Tea Drinking and Its Association with Active Tuberculosis Incidence among Middle-Aged and Elderly Adults: The Singapore Chinese Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Tea Intake and Other Covariates at Baseline
2.3. Ascertainment of Tuberculosis Cases
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent Mycobacterium tuberculosis infection. N. Engl. J. Med. 2015, 372, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Achkar, J.M.; Jenny-Avital, E.R. Incipient and subclinical tuberculosis: Defining early disease states in the context of host immune response. J. Infect. Dis. 2011, 204 (Suppl. 4), S1179–S1186. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.D.; Chan, J.; Schluger, N.W. What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am. J. Respir. Cell Mol. Biol. 2001, 25, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, S.; Piasecka, G.; Zieba, M.; Piotrowski, W.; Nowak, D. Increased serum concentrations of conjugated diens and malondialdehyde in patients with pulmonary tuberculosis. Respir. Med. 1999, 93, 272–276. [Google Scholar] [CrossRef]
- Palanisamy, G.S.; Kirk, N.M.; Ackart, D.F.; Shanley, C.A.; Orme, I.M.; Basaraba, R.J. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLoS ONE 2011, 6, e26254. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 2001, 131, 2248–2251. [Google Scholar] [PubMed]
- Leenen, R.; Roodenburg, A.J.; Tijburg, L.B.; Wiseman, S.A. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur. J. Clin. Nutr. 2000, 54, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Tipoe, G.L.; Leung, T.M.; Hung, M.W.; Fung, M.L. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc. Hematol. Disord. Drug Targets 2007, 7, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Beltz, L.A.; Bayer, D.K.; Moss, A.L.; Simet, I.M. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med. Chem. 2006, 6, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Du, F.; Su, X.; Sun, G.; Zhou, G.; Bian, X.; Liu, N. Epigallocatechin-3-Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF-kappaB and Nrf2/HO-1 Signalling Pathway Regulation. Basic Clin. Pharmacol. Toxicol. 2015, 117, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Rahman, A.; Hasnain, A.; Lalonde, M.; Goldberg, V.M.; Haqqi, T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic. Biol. Med. 2002, 33, 1097–1105. [Google Scholar] [CrossRef]
- Guleria, R.S.; Jain, A.; Tiwari, V.; Misra, M.K. Protective effect of green tea extract against the erythrocytic oxidative stress injury during mycobacterium tuberculosis infection in mice. Mol. Cell. Biochem. 2002, 236, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Prasad, R.; Jain, A. Effect of green tea extract (catechins) in reducing oxidative stress seen in patients of pulmonary tuberculosis on DOTS Cat I regimen. Phytomedicine 2010, 17, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Qin, B.; Gao, M.; Yin, Y.; Wang, C.; Zang, S.; Li, X.; Zhang, C.; Xin, Y.; Jiang, T. Effects of epigallocatechin gallate on the cell-wall structure of Mycobacterial smegmatis mc155. Nat. Prod. Res. 2014, 29, 2122–2124. [Google Scholar]
- Sharma, S.K.; Kumar, G.; Kapoor, M.; Surolia, A. Combined effect of epigallocatechin gallate and triclosan on enoyl-ACP reductase of Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 2008, 368, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.K.; Kaul, D.; Sharma, M. Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages. Int. J. Biochem. Cell Biol. 2006, 38, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Deng, J.; Li, W.; Lin, D.; Su, C.; Wang, M.; Li, X.; Abuaku, B.K.; Tan, H.; Wen, S.W. Impact of tea drinking upon tuberculosis: A neglected issue. BMC Public Health 2015, 15, 515. [Google Scholar] [CrossRef] [PubMed]
- Enhancing Public Health Measures Against Tuberculosis. Available online: https://www.moh.gov.sg/content/moh_web/home/pressRoom/pressRoomItemRelease/2008/enhancing_public_health_measures_against_tuberculosis.html (accessed on 13 August 2015).
