h | RSV synergizes with Gef to inhibit the proliferation of Gef-resistant NSCLC cells. Co-treatment induced apoptosis, autophagy, cell cycle arrest and senescence | (1) ↓EGFR phosphorylation by increasing Gef intracellular accumulation (2) ↑CYP1A1 and ABCG2 expression (3) ↑expression of cleaved caspase-3, LC3B-II, p53 and p21 | [55] |
Lung fibroblast affected by idiopathic pulmonary fibrosis | 10, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200 μM RSV pre-treatment for 2 h before treatment with 4 ng/mL TGF-B or 100 pM CXCL12 for 2, 4, 8, 12, 24 and 48 h Or 4 ng/mL TGF-B or 100 pM CXCL12 for 24 h followed by RSV for 24 h | Fibroblast to myofibroblast conversion is reversed and repressed in lung and prostate fibroblasts | (1) RSV 50 μM and below repressed and reversed myofibroblast phenoconversion, but had no effect on N1 or primary prostate fibroblast cell proliferation, apoptosis or COL1 and EGR1 gene transcription. (2) RSV 100 μM and above induced the same effects observed in N1 and primary prostate fibroblast, in IPF lung fibroblasts | [56] |
Animal Model | Dose and Duration | Findings | Mechanism | Reference |
---|---|---|---|---|
Female nude mice (5 weeks old) injected s.c. with A549 cells | 50 mg/kg DHS i.p. daily from day 1 to 4 and day 7 to 10 | ↓tumor growth | - | [26] |
18 female BALB/c nude mice were injected subcutaneously with SPC-A-1 cells in their flank | Diet supplemented with 1 g/kg/day or 3 g/kg/day resveratrol, for 28 days | ↓tumor growth | - | [27] |
4–6 weeks old nude were inoculated with A549 cells | 20 mg/kg every other day of resveratrol for 25 days | ↓metastasis | Activation of SIRT1 | [57] |
Nude mice subcutaneously injected with A549 cells | 15, 30, 60 mg/kg RSV injection for 15 days | ↓lung cancer growth in a dose-dependent manner | - | [38] |
Male laka mice treated with 100 mg/kg body weight Benzo(a)pyrene to induce lung carcinogenesis | 5.7 μg/mL RSV in drinking water + 60 mg/kg body weight curcumin for 22 weeks | BP treatment alone lead to | ↑p53 expression and phosphorylation (activation) ↓caspase-3 and -9 | [58] |
RSV + Curcumin treatment lead to ↓p53-hyper-phosphorylation and ↑caspase-3 and -9 enzyme activity | ||||
Male C57B6 mice (4 weeks old) bearing LLC tumours | 25 mg/kg/day DHS in drinking water for 7 days | ↓tumor volume, cell proliferation, tumor angiogenesis and liver metastatic lesions | - | [47] |
4–5 weeks old C57B/6 mice injected with LLC | 100 mg/kg/day from day 10 until sacrifice at week 4 | ↓F4/80+ macrophages | M2 macrophage markers (IL-10, Arg1 and CD206) | [59] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, M.; Vlachogiannis, I.A.; Tsiani, E. Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies. Nutrients 2017, 9, 1231. https://doi.org/10.3390/nu9111231
Yousef M, Vlachogiannis IA, Tsiani E. Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies. Nutrients. 2017; 9(11):1231. https://doi.org/10.3390/nu9111231
Chicago/Turabian StyleYousef, Michael, Ioannis A. Vlachogiannis, and Evangelia Tsiani. 2017. "Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies" Nutrients 9, no. 11: 1231. https://doi.org/10.3390/nu9111231
APA StyleYousef, M., Vlachogiannis, I. A., & Tsiani, E. (2017). Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies. Nutrients, 9(11), 1231. https://doi.org/10.3390/nu9111231