Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design
2.2. Participants
2.3. Familiarization
2.4. Supplementation Protocol
2.5. Testing Sequence
3. Procedures
3.1. Anthropometry & Body Composition
3.2. Hemodynamic Challenge Assessment
3.3. Blood Collection Procedures
3.4. Blood Chemistry Analysis
3.5. Side Effects
3.6. Muscular Strength and Endurance Assessment
3.7. Cycling Time Trial Performance Assessment
3.8. Statistical Analysis
4. Results
4.1. Baseline Characteristics
4.2 Primary Outcome—Safety
4.2.1. Hemodynamic Response
4.2.2. Hematology Assessment
4.2.3. Self-Reported Side Effects
4.3. Secondary Outcome—Performance
4.3.1. Bench Press and Leg Press Performance
4.3.2. Cycling Time Trial Performance
5. Discussion and Conclusions
5.1. Primary Outcome—Safety
5.2. Secondary Outcome—Performance
5.3. Limitations
5.4. Conclusion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International society of sports nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Jung, Y.P. Creatine supplementation in exercise, sport, and medicine. J. Exerc. Nutr. Biochem. 2011, 15, 53–69. [Google Scholar] [CrossRef]
- Jager, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids 2011, 40, 1369–1383. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Wilborn, C.D.; Taylor, L.; Campbell, B.; Almada, A.L.; Collins, R.; Cooke, M.; Earnest, C.P.; Greenwood, M.; Kalman, D.S.; et al. Issn exercise & sport nutrition review: Research & recommendations. J. Int. Soc. Sports Nutr. 2010, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Buford, T.W.; Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International society of sports nutrition position stand: Creatine supplementation and exercise. J. Int. Soc. Sports Nutr. 2007, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Rasmussen, C.; Lancaster, S.; Starks, M.; Smith, P.; Melton, C.; Greenwood, M.; Almada, A.; Kreider, R. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition 2007, 23, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Melton, C.; Rasmussen, C.J.; Greenwood, M.; Lancaster, S.; Cantler, E.C.; Milnor, P.; Almada, A.L. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol. Cell. Biochem. 2003, 244, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Klesges, R.; Lotz, D.; Davis, M.; Cantler, E.; Grindstaff, P.; Ramsey, L.; Bullen, D.; Wood, L.; Almada, A. Effects of nutritional supplementation during off-season college football training on body composition and strength. J. Exerc. Physiol. Online 1999, 1, 24–39. [Google Scholar]
- Kreider, R.B.; Ferreira, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Almada, A.L. Effects of creatine supplementation on body composition, strength, and sprint performance. Med. Sci. Sports Exerc. 1998, 30, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Grindstaff, P.D.; Kreider, R.; Bishop, R.; Wilson, M.; Wood, L.; Alexander, C.; Almada, A. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. Int. J. Sport Nutr. 1997, 7, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Klesges, R.; Harmon, K.; Grindstaff, P.; Ramsey, L.; Bullen, D.; Wood, L.; Li, Y.; Almada, A. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training. Int. J. Sport Nutr. 1996, 6, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, K.; Goris, M.; Van Hecke, P.; Van Leemputte, M.; Vangerven, L.; Hespel, P. Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. (1985) 1997, 83, 2055–2063. [Google Scholar]
