Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Design
2.3. Dietary Protein
2.4. Pharmacological Treatments
2.5. GI transit Procedures and Measurements
2.5.1. X-ray Imaging
2.5.2. Gastric Emptying
2.5.3. GI transit Score
2.5.4. Colonic Transit
2.5.5. Bead Transit through Colon
2.6. Statistical Analysis
2.6.1. Animal Metrics
2.6.2. Transit from Stomach
2.6.3. Transit Score
2.6.4. Cecum to Colon Transit
2.6.5. Bead Transit through Colon
3. Results
3.1. Dietary Effects
3.1.1. Body Weight
3.1.2. Food Intake
3.1.3. Fecal Output
3.1.4. Urine Output
3.2. Pharmacological Modulation of Dietary Effects
3.2.1. Food Intake
3.2.2. Fecal Output
3.3. Dietary Effects on Bead Transit (DMSO/Control Treated)
3.3.1. Gastric Emptying
3.3.2. GI Transit
3.3.3. Caecum to Colon Transit
3.3.4. Pharmacological Modulation of Bead Transit
4. Discussion
4.1. Hydrolyzed Soy Protein
4.2. Casein Protein
4.3. Whey Protein
4.4. Hydrolyzed Casein
4.5. Hydrolyzed Whey
4.6. Hydrolyzed Whey–Casein Blend
4.7. Modulators and Mechanisms
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Visioli, F.; Strata, A. Milk, dairy products, and their functional effects in humans: A narrative review of recent evidence. Adv. Nutr. 2014, 5, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Boutrou, R.; Henry, G.; Sanchez-Rivera, L. On the trail of milk bioactive peptides in human and animal intestinal tracts during digestion: A review. Dairy Sci. Technol. 2015, 95, 815–829. [Google Scholar] [CrossRef]
- Jahan-Mihan, A.; Luhovyy, B.L.; Khoury, D.E.; Harvey Anderson, G. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011, 3, 574–603. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A review. J. Funct. Foods 2015, 17, 640–656. [Google Scholar] [CrossRef]
- Cerbulis, J.; Farrell, H.M., Jr. Composition of milks of dairy cattle. I. Protein, lactose, and fat contents and distribution of protein fraction. J. Dairy Sci. 1975, 58, 817–827. [Google Scholar] [CrossRef]
- Mahé, S.; Roos, N.; Benamouzig, R.; Davin, L.; Luengo, C.; Gagnon, L.; Gaussergès, N.; Rautureau, J.; Tomé, D. Gastrojejunal kinetics and the digestion of [15N]β-lactoglobulin and casein in humans: The influence of the nature and quantity of the protein. Am. J. Clin. Nutr. 1996, 63, 546–552. [Google Scholar] [PubMed]
- Daniel, H.; Vohwinkel, M.; Rehner, G. Effect of casein and β-casomorphins on gastrointestinal motility in rats. J. Nutr. 1990, 120, 252–257. [Google Scholar] [PubMed]
- Mihatsch, W.A.; Franz, A.R.; Kuhnt, B.; Högel, J.; Pohlandt, F. Hydrolysis of casein accelerates gastrointestinal transit via reduction of opioid receptor agonists released from casein in rats. Biol. Neonate 2005, 87, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Mihatsch, W.A.; Högel, J.; Pohlandt, F. Hydrolysed protein accelerates the gastrointestinal transport of formula in preterm infants. Acta Paediatr. Int. J. Paediatr. 2001, 90, 196–198. [Google Scholar] [CrossRef]
- Soenen, S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. The ageing gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.; Rayner, C.K.; Horowitz, M.; Jones, K.L. Gastric emptying in the elderly. Clin. Geriatr. Med. 2015, 31, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Constipation and irritable bowel syndrome in the elderly. Clin. Geriatr. Med. 2007, 23, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Roque, M.V.; Bouras, E.P. Epidemiology and management of chronic constipation in elderly patients. Clin. Interv. Aging 2015, 10, 919–930. [Google Scholar]
- Pasricha, P.J.; Parkman, H.P. Gastroparesis: Definitions and diagnosis. Gastroenterol. Clin. N. Am. 2015, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abell, T.L.; Camilleri, M.; Donohoe, K.; Hasler, W.L.; Lin, H.C.; Maurer, A.H.; McCallum, R.W.; Nowak, T.; Nusynowitz, M.L.; Parkman, H.P.; et al. Consensus recommendations for gastric emptying scintigraphy: A joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. Am. J. Gastroenterol. 2008, 103, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Abrahão, V. Nourishing the dysfunctional gut and whey protein. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Alarcon, P.; Fleischer, D.; Hernell, O.; Kolacek, S.; Laignelet, H.; Lönnerdal, B.; Raman, R.; Rigo, J.; Salvatore, S.; et al. Should partial hydrolysates be used as starter infant formula? A working group consensus. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.; Zemel, M.B. Functional properties of whey, whey components, and essential amino acids: Mechanisms underlying health benefits for active people (review). J. Nutr. Biochem. 2003, 14, 251–258. [Google Scholar] [CrossRef]