- Hankin, J.H.; Stram, D.O.; Arakawa, K.; Park, S.; Low, S.H.; Lee, H.P.; Yu, M.C. Singapore Chinese Health Study: Development, validation, and calibration of the quantitative food frequency questionnaire. Nutr. Cancer 2001, 39, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.P.; Yuan, J.M.; Sun, C.L.; Lee, H.P.; Yu, M.C. Middle-aged and older Chinese men and women in Singapore who smoke have less healthy diets and lifestyles than nonsmokers. J. Nutr. 2005, 135, 2473–2477. [Google Scholar] [PubMed]
- Goh, G.B.; Chow, W.C.; Wang, R.; Yuan, J.M.; Koh, W.P. Coffee, alcohol and other beverages in relation to cirrhosis mortality: The Singapore Chinese Health Study. Hepatology 2014, 60, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Chee, C.B.; James, L. The Singapore Tuberculosis Elimination Programme: The first five years. Bull. World Health Organ. 2003, 81, 217–221. [Google Scholar] [PubMed]
- Infectious Diseases Act, The Statutes of the Republic of Singapore (Cap 137, 2003 Rev Ed). Available online: http://statutes.agc.gov.sg/aol/download/0/0/pdf/binaryFile/pdfFile.pdf?CompId:4c22780c-89cc-4820-acf3-38140427b099 (accessed on 25 May 2017).
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 9: One-way analysis of variance. Crit. Care 2004, 8, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. The χ2 test of goodness of fit. Ann. Math. Stat. 1952, 23, 315–345. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 187–220. [Google Scholar]
- Patra, J.; Jha, P.; Rehm, J.; Suraweera, W. Tobacco smoking, alcohol drinking, diabetes, low body mass index and the risk of self-reported symptoms of active tuberculosis: Individual participant data (IPD) meta-analyses of 72,684 individuals in 14 high tuberculosis burden countries. PLoS ONE 2014, 9, e96433. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar]
- Yang, C.S.; Landau, J.M. Effects of tea consumption on nutrition and health. J. Nutr. 2000, 130, 2409–2412. [Google Scholar] [PubMed]
- Van het Hof, K.H.; Kivits, G.A.; Weststrate, J.A.; Tijburg, L.B. Bioavailability of catechins from tea: The effect of milk. Eur. J. Clin. Nutr. 1998, 52, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Yashin, A.; Nemzer, B.; Yashin, Y. Bioavailability of Tea Components. J. Food Res. 2012, 1, 281–290. [Google Scholar] [CrossRef]
- Serafini, M.; Ghiselli, A.; Ferro Luzzi, A. In vivo antioxidant effect of green and black tea in man. Eur. J. Clin. Nutr. 1996, 50, 28–32. [Google Scholar] [PubMed]
- Sarkar, A.; Bhaduri, A. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: Comparison with its individual catechin constituents and green tea. Biochem. Biophys. Res. Commun. 2001, 284, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, C.F.; Golub, J.E.; Mohapi, L.; Tshabangu, N.; Modisenyane, T.; Chaisson, R.E.; Gray, G.E.; McIntyre, J.A.; Martinson, N.A. Body mass index and risk of tuberculosis and death. AIDS 2010, 24, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G. Alcohol’s contribution to compromised immunity. Alcohol Health Res. World 1997, 21, 30–41. [Google Scholar] [PubMed]
- Mason, C.M.; Dobard, E.; Zhang, P.; Nelson, S. Alcohol Exacerbates Murine Pulmonary Tuberculosis. Infect. Immun. 2004, 72, 2556–2563. [Google Scholar] [CrossRef] [PubMed]
- Lönnroth, K.; Williams, B.G.; Stadlin, S.; Jaramillo, E.; Dye, C. Alcohol use as a risk factor for tuberculosis—A systematic review. BMC Public Health 2008, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Samokhvalov, A.V.; Neuman, M.G.; Room, R.; Parry, C.; Lonnroth, K.; Patra, J.; Poznyak, V.; Popova, S. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health 2009, 9, 450. [Google Scholar]
- Das, S.K.; Vasudevan, D.M. Alcohol-induced oxidative stress. Life Sci. 2007, 81, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Loft, S.; Vistisen, K.; Ewertz, M.; Tjonneland, A.; Overvad, K.; Poulsen, H.E. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: Influence of smoking, gender and body mass index. Carcinogenesis 1992, 13, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Horrigan, L.A.; Kelly, J.P.; Connor, T.J. Immunomodulatory effects of caffeine: Friend or foe? Pharmacol. Ther. 2006, 111, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Communicable Diseases Surveillance in Singapore 2014; Ministry of Health Communicable Diseases Division: Singapore, 2014; pp. 120–145.