- Volek, J.S.; Kraemer, W.J.; Bush, J.A.; Boetes, M.; Incledon, T.; Clark, K.L.; Lynch, J.M. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J. Am. Diet. Assoc. 1997, 97, 765–770. [Google Scholar] [CrossRef]
- Volek, J.S.; Duncan, N.D.; Mazzetti, S.A.; Staron, R.S.; Putukian, M.; Gomez, A.L.; Pearson, D.R.; Fink, W.J.; Kraemer, W.J. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med. Sci. Sports. Exerc. 1999, 31, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, D.S.; Rosene, J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med. Sci. Sports. Exerc. 2001, 33, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Willoughby, D.; Greenwood, M.; Parise, G.; Tarnopolsky, M.A. Effects of serum creatine supplementation on muscle creatine content. J. Exerc. Physiol. Online 2003, 6, 24–33. [Google Scholar]
- Greenwood, M.; Kreider, R.B.; Earnest, C.P.; Rasmussen, C.; Almada, A. Differences in creatine retention among three nutritional formulations of oral creatine supplements. J. Exerc. Physiol. Online 2003, 6, 37–43. [Google Scholar]
- Spillane, M.; Schoch, R.; Cooke, M.; Harvey, T.; Greenwood, M.; Kreider, R.; Willoughby, D.S. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J. Int. Soc. Sports Nutr. 2009, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Oliver, J.M.; Sanchez, A.; Galvan, E.; Fluckey, J.; Riechman, S.; Greenwood, M.; Kelly, K.; Meininger, C.; Rasmussen, C.; et al. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J. Int. Soc. Sports Nutr. 2012, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Wilborn, C.D.; Campbell, W.I.; Harvey, T.M.; Marcello, B.M.; Roberts, M.D.; Parker, A.G.; Byars, A.G.; Greenwood, L.D.; Almada, A.L.; et al. The effects of creatine monohydrate supplementation with and without d-pinitol on resistance training adaptations. J. Strength Cond. Res. 2009, 23, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.; Poole, C.; Pena, E.; Lewing, M.; Kreider, R.; Foster, C.; Wilborn, C. Effects of combined creatine plus fenugreek extract vs. Creatine plus carbohydrate supplementation on resistance training adaptations. J. Sports Sci. Med. 2011, 10, 254–260. [Google Scholar] [PubMed]
- Kresta, J.Y.; Oliver, J.M.; Jagim, A.R.; Fluckey, J.; Riechman, S.; Kelly, K.; Meininger, C.; Mertens-Talcott, S.U.; Rasmussen, C.; Kreider, R.B. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J. Int. Soc. Sports Nutr. 2014, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.M.; Jagim, A.R.; Pischel, I.; Jager, R.; Purpura, M.; Sanchez, A.; Fluckey, J.; Riechman, S.; Greenwood, M.; Kelly, K.; et al. Effects of short-term ingestion of russian tarragon prior to creatine monohydrate supplementation on whole body and muscle creatine retention and anaerobic sprint capacity: A preliminary investigation. J. Int. Soc. Sports Nutr. 2014, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. (1985) 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. (1985) 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports. Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Bailey, S.J.; Vanhatalo, A. Dietary nitrate and O2 consumption during exercise. Med. Sport Sci. 2012, 59, 29–35. [Google Scholar] [PubMed]
- Fulford, J.; Winyard, P.G.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; Jones, A.M. Influence of dietary nitrate supplementation on human skeletal muscle metabolism and force production during maximum voluntary contractions. Pflugers Arch. 2013, 465, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Vanhatalo, A.; Bailey, S.J. Influence of dietary nitrate supplementation on exercise tolerance and performance. Nestle Nutr. Inst. Workshop Ser. 2013, 75, 27–40. [Google Scholar] [PubMed]
- Kelly, J.; Fulford, J.; Vanhatalo, A.; Blackwell, J.R.; French, O.; Bailey, S.J.; Gilchrist, M.; Winyard, P.G.; Jones, A.M. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R73–R83. [Google Scholar] [CrossRef] [PubMed]
- Wylie, L.J.; Mohr, M.; Krustrup, P.; Jackman, S.R.; Ermiotadis, G.; Kelly, J.; Black, M.I.; Bailey, S.J.; Vanhatalo, A.; Jones, A.M. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur. J. Appl. Physiol. 2013, 113, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Vanhatalo, A.; Bailey, S.J.; Wylie, L.J.; Tucker, C.; List, S.; Winyard, P.G.; Jones, A.M. Dietary nitrate supplementation: Effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R920–R930. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic nitrate supplementation improves muscle oxygenation, O2 uptake kinetics, and exercise tolerance at high but not low pedal rates. J. Appl. Physiol. (1985) 2015, 118, 1396–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonagh, S.T.; Vanhatalo, A.; Fulford, J.; Wylie, L.J.; Bailey, S.J.; Jones, A.M. Dietary nitrate supplementation attenuates the reduction in exercise tolerance following blood donation. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H1520–H1529. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Vanhatalo, A.; Jell, H.; Fulford, J.; Carter, J.; Nyman, L.; Bailey, S.J.; Jones, A.M. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide 2016, 61, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Wylie, L.J.; Bailey, S.J.; Kelly, J.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. Influence of beetroot juice supplementation on intermittent exercise performance. Eur. J. Appl. Physiol. 2016, 116, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, C.; Wylie, L.J.; Blackwell, J.R.; Fulford, J.; Black, M.I.; Kelly, J.; McDonagh, S.T.; Carter, J.; Bailey, S.J.; Vanhatalo, A.; et al. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training. J. Appl. Physiol. (1985) 2017, 122, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot juice and exercise: Pharmacodynamic and dose-response relationships. J. Appl. Physiol. (1985) 2013, 115, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Berntzen, B.; Davison, G.W.; West, D.J.; Howatson, G.; Stevenson, E.J. Effects of beetroot juice on recovery of muscle function and performance between bouts of repeated sprint exercise. Nutrients 2016, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Mosher, S.L.; Sparks, S.A.; Williams, E.L.; Bentley, D.J.; Mc Naughton, L.R. Ingestion of a nitric oxide enhancing supplement improves resistance exercise performance. J. Strength Cond. Res. 2016, 30, 3520–3524. [Google Scholar] [CrossRef] [PubMed]
- Hord, N.G. Dietary nitrates, nitrites, and cardiovascular disease. Curr. Atheroscler. Rep. 2011, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kramer, R.; Nikolaidis, A. Amino Acid Compounds. 20090076110 A1. Available online: http://www.google.com/patents/US20090076110 (accessed on 14 December 2017).
- Butler, A. Nitrites and nitrates in the human diet: Carcinogens or beneficial hypotensive agents? J. Ethnopharmacol. 2015, 167, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Derave, W.; Taes, Y. Beware of the pickle: Health effects of nitrate intake. J. Appl. Physiol. (1985) 2009, 107, 1677. [Google Scholar] [CrossRef] [PubMed]
- Habermeyer, M.; Roth, A.; Guth, S.; Diel, P.; Engel, K.H.; Epe, B.; Furst, P.; Heinz, V.; Humpf, H.U.; Joost, H.G.; et al. Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Mol. Nutr. Food Res. 2015, 59, 106–128. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J. Nitrate toxicity: Myth or reality? Br. J. Nutr. 1999, 81, 343–344. [Google Scholar] [PubMed]
- L’Hirondel, J.L.; Avery, A.A.; Addiscott, T. Dietary nitrate: Where is the risk? Environ. Health Perspect. 2006, 114, A458–A459. [Google Scholar] [CrossRef] [PubMed]
- Powlson, D.S.; Addiscott, T.M.; Benjamin, N.; Cassman, K.G.; de Kok, T.M.; van Grinsven, H.; L’Hirondel, J.L.; Avery, A.A.; van Kessel, C. When does nitrate become a risk for humans? J. Environ. Qual. 2008, 37, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Joy, J.M.; Lowery, R.P.; Falcone, P.H.; Mosman, M.M.; Vogel, R.M.; Carson, L.R.; Tai, C.Y.; Choate, D.; Kimber, D.; Ormes, J.A.; et al. 28 days of creatine nitrate supplementation is apparently safe in healthy individuals. J. Int. Soc. Sports Nutr. 2014, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Galvan, E.; Walker, D.K.; Simbo, S.Y.; Dalton, R.; Levers, K.; O’Connor, A.; Goodenough, C.; Barringer, N.D.; Greenwood, M.; Rasmussen, C.; et al. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. J. Int. Soc. Sports Nutr. 2016, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.P.; Earnest, C.P.; Koozehchian, M.; Cho, M.; Barringer, N.; Walker, D.; Rasmussen, C.; Greenwood, M.; Murano, P.S.; Kreider, R.B. Effects of ingesting a pre-workout dietary supplement with and without synephrine for 8 weeks on training adaptations in resistance-trained males. J. Int. Soc. Sports Nutr. 2017, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.P.; Earnest, C.P.; Koozehchian, M.; Galvan, E.; Dalton, R.; Walker, D.; Rasmussen, C.; Murano, P.S.; Greenwood, M.; Kreider, R.B. Effects