Effects of Pomegranate Juice Supplementation on Oxidative Stress Biomarkers Following Weightlifting Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Pomegranate Juice and Placebo Supplementations
2.4. Phenolic Compounds
2.4.1. Extraction of Phenolic Fraction
2.4.2. Determination of the Total Phenol and O-Diphenol Contents
2.4.3. Determination of Total Flavonoids
2.5. Blood Sampling and Analysis
2.6. Statistical Analyses
3. Results
3.1. Acute Effect of POMj on Oxidative Stress Biomarkers Following a Weightlifting Training Session
3.2. Delayed Effect of POMj on the Recovery Kinetics of the Oxidative Stress Parameters
3.3. Relationship between the Responses of Lipid Peroxidation and Antioxidant System
4. Discussion and conclusions
4.1. Effect of Weightlifting Training Sessions on Oxidative Stress Responses
4.2. Acute Effect of POMj on Oxidative Stress Responses Following theTraining Session.
4.3. Delayed Effect of POMj on the Recovery Kinetics of the Oxidative Stress Parameters
5. Limitations and Perspectives
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress: Relationship with exercise and training. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Souissi, N. Effect of time-of-day on biochemical markers in response to physical exercise. J. Strength Cond. Res. 2017, 31, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Hammouda, O.; Trabelsi, K.; Chiboub, J.; Turki, M.; AbdelKarim, O.; El Abed, K.; Ben Ali, M.; Hoekelmann, A.; et al. Acute and delayed responses of C-reactive protein, malondialdehyde and antioxidant markers after resistance training session in elite weightlifters: Effect of time of day. Chronobiol. Int. 2015, 32, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Hammouda, O.; Turki, M.; Ayedi, F.; Kallel, C.; AbdelKarim, O.; Hoekelmann, A.; Souissi, N. Relationship between biomarkers of muscle damage and redox status in response to a weightlifting training session: Effect of time-of-day. Physiol. Int. 2016, 103, 243–261. [Google Scholar] [PubMed]
- Goldfarb, A.H.; McKenzie, M.J.; Bloomer, R.J. Gender comparisons of exercise-induced oxidative stress: Influence of antioxidant supplementation. Appl. Physiol. Nutr. Metab. 2007, 32, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.S.; Bailey, D.M.; Hullin, D.; Young, I.; Davies, B. Metabolic implications of resistive force selection for oxidative stress and markers of muscle damage during 30 s of high-intensity exercise. Eur. J. Appl. Physiol. 2004, 92, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Kayatekin, B.; Gönenç, S.; Açikgöz, O.; Uysal, N.; Dayi, A. Effects of sprint exercise on oxidative stress in skeletal muscle and liver. Eur. J. Appl. Pshysiol. 2002, 87, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Chang, W.Y.; Chan, K.H.; Tsai, W.Y.; Lin, C.L.; Hsu, M.C. Blood lipid peroxides and muscle damage increased following intensive resistance training of female weightlifters. Ann. N. Y. Acad. Sci. 2005, 1042, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Groussard, C.; Rannou-Bekono, F.; Machefer, G.; Chevanne, M.; Vincent, S.; Sergent, O.; Cillard, J.; Gratas-Delamarche, A. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur. J. Appl. Pshysiol. 2003, 89, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, O.; Chtourou, H.; Chahed, H.; Ferchichi, S.; Chaouachi, A.; Kallel, C.; Miled, A.; Chamari, K.; Souissi, N. High intensity exercise affects diurnal variation of some biological markers in trained subjects. Int. J. Sports Med. 2012, 33, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Inal, M.; Akyüz, F.; Turgut, A.; Getsfrid, W.M. Effect of aerobic and anaerobic metabolism on free radical generation swimmers. Med. Sci. Sports Exerc. 2001, 33, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, S.; Sithul, H.; Muraleedharan, P.; Azeez, J.M.; Sreeharshan, S. Pomegranate fruit as a rich source of biologically active compounds. BioMed Res. Int. 2014, 2014, 686921. [Google Scholar] [CrossRef] [PubMed]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zarfeshany, A.; Asgary, S.; Javanmard, S.H. Potent health effects of pomegranate. Adv. Biomed. Res. 2014, 3, 100. [Google Scholar] [PubMed]