- Krissansen, G.W. Emerging health properties of whey proteins and their clinical implications. J. Am. Coll. Nutr. 2007, 26, 713S–723S. [Google Scholar] [CrossRef] [PubMed]
- Madureira, A.R.; Tavares, T.; Gomes, A.M.P.; Pintado, M.E.; Malcata, F.X. Invited review: Physiological properties of bioactive peptides obtained from whey proteins. J. Dairy Sci. 2010, 93, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Sreeja, V.; Jana, A.; Aparnathi, K.; Prajapati, J. Role of whey proteins in combating geriatric disorders. J. Sci. Food Agric. 2013, 93, 3662–3669. [Google Scholar]
- Barbé, F.; Le Feunteun, S.; Rémond, D.; Ménard, O.; Jardin, J.; Henry, G.; Laroche, B.; Dupont, D. Tracking the in vivo release of bioactive peptides in the gut during digestion: Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Res. Int. 2014, 63, 147–156. [Google Scholar] [CrossRef]
- Barbe, F.; Menard, O.; Le Gouar, Y.; Buffiere, C.; Famelart, M.H.; Laroche, B.; Le Feunteun, S.; Remond, D.; Dupont, D. Acid and rennet gels exhibit strong differences in the kinetics of milk protein digestion and amino acid bioavailability. Food Chem. 2014, 143, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.P.; Maubois, J.L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [PubMed]
- Chabance, B.; Marteau, P.; Rambaud, J.C.; Migliore-Samour, D.; Boynard, M.; Perrotin, P.; Guillet, R.; Jollès, P.; Fiat, A.M. Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie 1998, 80, 155–165. [Google Scholar] [CrossRef]
- Sanchon, J.; Fernandez-Tome, S.; Miralles, B.; Hernandez-Ledesma, B.; Tome, D.; Gaudichon, C.; Recio, I. Protein degredation and peptide release from milk peptides in human jejenum. Comparison with in vitro gastrointestinal simulation. Food Chem. 2018, 239, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Meisel, H.; Bockelmann, W. Bioactive peptides encrypted in milk proteins: Proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek 1999, 76, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Tani, F.; Yoshimura, T.; Chiba, H. Opioid peptides from milk proteins. Agric. Biol. Chem. 1986, 50, 2419–2421. [Google Scholar] [CrossRef]
- Fernández-Tomé, S.; Martínez-Maqueda, D.; Girón, R.; Goicoechea, C.; Miralles, B.; Recio, I. Novel peptides derived from αs1-casein with opioid activity and mucin stimulatory effect on HT29-MTX cells. J. Funct. Foods 2016, 25, 466–476. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Schellekens, H.; Dinan, T.G.; Cryan, J.F.; Fitzgerald, R.J. Milk protein hydrolysates activate 5-HT2c serotonin receptors: Influence of the starting substrate and isolation of bioactive fractions. Food Funct. 2013, 4, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Munakata, A.; Iwane, S.; Todate, M.; Nakaji, S.; Sugawara, K. Effects of dietary fiber on gastrointestinal transit time, fecal properties and fat absorption in rats. Tohoku J. Exp. Med. 1995, 176, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Varga, F. Transit time changes with age in the gastrointestinal tract of the rat. Digestion 1976, 14, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, A.; Tanaka, N.; Sakai, R.; Kawamata, Y. Effect of age and elemental diets on gastric emptying in rats. J. Gastroenterol. Hepatol. Res. 2014, 3, 1340–1343. [Google Scholar] [CrossRef]
- Smits, G.J.M.; Lefebvre, R.A. Influence of aging on gastric emptying of liquids, small intestine transit, and fecal output in rats. Exp. Gerontol. 1996, 31, 589–596. [Google Scholar] [CrossRef]
- Brogna, A.; Ferrara, R.; Bucceri, A.M.; Lanteri, E.; Catalano, F. Influence of aging on gastrointestinal transit time an ultrasonographic and radiologic study. Investig. Radiol. 1999, 34, 357–359. [Google Scholar] [CrossRef]