Characteristics 2 | Intake Frequency of Black or Green Tea | |||
---|---|---|---|---|
None | Monthly | Weekly | Daily | |
No. of participants (%) | 24,859 (41.3) | 7275 (12.1) | 14,705 (24.4) | 13,406 (22.3) |
Age at interview, years | 57.0 ± 8.1 | 56.3 ± 8.0 | 55.6 ± 7.9 | 56.1 ± 7.9 |
Body mass index, kg/m2 | 23.0 ± 3.2 | 23.2 ± 3.3 | 23.3 ± 3.3 | 23.5 ± 3.3 |
Men | 8554 (34.4) | 2766 (38.0) | 6969 (47.4) | 7625 (56.9) |
Dialect | ||||
Cantonese | 10,641 (42.8) | 3544 (48.7) | 6892 (46.9) | 6900 (51.5) |
Hokkien | 14,218 (57.2) | 3731 (51.3) | 7813 (53.1) | 6506 (48.5) |
Level of education | ||||
No formal education | 8796 (35.4) | 2092 (28.8) | 3261 (22.2) | 2461 (18.4) |
Primary school (1–6 years) | 10,623 (42.7) | 3280 (45.1) | 6558 (44.6) | 6055 (45.2) |
Secondary school and above | 5440 (21.9) | 1903 (26.2) | 4886 (33.2) | 4890 (36.5) |
Smoking status | ||||
Never | 18,046 (72.6) | 5298 (72.8) | 10,410 (70.8) | 8678 (64.7) |
Former | 2253 (9.1) | 739 (10.2) | 1621 (11.0) | 1824 (13.6) |
Current | 4560 (18.3) | 1238 (17.0) | 2674 (18.2) | 2904 (21.7) |
Alcohol intake | ||||
None | 21,288 (85.6) | 5894 (81.0) | 11,570 (78.7) | 10,298 (76.8) |
Monthly | 1239 (5.0) | 654 (9.0) | 1291 (8.8) | 1145 (8.5) |
Weekly | 1507 (6.1) | 531 (7.3) | 1398 (9.5) | 1400 (10.4) |
Daily | 825 (3.3) | 196 (2.7) | 446 (3.0) | 563 (4.2) |
Baseline history of diabetes | 2080 (8.4) | 648 (8.9) | 1329 (9.0) | 1344 (10.0) |
Beverage | Intake Frequency | p for Trend | |||
None | Monthly | Weekly | Daily | ||
Black tea | |||||
Person-years | 646,006 | 78,649 | 174,715 | 113,319 | |
Cases | 816 | 99 | 202 | 132 | |
HR (95% CI) 1 | 1.00 | 1.01 (0.82–1.25) | 0.84 (0.72–0.98) | 0.75 (0.63–0.91) | <0.001 |
HR (95% CI) 2 | 1.00 | 1.06 (0.86–1.31) | 0.92 (0.78–1.07) | 0.79 (0.66–0.95) | 0.02 |
HR (95% CI) 3 | 1.00 | 1.10 (0.89–1.36) | 0.94 (0.80–1.10) | 0.79 (0.65–0.95) | 0.02 |
Green tea | |||||
Person-years | 595,265 | 118,101 | 175,055 | 124,268 | |
Cases | 764 | 130 | 200 | 155 | |
HR (95% CI) 1 | 1.00 | 0.86 (0.71–1.03) | 0.83 (0.71–0.97) | 0.78 (0.66–0.93) | <0.001 |
HR (95% CI) 2 | 1.00 | 0.90 (0.75–1.09) | 0.89 (0.76–1.04) | 0.84 (0.70–1.00) | 0.02 |
HR (95% CI) 3 | 1.00 | 0.89 (0.74–1.08) | 0.90 (0.77–1.06) | 0.84 (0.70–1.00) | 0.03 |
Black or green tea | |||||
Person-years | 415,819 | 122,737 | 248,903 | 225,232 | |
Cases | 531 | 155 | 277 | 286 | |
HR (95% CI) 1 | 1.00 | 0.98 (0.82–1.17) | 0.78 (0.67–0.90) | 0.77 (0.66–0.89) | <0.001 |
HR (95% CI) 2 | 1.00 | 1.01 (0.85–1.21) | 0.84 (0.73–0.98) | 0.82 (0.71–0.96) | 0.003 |
Coffee | |||||
Person-years | 187,395 | 19,633 | 93,401 | 712,261 | |