- Aviram, M.; Rosenblat, M.; Gaitini, D.; Nitecki, S.; Hoffman, A.; Dornfeld, L.; Volkova, N.; Presser, D.; Attias, J.; Liker, H. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 2004, 23, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Kelawala, N.; Ananthanarayan, L. Antioxidant activity of selected foodstuffs. Int. J. Food Sci. Nutr. 2004, 55, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Azadzoi, K.M.; Schulman, R.N.; Aviram, M.; Siroky, M.B. Oxidative stress in arteriogenic erectile dysfunction: Prophylactic role of antioxidants. J. Urol. 2005, 174, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the united states. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed]
- Fuster-Muñoz, E.; Roche, E.; Funes, L.; Martínez-Peinado, P.; Sempere, J.; Vicente-Salar, N. Effects of pomegranate juice in circulating parameters, cytokines, and oxidative stress markers in endurance-based athletes: A randomized controlled trial. Nutrition 2016, 32, 539–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazani, M.; Fard, A.S.; Baghi, A.N.; Nemati, A.; Mogadam, R.A. Effect of pomegranate juice supplementation on matrix metalloproteinases 2 and 9 following exhaustive exercise in young healthy males. J. Pak. Med. Assoc. 2014, 64, 785–790. [Google Scholar] [PubMed]
- Tsang, C.; Wood, G.; Al-Dujaili, E. Pomegranate juice consumption influences urinary glucocorticoids, attenuates blood pressure and exercise-induced oxidative stress in healthy volunteers. In Endocrine Abstracts, Presented at Society for Endocrinology BES Meeting, Birmingham, UK, 11–14 April 2011; British Society of Endocrinology: Bristol, UK, 2011. [Google Scholar]
- Ammar, A.; Turki, M.; Chtourou, H.; Hammouda, O.; Trabelsi, K.; Kallel, C.; Abdelkarim, O.; Hoekelmann, A.; Bouaziz, M.; Ayadi, F.; et al. Pomegranate supplementation accelerates recovery of muscle damage and soreness and inflammatory markers after a weightlifting training session. PLoS ONE. 2016, 11, e0160305. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Trabelsi, K.; Padulo, J.; Turki, M.; El Abed, K.; Hoekelamann, A.; Hakim, A. Temporal specificity of training: intra-day effects on biochemical responses and Olympic-Weightlifting performances. J. Sports Sci. 2015, 33, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Chtourou, H.; Turki, M.; Hammouda, O.; Chaari, A.; Boudaya, M.; Driss, T.; Ayadi, F.; Souissi, N. Acute and delayed responses of steroidal hormones, blood lactate and biomarkers of muscle damage after a resistance training session: Time-of-day effects. J. Sports Med. Phys. Fit. 2017. [Google Scholar] [CrossRef]
- Matthaiou, C.M.; Goutzourelas, N.; Stagos, D.; Sarafoglou, E.; Jamurtas, A.; Koulocheri, S.D.; Haroutounian, S.A.; Tsatsakis, A.M.; Kouretas, D. Pomegranate juice consumption increases gsh levels and reduces lipid and protein oxidation in human blood. Food Chem. Toxicol. 2014, 73, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, M.; Gargouri, B.; Jaber, H.; Bouaziz, M. Comparative Study of olive quality from ChemlaliSfaxArbequina cultivated in Tunisia. Eur. J. Lipid Sci. 2013, 115, 631–640. [Google Scholar] [CrossRef]
- Gargouri, B.; Ammar, S.; Zribi, A.; Ben Mansour, A.; Bouaziz, M. Effect of growing region on quality characteristics and phenolic compounds of chemlali extra-virgin olive oils. Acta Physiol. Plant. 2013, 35, 2801–2812. [Google Scholar] [CrossRef]