- Dalziel, J.E.; Young, W.; Bercik, P.; Spencer, N.J.; Ryan, L.J.; Dunstan, K.E.; Lloyd-West, C.M.; Gopal, P.K.; Haggarty, N.W.; Roy, N.C. Tracking gastrointestinal transit of solids in aged rats as pharmacological models of chronic dysmotility. Neurogastroenterol. Motil. 2016, 28, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hidalgo, V.M.; Flores-Huerta, S.; Matute, G.; Serrano, C.; Urquieta, B.; Espinosa, R. Whey protein/casein ratio and nonprotein nitrogen in preterm human milk during the first 10 days postpartum. J. Pediatr. Gastroenterol. Nutr. 1998, 26, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Dalziel, J.E.; Fraser, K.; Young, W.; McKenzie, C.M.; Bassett, B.A.; Roy, N.C. Gastroparesis and lipid metabolism-associated dysbiosis in Wistar Kyoto rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G62–G72. [Google Scholar] [CrossRef] [PubMed]
- Buiter, H.J.C.; Windhorst, A.D.; Huisman, M.C.; de Maeyer, J.H.; Schuurkes, J.A.J.; Lammertsma, A.A.; Leysen, J.E. Radiosynthesis and preclinical evaluation of [11C] prucalopride as a potential agonist pet ligand for the 5-HT4 receptor. Eur. J. Nucl. Med. Mol. Imaging Res. 2013, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Saphier, S.; Rosner, A.; Brandeis, R.; Karton, Y. Gastro intestinal tracking and gastric emptying of solid dosage forms in rats using X-ray imagining. Int. J. Pharm. 2010, 388, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Nishikawa, H.; Kiriyama, S. Different effects of casein and soyabean protein on gastric emptying of protein and small intestinal transit after spontaneous feeding of diets in rats. Br. J. Nutr. 1992, 68, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Duraffourd, C.; De Vadder, F.; Goncalves, D.; Delaere, F.; Penhoat, A.; Brusset, B.; Rajas, F.; Chassard, D.; Duchampt, A.; Stefanutti, A.; et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012, 150, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, M.R.; Gray, R.W. Opioid peptides and the control of human ingestive behaviour. Neurosci. Biobehav. Rev. 2002, 26, 713–728. [Google Scholar] [CrossRef]
- Ruppin, H. Review: Loperamide—A potent antidiarrhoeal drug with actions along the alimentary tract. Aliment. Pharmacol. Ther. 1987, 1, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.V.; Malcata, F.X. Caseins as source of bioactive peptides. Int. Dairy J. 2005, 15, 1–15. [Google Scholar] [CrossRef]
- Bendtsen, L.Q.; Lorenzen, J.K.; Bendsen, N.T.; Rasmussen, C.; Astrup, A. Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: A review of the evidence from controlled clinical trials. Adv. Nutr. 2013, 4, 418–438. [Google Scholar] [CrossRef] [PubMed]
Protein | Food Intake (g) | n | Fecal Output (g) | n |
---|---|---|---|---|
Control | ||||
Hydrolyzed soy | 23.5 ± 2.0 a | 16 | 3.3 ± 0.6 a | 15 |
Casein | 21.8 ± 1.8 | 10 | 3.9 ± 0.4 | 10 |
Whey | 22.2 ± 1.8 | 10 | 3.5 ± 0.4 b (*a) | 10 |
CPH | 22.4 ± 1.8 b | 9 | 2.8 ± 0.4 c | 8 |
WPH | 24.5 ± 1.8 c | 9 | 4.9 ± 0.4 d (**a) (*b) (**c) | 9 |
HB | 25.5 ± 1.8 d | 9 | 4.3 ± 0.4 e (*c) | 9 |
Loperamide | ||||
Hydrolyzed soy | 20.0 ± 1.8 (*a) | 15 | 2.9 ± 0.4 | 15 |
Casein | 20.4 ± 1.8 | 9 | 3.1 ± 0.4 | 9 |
Whey | 19.5 ± 1.8 (*a) | 12 | 2.2 ± 0.4 (*a) (*b) | 12 |
CPH | 18.2 ± 1.8 (**a) (*b) | 9 | 2.7 ± 0.4 | 9 |
WPH | 18.4 ± 1.8 (**a) (***c) | 11 | 3.2 ± 0.5 (**d) | 11 |
HB | 20.4 ± 1.8 (**d) | 9 | 3.0 ± 0.5 (*e) | 9 |
Prucalopride | ||||
Hydrolyzed soy | 24.1 ± 1.8 | 15 | 3.6 ± 0.4 f | 15 |
Casein | 21.3 ± 1.5 | 7 | 3.5 ± 0.4 | 7 |
Whey | 23.6 ± 1.8 | 8 | 3.7 ± 0.4 | 8 |
CPH | 23.6 ± 1.8 | 8 | 4.1 ± 0.4 (*c) | 8 |
WPH | 22.8 ± 1.8 | 7 | 4.1 ± 0.3 | 5 |
HB | 23.2 ± 1.8 | 8 | 4.8 ± 0.4 (*f) | 8 |
Protein | GE | SI Transit | LI Transit | Fecal Output |
---|---|---|---|---|
Hydrolyzed soy | fast | fast (↓LP) | fast (↓LP) | ND |
Casein | slow | slow (↑PC) | slow | ND |
Whey | >casein | <soy | mid | (↓LP) |
CPH | slow | mid (↓LP) | mid | (↑PC) |
WPH | fast | fast (↓LP) | fast (↓LP) | >whey & soy (↓LP) |
HB | fast | fast (↓LP) | fast (↓LP) | >CPH |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalziel, J.E.; Young, W.; McKenzie, C.M.; Haggarty, N.W.; Roy, N.C. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model. Nutrients 2017, 9, 1351. https://doi.org/10.3390/nu9121351
Dalziel JE, Young W, McKenzie CM, Haggarty NW, Roy NC. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model. Nutrients. 2017; 9(12):1351. https://doi.org/10.3390/nu9121351
Chicago/Turabian StyleDalziel, Julie E., Wayne Young, Catherine M. McKenzie, Neill W. Haggarty, and Nicole C. Roy. 2017. "Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model" Nutrients 9, no. 12: 1351. https://doi.org/10.3390/nu9121351