of acute ingestion of a pre-workout dietary supplement with and without p-synephrine on resting energy expenditure, cognitive function and exercise performance. J. Int. Soc. Sports Nutr. 2017, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Klesges, R.C.; Ward, K.D.; Shelton, M.L.; Applegate, W.B.; Cantler, E.D.; Palmieri, G.M.; Harmon, K.; Davis, J. Changes in bone mineral content in male athletes. Mechanisms of action and intervention effects. JAMA 1996, 276, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Almada, A.; Kreider, R.; Ransom, J.; Rasmussen, C. Comparison of the reliability of repeated whole body dexa scans to repeated spine and hip scans. J. Bone Miner. Res. 1999, 14, S369. [Google Scholar]
- Sesso, H.D.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Gaziano, J.M.; Manson, J.E.; Glynn, R.J. Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. Hypertension 2000, 36, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Benetos, A.; Safar, M.; Rudnichi, A.; Smulyan, H.; Richard, J.L.; Ducimetieere, P.; Guize, L. Pulse pressure: A predictor of long-term cardiovascular mortality in a french male population. Hypertension 1997, 30, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- White, W.B. Heart rate and the rate-pressure product as determinants of cardiovascular risk in patients with hypertension. Am. J. Hypertens. 1999, 12, 50S–55S. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Campbell, B.I.; Roberts, M.D.; Rasmussen, C.J.; Greenwood, M.; Kreider, R.B. Early-phase adaptations to a split-body, linear periodization resistance training program in college-aged and middle-aged men. J. Strength Cond. Res. 2009, 23, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.B.; Earnest, C.P.; Dalton, R.L.; Sowinski, R.J.; Grubic, T.J.; Favot, C.J.; Coletta, A.M.; Rasmussen, C.; Greenwood, M.; Kreider, R.B. Short-term effects of a ready-to-drink pre-workout beverage on exercise performance and recovery. Nutrients 2017, 9, E823. [Google Scholar] [CrossRef] [PubMed]
- Page, P. Beyond statistical significance: Clinical interpretation of rehabilitation research literature. Int. J. Sports Phys. Ther. 2014, 9, 726–736. [Google Scholar] [PubMed]
- Currens, J.H. A comparison of the blood pressure in the lying and standing positions; a study of 500 men and 500 women. Am. Heart J. 1948, 35, 646–654. [Google Scholar] [CrossRef]
- Forjaz, C.L.; Matsudaira, Y.; Rodrigues, F.B.; Nunes, N.; Negrao, C.E. Post-exercise changes in blood pressure, heart rate and rate pressure product at different exercise intensities in normotensive humans. Braz. J. Med. Biol. Res. 1998, 31, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Ekblom, B.; Sahlin, K.; Lundberg, J.O.; Weitzberg, E. Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 2006, 355, 2792–2793. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. (Oxf.) 2007, 191, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Lansley, K.E.; Winyard, P.G.; Fulford, J.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. J. Appl. Physiol. (1985) 2011, 110, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [PubMed]