- Dridi-Gargouri, O.; Kallel-Trabelsi, S.; Bouaziz, M.; Abdelhèdi, R. Synthesis of 3-O-methylgallic acid a powerful antioxidant by electrochemical conversion of syringic acid. Biochim. Biophys. Acta 2013, 1830, 3643–3649. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, C.R.; Salzman, J.A.; Elsayed, N.M.; Omaye, S.T.; Korte, D.W. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal. Biochem. 1990, 184, 193–199. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984, 105, 114–120. [Google Scholar] [PubMed]
- Wong, S.; Knight, J.; Hopfer, S.; Zaharia, O.; Leach, C.N.; Sunderman, F. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin. Chem. 1987, 33, 214–220. [Google Scholar] [PubMed]
- Sahlin, K.; Cizinsky, S.; Warholm, M.; Höberg, J. Repetitive static muscle contractions in humans—A trigger of metabolic and oxidative stress? Eur. J. Appl. Pshysiol. Occup. Physiol. 1992, 64, 228–236. [Google Scholar] [CrossRef]
- Sanhueza, J.; Valdes, J.; Campos, R.; Garrido, A.; Valenzuela, A. Changes in the xanthine dehydrogenase/xanthine oxidase ratio in the rat kidney subjected to ischemia-reperfusion stress: Preventive effect of some flavonoids. Res. Commun. Chem. Pathol. Pharmacol. 1992, 78, 211–218. [Google Scholar] [PubMed]
- Nijveldt, R.J.; Van Nood, E.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [PubMed]
- Childs, A.; Jacobs, C.; Kaminski, T.; Halliwell, B.; Leeuwenburgh, C. Supplementation with vitamin C and n-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic. Biol. Med. 2001, 31, 745–753. [Google Scholar] [CrossRef]
- Nelson, C.W.; Wei, E.P.; Povlishock, J.T.; Kontos, H.A.; Moskowitz, M.A. Oxygen radicals in cerebral ischemia. Am. J. Physiol. 1992, 263, H1356–H1362. [Google Scholar] [PubMed]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Fenercioglu, A.K.; Saler, T.; Genc, E.; Sabuncu, H.; Altuntas, Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in type 2 diabetes mellitus without complications. J. Endocrinol. Investig. 2010, 33, 118–124. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Rafter, J.; Jenner, A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005, 81, 268–276. [Google Scholar]
- Castaneda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Korkina, L.G.; Afanas’ Ev, I.B. Antioxidant and chelating properties of flavonoids. Adv. Pharmacol. 1996, 38, 151–163. [Google Scholar]
- Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 2010, 31, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 2013, 18, 1208–1246. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef] [PubMed]
- Cobley, J.N.; Close, G.L.; Bailey, D.M.; Davison, G.W. Exercise redox biochemistry: Conceptual, methodological and technical recommendations. Redox Biol. 2017, 12, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Gliemann, L.; Schmidt, J.F.; Olesen, J.; Biensø, R.S.; Peronard, S.L.; Grandjean, S.U.; Mortensen, S.P.; Nyberg, M.; Bangsbo, J.; Pilegaard, H.; et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J. Physiol. 2013, 591, 5047–5059. [Google Scholar] [CrossRef] [PubMed]
Variables | Placebo | % of Change | Pomegranate | % of Change | Δ (POMj-PLA) in % | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pomegranate Effect | Training Effect | Interaction | ||||
Biomarkers of lipid peroxidation | ||||||||||
MDA (μmol/L) | 1.82 ± 0.22 | 2.44 ± 0.18 * | +34.07% | 1.76 ± 0.24 | 2.15 ± 0.26 * | +22.03% | −12.47% | F(1,8) = 15.9 | F(1,8) = 36.8 | F(1,8) = 8.4 |
p = 0.004 | p = 0.0003, | p = 0.02, | ||||||||
ηp2 = 0.3 | ηp2 = 0.6 | ηp2 = 0.6 | ||||||||
Biomarkers of enzymatic antioxidant system | ||||||||||
CAT (Units) | 15.31 ± 1.51 | 18.51 ± 1.37 * | +21.02% | 15.19 ± 1.32 | 19.68 ± 1.42 * | +29.61% | +08.59% | F(1,8) = 12.3 | F(1,8) = 26.2 | F(1,8) = 6.0 |
p = 0.008 | p = 0.0009 | p = 0.04, | ||||||||
ηp2 = 0.5 | ηp2 = 0.6 | ηp2 = 0.4 | ||||||||
GPX (Units) | 0.87 ± 0.08 | 1.04 ± 0.08 * | +20.46% | 0.86 ± 0.09 | 1.09 ± 0.08 * | +27.13% | +06.76% | F(1,8) = 6.9 | F(1,8) = 27.3 | F(1,8) = 4.3 |
p = 0.03 | p = 0.0008 | p = 0.07 | ||||||||