Cases | 219 | 16 | 90 | 924 | |
HR (95% CI) 1 | 1.00 | 0.70 (0.42–1.16) | 0.81 (0.63–1.03) | 1.10 (0.95–1.28) | 0.08 |
HR (95% CI) 2 | 1.00 | 0.72 (0.43–1.19) | 0.84 (0.65–1.07) | 0.97 (0.83–1.12) | 0.89 |
HR (95% CI) 3 | 1.00 | 0.71 (0.43–1.18) | 0.82 (0.64–1.06) | 0.92 (0.79–1.08) | 0.55 |
Quartile Intake | |||||
Q1 | Q2 | Q3 | Q4 | ||
Caffeine (mg/day) | |||||
Person-years | 252,489 | 254,103 | 259,394 | 246,704 | |
Cases | 205 | 305 | 316 | 373 | |
HR (95% CI) 1 | 1.00 | 1.20 (1.02–1.42) | 1.06 (0.90–1.25) | 1.20 (1.02–1.41) | 0.10 |
HR (95% CI) 2 | 1.00 | 1.11 (0.94–1.32) | 0.95 (0.80–1.12) | 0.98 (0.83–1.16) | 0.40 |
Stratifying Variables | Intake Frequency of Black or Green Tea | p for Trend | p for Interaction | |||
---|---|---|---|---|---|---|
None | Monthly | Weekly | Daily | |||
Body mass index | 0.004 | |||||
<23 kg/m2 | ||||||
Cases | 350 | 96 | 168 | 146 | ||
HR (95% CI) 1 | 1.00 | 0.99 (0.79–1.25) | 0.79 (0.66–0.96) | 0.66 (0.54–0.81) | <0.001 | |
≥23 kg/m2 | ||||||
Cases | 181 | 59 | 109 | 140 | ||
HR (95% CI) 1 | 1.00 | 1.05 (0.78–1.41) | 0.92 (0.72–1.17) | 1.09 (0.87–1.36) | 0.70 | |
Alcohol intake | 0.01 | |||||
None/monthly | ||||||
Cases | 432 | 137 | 225 | 242 | ||
HR (95% CI) 1 | 1.00 | 1.10 (0.90–1.33) | 0.86 (0.73–1.02) | 0.90 (0.77–1.06) | 0.08 | |
Weekly/daily | ||||||
Cases | 99 | 18 | 52 | 44 | ||
HR (95% CI) 1 | 1.00 | 0.62 (0.38–1.03) | 0.71 (0.50–0.99) | 0.54 (0.38–0.77) | <0.001 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soh, A.Z.; Pan, A.; Chee, C.B.E.; Wang, Y.-T.; Yuan, J.-M.; Koh, W.-P. Tea Drinking and Its Association with Active Tuberculosis Incidence among Middle-Aged and Elderly Adults: The Singapore Chinese Health Study. Nutrients 2017, 9, 544. https://doi.org/10.3390/nu9060544
Soh AZ, Pan A, Chee CBE, Wang Y-T, Yuan J-M, Koh W-P. Tea Drinking and Its Association with Active Tuberculosis Incidence among Middle-Aged and Elderly Adults: The Singapore Chinese Health Study. Nutrients. 2017; 9(6):544. https://doi.org/10.3390/nu9060544
Chicago/Turabian StyleSoh, Avril Zixin, An Pan, Cynthia Bin Eng Chee, Yee-Tang Wang, Jian-Min Yuan, and Woon-Puay Koh. 2017. "Tea Drinking and Its Association with Active Tuberculosis Incidence among Middle-Aged and Elderly Adults: The Singapore Chinese Health Study" Nutrients 9, no. 6: 544. https://doi.org/10.3390/nu9060544
APA StyleSoh, A. Z., Pan, A., Chee, C. B. E., Wang, Y.-T., Yuan, J.-M., & Koh, W.-P. (2017). Tea Drinking and Its Association with Active Tuberculosis Incidence among Middle-Aged and Elderly Adults: The Singapore Chinese Health Study. Nutrients, 9(6), 544. https://doi.org/10.3390/nu9060544