- Siervo, M.; Lara, J.; Ogbonmwan, I.; Mathers, J.C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: A systematic review and meta-analysis. J. Nutr. 2013, 143, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Joy, J.M.; Lowery, R.P.; Falcone, P.H.; Vogel, R.M.; Mosman, M.M.; Tai, C.Y.; Carson, L.R.; Kimber, D.; Choate, D.; Kim, M.P.; et al. A multi-ingredient, pre-workout supplement is apparently safe in healthy males and females. Food Nutr. Res. 2015, 59, 27470. [Google Scholar] [CrossRef] [PubMed]
- De Smet, S.; Van Thienen, R.; Deldicque, L.; James, R.; Sale, C.; Bishop, D.J.; Hespel, P. Nitrate intake promotes shift in muscle fiber type composition during sprint interval training in hypoxia. Front. Physiol. 2016, 7, 233. [Google Scholar] [CrossRef] [PubMed]
- Nyakayiru, J.; Jonvik, K.L.; Trommelen, J.; Pinckaers, P.J.; Senden, J.M.; van Loon, L.J.; Verdijk, L.B. Beetroot juice supplementation improves high-intensity intermittent type exercise performance in trained soccer players. Nutrients 2017, 9, E314. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- McQuillan, J.A.; Dulson, D.K.; Laursen, P.B.; Kilding, A.E. The effect of dietary nitrate supplementation on physiology and performance in trained cyclists. Int. J. Sports Physiol. Perform. 2017, 12, 684–689. [Google Scholar] [CrossRef] [PubMed]
Total | Male | Female | p-Level | |
---|---|---|---|---|
N | 28 | 18 | 10 | |
Age (years) | 21.6 ± 3.7 | 21.4 ± 3.0 | 22.1 ± 4.7 | 0.40 |
Height (m) | 1.72 ± 0.08 | 1.76 ± 0.06 | 1.65 ± 0.06 † | 0.001 |
Weight (kg) | 73.1 ± 11.4 | 76.6 ± 9.0 | 66.9 ± 12.6 † | 0.001 |
Body Mass Index (BMI) (kg/m2) | 24.7 ± 2.8 | 24.8 ± 2.9 | 24.5 ± 2.8 | 0.63 |
Fat Free Mass (kg) | 53.5 ± 10.3 | 59.9 ± 6.1 | 41.9 ± 4.2 † | 0.001 |
Fat Mass (kg) | 13.8 ± 8.0 | 10.7 ± 6.2 | 19.6 ± 7.7 † | 0.001 |
Body Fat (%) | 20.4 ± 10.5 | 14.6 ± 7.0 | 30.9 ± 7.1 † | 0.001 |
Variable | Treatment | Day | Mean | Interaction | p-Level | |||
---|---|---|---|---|---|---|---|---|
0 Pre | 0 Post | 5 Pre | 5 Post | |||||
Bench Press | Overall | 73.9 ± 30.0 | 67.9 ± 28.4 * | 75.2 ± 30.4 * | 70.5 ± 28.9 * | 71.9 ± 29.4 | Time | 0.001 |
1RM (kg) | PLA | 74.4 ± 30.7 | 68.1 ± 28.3 | 74.8 ± 30.4 | 70.3 ± 29.2 | 72.5 ± 29.1 | Treatment | 0.94 |
CNL | 73.1 ± 29.7 | 67.1 ± 28.3 | 74.1 ± 30.2 | 69.0 ± 28.7 | 70.4 ± 28.8 | Treatment × Time | 0.46 | |
CNH | 74.1 ± 30.9 | 68.8 ± 29.7 | 77.0 ± 31.6 | 72.4 ± 30.1 | 73.0 ± 30.7 | |||
Male | 92.4 ± 19.9 | 84.4 ± 21.2 * | 93.7 ± 20.5 * | 87.6 ± 21.1 * | 89.3 ± 21.0 | Gender | 0.001 | |
Female | 40.5 ± 7.7 † | 38.2 ± 8.4 †,* | 41.8 ± 8.8 †,* | 39.6 ± 7.6 † | 40.0 ± 8.6 † | Time × Gender | 0.001 | |
PLA M | 92.8 ± 21.1 | 84.0 ± 21.6 | 92.8 ± 21.2 | 86.9 ± 22.1 | 88.9 ± 21.2 | Treatment × Gender | 0.95 | |
PLA F | 41.3 ± 9.4 | 39.3 ± 9.1 | 42.2 ± 9.9 | 40.2 ± 8.2 | 41.0 ± 9.3 | T × T × G | 0.96 | |
CNL M | 91.4 ± 19.7 | 83.4 ± 21.1 | 92.2 ± 20.6 | 85.8 ± 20.8 | 87.3 ± 20.8 | |||