ηp2 = 0.4 | ηp2 = 0.5 | ηp2 = 0.2 | ||||||||
Biomarkers of non-enzymatic antioxidant system | ||||||||||
UA (μmol/L) | 321.4 ± 19.6 | 402.3 ± 22.6 * | +25.16% | 299.6 ± 16.9 | 412.8 ± 18.9 * | +37.79% | +12.63% | F(1,8) = 13.72 | F(1,8) = 31.6 | F(1,8) = 6.9 |
p = 0.006 | p = 0.0005 | p = 0.03 | ||||||||
ηp2 = 0.5 | ηp2 = 0.6 | ηp2 = 0.6 | ||||||||
Tbil (μmol/L) | 12.30 ± 1.88 | 15.28 ± 2.32 * | +24.21% | 12.01 ± 2.01 | 15.58 ± 2.43 * | +29.87% | +05.68% | F(1,8) = 5.9 | F(1,8) = 29.8 | F(1,8) = 3.9 |
p = 0.04, | p = 0.0006 | p = 0.08 | ||||||||
ηp2 = 0.4 | ηp2 = 0.7 | ηp2 = 0.1 |
Variables | 3 min Post Training | 48 h Recovery | Rest Values (10 days) | Δ 48 h-3 min in % | ANOVA |
---|---|---|---|---|---|
PLA | |||||
Biomarkers of lipid peroxidation | |||||
MDA (μmol/L) | 2.44 ± 0.18 | 1.76 ± 0.24 a,b | 1.41 ± 0.20 | −27.86% | F(2,16) = 12.2, p = 0.0006, ηp2 = 0.4 |
Biomarkers of enzymatic antioxidant system | |||||
CAT (Units) | 18.51 ± 1.37 | 15.19 ± 1.32 a,b | 13.4 ± 1.14 | −17.94% | F(2,16) = 13.3, p = 0.0004, ηp2 = 0.4 |
GPX (Units) | 1.04 ± 0.08 | 0.86 ± 0.09 a,b | 0.71 ± 0.08 | −17.31% | F(2,16) = 12.7, p = 0.0005, ηp2 = 0.4 |
Biomarkers of non-enzymatic antioxidant system | |||||
UA (μmol/L) | 402.3 ± 22.6 | 299.6 ± 16.9 a | 291.9 ± 18.2 | −25.62% | F(2,16) = 5.1, p = 0.02, ηp2 = 0.5 |
Tbil (μmol/L) | 15.28 ± 2.32 | 12.01 ± 2.01 a | 10.93 ± 1.74 | −21.40% | F(2,16) = 4.0, p = 0.04, ηp2 = 0.5 |
POMj | |||||
Biomarkers of lipid peroxidation | |||||
MDA (μmol/L) | 2.15 ± 0.26 | 1.43 ± 0.23 a | 1.41 ± 0.20 | −33.49% | F(2,16) = 6.1, p = 0.01, ηp2 = 0. 4 |
Biomarkers of enzymatic antioxidant system | |||||
CAT (Units) | 19.68 ± 1.42 | 14.39 ± 1.44 a | 13.4 ± 1.14 | −26.88% | F(2,16) = 4.2, p = 0.03, ηp2 = 0.5 |
GPX (Units) | 1.09 ± 0.08 | 0.79 ± 0.07 a | 0.71 ± 0.08 | −27.52% | F(2,16) = 4.4, p = 0.03, ηp2 = 0.4 |
Biomarkers of non-enzymatic antioxidant system | |||||
UA (μmol/L) | 412.8 ± 18.9 | 292.3 ± 20.6 a | 291.9 ± 18.2 | −29.19% | F(2,16) = 3.9, p = 0.04, ηp2 = 0.6 |
Tbil (μmol/L) | 15.58 ± 2.43 | 11.09 ± 1.87 a | 10.93 ± 1.74 | −28.82% | F(2,16) = 3.8, p = 0.04, ηp2 = 0.5 |
Variables | Acute Response | Delayed Response |
---|---|---|
Relationship between MDA and the enzymatic antioxidant system | ||
MDA—CAT | r = 0.6, p = 0.005 | r = 0.6, p = 0.006 |
MDA—GPX | r = 0.5, p = 0.03 | r = 0.5, p = 0.02 |
Relationship between MDA and the non-enzymatic antioxidant system | ||
MDA—UA | r = 0.7, p = 0.0008 | p > 0.05 |
MDA—Tbil | r = 0.5, p = 0.04 | p > 0.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, A.; Turki, M.; Hammouda, O.; Chtourou, H.; Trabelsi, K.; Bouaziz, M.; Abdelkarim, O.; Hoekelmann, A.; Ayadi, F.; Souissi, N.; et al. Effects of Pomegranate Juice Supplementation on Oxidative Stress Biomarkers Following Weightlifting Exercise. Nutrients 2017, 9, 819. https://doi.org/10.3390/nu9080819
Ammar A, Turki M, Hammouda O, Chtourou H, Trabelsi K, Bouaziz M, Abdelkarim O, Hoekelmann A, Ayadi F, Souissi N, et al. Effects of Pomegranate Juice Supplementation on Oxidative Stress Biomarkers Following Weightlifting Exercise. Nutrients. 2017; 9(8):819. https://doi.org/10.3390/nu9080819
Chicago/Turabian StyleAmmar, Achraf, Mouna Turki, Omar Hammouda, Hamdi Chtourou, Khaled Trabelsi, Mohamed Bouaziz, Osama Abdelkarim, Anita Hoekelmann, Fatma Ayadi, Nizar Souissi, and et al. 2017. "Effects of Pomegranate Juice Supplementation on Oxidative Stress Biomarkers Following Weightlifting Exercise" Nutrients 9, no. 8: 819. https://doi.org/10.3390/nu9080819
APA StyleAmmar, A., Turki, M., Hammouda, O., Chtourou, H., Trabelsi, K., Bouaziz, M., Abdelkarim, O., Hoekelmann, A., Ayadi, F., Souissi, N., Bailey, S. J., Driss, T., & Yaich, S. (2017). Effects of Pomegranate Juice Supplementation on Oxidative Stress Biomarkers Following Weightlifting Exercise. Nutrients, 9(8), 819. https://doi.org/10.3390/nu9080819