CNL F | 40.2 ± 6.8 | 37.5 ± 7.5 | 41.3 ± 8.6 | 38.6 ± 7.1 | 39.4 ± 7.8 | |||
CNH M | 93.1 ± 20.0 | 85.9 ± 22.1 | 96.2 ± 20.8 | 90.2 ± 21.2 | 91.7 ± 21.2 | |||
CNH F | 40.5 ± 7.7 | 37.9 ± 9.2 | 42.0 ± 8.9 | 40.2 ± 8.1 | 39.7 ± 8.6 | |||
Bench Press | Overall | 14.1 ± 5.3 | 14.1 ± 4.7 | 14.7 ± 5.0 | 15.5 ± 5.3 * | 14.3 ± 5.1 | Time | 0.006 |
Endurance | PLA | 14.8 ± 5.9 | 14.0 ± 5.0 | 14.7 ± 5.6 | 15.6 ± 6.3 | 14.8 ± 5.8 | Treatment | 0.55 |
(Repetitions) | CNL | 12.9 ± 4.0 | 14.0 ± 4.4 | 14.1 ± 4.6 | 14.9 ± 4.5 | 13.5 ± 4.1 | Treatment × Time | 0.76 |
CNH | 14.8 ± 5.6 | 14.2 ± 4.9 | 15.3 ± 4.9 | 15.9 ± 4.9 | 14.7 ± 5.2 | |||
Male | 13.7 ± 4.8 | 13.2 ± 4.7 | 14.1 ± 4.9 | 14.5 ± 5.2 | 13.5 ± 4.9 | Gender | 0.04 | |
Female | 14.9 ± 6.0 | 15.6 ± 4.4 | 15.9 ± 5.2 | 17.2 ± 4.9 | 15.8 ± 5.3 † | Time × Gender | 0.34 | |
PLA M | 13.4 ± 4.6 | 12.7 ± 4.7 | 12.9 ± 3.9 | 14.0 ± 5.2 | 13.0 ± 4.5 | Treatment × Gender | 0.26 | |
PLA F | 17.2 ± 7.4 | 16.4 ± 5.0 | 18.0 ± 6.8 | 18.6 ± 7.2 | 18.3 ± 6.5 | T × T × G | 0.62 | |
CNL M | 12.6 ± 4.4 | 13.3 ± 5.0 | 13.7 ± 5.3 | 14.3 ± 5.2 | 13.0 ± 4.7 | |||
CNL F | 13.4 ± 3.3 | 15.1 ± 3.3 | 14.7 ± 3.1 | 16.0 ± 2.6 | 14.2 ± 2.7 | |||
CNH M | 15.2 ± 5.3 | 13.5 ± 4.8 | 15.6 ± 5.1 | 15.3 ± 5.5 | 14.6 ± 5.3 | |||
CNH F | 14.0 ± 6.3 | 15.4 ± 5.1 | 14.9 ± 4.8 | 17.1 ± 3.7 | 14.8 ± 5.0 | |||
Leg Press | Overall | 408 ± 123 | 391 ± 121 * | 417 ± 124 * | 397 ± 122 * | 403 ± 119 | Time | 0.001 |
1RM (kg) | PLA | 411 ± 122 | 397 ± 119 | 417 ± 125 | 397 ± 117 | 407 ± 115 | Treatment | 0.66 |
CNL | 397 ± 122 | 379 ± 119 | 404 ± 122 | 384 ± 120 | 387 ± 114 | Treatment × Time | 0.62 | |
CNH | 417 ± 129 | 399 ± 128 | 428 ± 127 | 411 ± 132 | 414 ± 127 | |||
Male | 476 ± 96 | 456 ± 98 | 483 ± 98 | 464 ± 97 | 466 ± 94 | Gender | 0.001 | |
Female | 286 ± 51 | 276 ± 50 | 297 ± 55 | 278 ± 48 | 287 ± 54 † | Time × Gender | 0.38 | |
PLA M | 474 ± 99 | 457 ± 99 | 479 ± 105 | 461 ± 92 | 464 ± 95 | Treatment × Gender | 0.88 | |
PLA F | 296 ± 59 | 288 ± 61 | 305 ± 63 | 282 ± 46 | 299 ± 58 | T × T × G | 0.97 | |
CNL M | 463 ± 95 | 443 ± 94 | 470 ± 95 | 449 ± 96 | 448 ± 90 | |||
CNL F | 278 ± 53 | 262 ± 44 | 285 ± 53 | 268 ± 50 | 275 ± 52 | |||
CNH M | 491 ± 96 | 467 ± 104 | 500 ± 96 | 482 ± 106 | 485 ± 96 | |||
CNH F | 284 ± 45 | 276 ± 47 | 300 ± 52 | 283 ± 52 | 286 ± 50 | |||
Leg Press | Overall | 20.8 ± 7.7 | 20.3 ± 8.1 | 21.5 ± 7.7 | 21.8 ± 7.4 | 21.3 ± 7.7 | Time | 0.06 |
Endurance | PLA | 21.8 ± 9.3 | 20.5 ± 8.7 | 21.4 ± 8.2 | 21.7 ± 8.2 | 21.8 ± 8.5 | Treatment | 0.7 |
(Repetitions) | CNL | 19.0 ± 7.3 | 18.9 ± 7.8 | 21.1 ± 8.3 | 21.4 ± 7.2 | 20.2 ± 7.8 | Treatment × Time | 0.23 |
CNH | 21.6 ± 5.9 | 21.4 ± 7.9 | 22.0 ± 6.7 | 22.4 ± 6.7 | 21.9 ± 6.7 | |||
Male | 21.6 ± 7.2 | 20.6 ± 6.3 | 21.8 ± 6.9 | 22.5 ± 6.5 | 21.4 ± 6.9 | Gender | 0.35 | |
Female | 19.3 ± 8.3 | 19.7 ± 10.6 | 20.9 ± 9.0 | 20.6 ± 8.6 | 21.2 ± 9.1 | Time × Gender | 0.56 | |
PLA M | 21.7 ± 9.1 | 20.2 ± 6.1 | 20.8 ± 6.4 | 22.6 ± 7.3 | 21.2 ± 7.5 | Treatment × Gender | 0.72 | |
PLA F | 21.9 ± 10.3 | 21.0 ± 12.4 | 22.3 ± 11.1 | 20.1 ± 10.0 | 22.9 ± 10.2 | T × T × G | 0.04 | |
CNL M | 19.9 ± 6.5 | 19.9 ± 6.3 | 20.7 ± 7.6 | 21.8 ± 5.4 | 20.3 ± 6.6 | |||
CNL F | 17.5 ± 8.7 | 17.0 ± 9.9 | 21.8 ± 9.7 * | 20.7 ± 10.1 | 20.1 ± 9.8 | |||
CNH M | 23.3 ± 5.7 | 21.6 ± 6.8 | 23.9 ± 6.4 | 23.2 ± 7.1 | 22.7 ± 6.6 | |||
CNH F | 18.5 ± 5.4 | 21.1 ± 10.0 | 18.5 ± 6.0 | 21.1 ± 6.1 | 20.6 ± 6.8 |
Treatment | Day | Mean | Interaction | p-Level | ||
---|---|---|---|---|---|---|
1 | 6 | |||||
Time | Overall | 275 ± 103 | 270 ± 110 | 272 ± 106 | Time | 0.34 |
(seconds) | PLA | 271 ± 100 | 263 ± 105 | 267 ± 102 | Treatment | 0.45 |
CNL | 282 ± 99 | 286 ± 122 | 284 ± 110 | Treatment × Time | 0.068 | |
CNH | 271 ± 113 | 262 ± 105 | 267 ± 108 | |||
Male | 210 ± 35 | 204 ± 36 | 207 ± 35 | Gender | 0.00 | |
Female | 391 ± 79 | 390 ± 98 | 390 ± 88 † | Time × Gender | 0.47 | |
PLA M | 212 ± 35 | 201 ± 36 | 207 ± 35 | Treatment × Gender | 0.73 | |
PLA F | 378 ± 89 † | 374 ± 98 † | 376 ± 91 | T × T × G | 0.02 | |
CNL M | 220 ± 37 | 214 ± 39 | 217 ± 38 | |||
CNL F | 392 ± 75 † | 416 ± 114 †,* | 404 ± 95 | |||
CNH M | 198 ± 32 | 197 ± 31 | 197 ± 31 | |||
CNH F | 402 ± 80 † | 381 ± 85 †,* | 392 ± 81 | |||
Mean Power | Overall | 245 ± 80 | 253 ± 86 * | 249 ± 83 | Time | 0.005 |
(W) | PLA | 246 ± 79 | 258 ± 86 | 252 ± 82 | Treatment | 0.55 |
CNL | 237 ± 74 | 242 ± 85 | 240 ± 79 | Treatment × Time | 0.47 | |
CNH | 252 ± 88 | 260 ± 87 | 256 ± 87 | |||
Male | 293 ± 55 | 304 ± 59 | 299 ± 57 | Gender | 0.00 | |
Female | 159 ± 27 | 162 ± 32 | 160 ± 29 † | Time × Gender | 0.10 | |
PLA M | 291 ± 57 | 308 ± 62 | 300 ± 59 | Treatment × Gender | 0.72 | |
PLA F | 165 ± 31 | 168 ± 33 | 167 ± 31 | T × T × G | 0.30 | |
CNL M | 282 ± 49 | 291 ± 61 | 286 ± 55 | |||
CNL F | 157 ± 26 | 153 ± 35 | 155 ± 30 | |||
CNH M | 306 ± 57 | 313 ± 56 | 310 ± 56 | |||
CNH F | 154 ± 25 | 163 ± 30 | 159 ± 27 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalton, R.L.; Sowinski, R.J.; Grubic, T.J.; Collins, P.B.; Coletta, A.M.; Reyes, A.G.; Sanchez, B.; Koozehchian, M.; Jung, Y.P.; Rasmussen, C.; et al. Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation. Nutrients 2017, 9, 1359. https://doi.org/10.3390/nu9121359
Dalton RL, Sowinski RJ, Grubic TJ, Collins PB, Coletta AM, Reyes AG, Sanchez B, Koozehchian M, Jung YP, Rasmussen C, et al. Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation. Nutrients. 2017; 9(12):1359. https://doi.org/10.3390/nu9121359
Chicago/Turabian StyleDalton, Ryan L., Ryan J. Sowinski, Tyler J. Grubic, Patrick B. Collins, Adriana M. Coletta, Aimee G. Reyes, Brittany Sanchez, Majid Koozehchian, Yanghoon P. Jung, Christopher Rasmussen, and et al. 2017. "Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation" Nutrients 9, no. 12: 1359. https://doi.org/10.3390/nu9121359
APA StyleDalton, R. L., Sowinski, R. J., Grubic, T. J., Collins, P. B., Coletta, A. M., Reyes, A. G., Sanchez, B., Koozehchian, M., Jung, Y. P., Rasmussen, C., Greenwood, M., Murano, P. S., Earnest, C. P., & Kreider, R. B. (2017). Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation. Nutrients, 9(12), 1359. https://doi.org/10.3390/nu9121359