Higher Dietary Cost Is Associated with Higher Diet Quality: A Cross-Sectional Study among Selected Malaysian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Assessment of Socio-Economic Characteristics
2.3. Dietary Intake
2.4. Diet Quality
2.5. Dietary Cost Calculation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sloman, J.; Wride, A. Economics, 7th ed.; Pearson Education Limited: Essex, UK, 2009; ISBN 978-0-273-71562-7. [Google Scholar]
- Wan Abdul Manan, W.M.; Nur Firdaus, I.; Safiah, M.Y.; Siti Haslinda, M.D.; Poh, B.K.; Norimah, A.K.; Tahir, A.; Mirnalini, K.; Zalilah, M.S.; Fatimah, S.; et al. Meal patterns of Malaysian adults: Findings from the Malaysian adults nutrition survey. Mal. J. Nutr. 2012, 18, 221–230. [Google Scholar]
- Rao, M.; Afshin, A.; Singh, G.; Mozaffarian, D. Do healthier foods and diet patterns cost more than less healthy options? A systematic review and meta-analysis. BMJ Open 2013, 3, e004277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmon, N.; Briend, A.; Drewnowski, A. Energy-dense diets are associated with lower diet costs: A community study of French adults. Public Health Nutr. 2004, 7, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Maillot, M.; Darmon, N.; Drewnowski, A. Are the lowest-cost healthful food plans culturally and socially acceptable? Public Health Nutr. 2010, 13, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [PubMed]
- Darmon, N.; Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: A systematic review and analysis. Nutr. Rev. 2015, 73, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Alkerwi, A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and socioeconomic disparity in nutrition: Application of a novel Correlated Component Regression approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Uenishi, K. Monetary cost of self-reported diet in relation to biomarker-based estimates of nutrient intake in young Japanese women. Public Health Nutr. 2009, 12, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sasaki, S.; Okubo, H.; Takahashi, Y.; Hosoi, Y.; Itabashi, M. Monetary costs of dietary energy reported by young Japanese women: Association with food and nutrient intake and body mass index. Public Health Nutr. 2007, 10, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Murakami, K.; Sasaki, S. Monetary value of self-reported diets and associations with sociodemographic characteristics and dietary intake among Japanese adults: Analysis of nationally representative surveys. Public Health Nutr. 2016, 19, 3306–3318. [Google Scholar] [CrossRef] [PubMed]
- Rehm, C.D.; Monsivais, P.; Drewnowski, A. The quality and monetary value of diets consumed by adults in the United States. Am. J. Clin. Nutr. 2011, 94, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Schroder, H.; Serra-Majem, L.; Subirana, I.; Izquierdo-Pulido, M.; Fito, M.; Elosua, R. Association of increased monetary cost of dietary intake, diet quality and weight management in Spanish adults. Br. J. Nutr. 2016, 115, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Cade, J.; Upmeier, H.; Calvert, C.; Greenwood, D. Costs of a healthy diet: Analysis from the UK Women’s Cohort Study. Public Health Nutr. 1999, 2, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Institute for Public Health. National Health and Morbidity Survey 2011 (NHMS 2011) Volume II: Non-Communicable Diseases; Institute for Public Health, Ministry of Health Malaysia: Putrajaya, Malaysia, 2011.
- Institute for Public Health. National Health and Morbidity Survey 2015 (NHMS 2015). Volume II: Non-Communicable Diseases, Risk Factors and Other Health Problems; Institute for Public Health, Ministry of Health Malaysia: Putrajaya, Malaysia, 2015.
- Karupaiah, T.; Swee, W.C.; Liew, S.Y.; Ng, B.K.; Chinna, K. Dietary health behaviors of women living in high rise dwellings: A case study of an urban community in Malaysia. J. Community Health 2013, 38, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Asma, A.; Nawalyah, A.G.; Rokiah, M.Y.; Nasir, M.T. Assessment of diet quality among married couples in a selected urban area in Selangor. J. Community Health 2010, 16, 17–28. [Google Scholar]
- Epstein, L.H.; Jankowiak, N.; Nederkoorn, C.; Raynor, H.A.; French, S.A.; Finkelstein, E. Experimental research on the relation between food price changes and food-purchasing patterns: A targeted review. Am. J. Clin. Nutr. 2012, 95, 789–809. [Google Scholar] [CrossRef] [PubMed]
- Department of Statistics Malaysia. Consumer Price Index Press Release; Department of Statistics Malaysia: Putrajaya, Malaysia, 2016. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=106&bul_id=THE3ZHF5MDhyME14ZFdmOWhrWSsyZz09&menu_id=bThzTHQxN1ZqMVF6a2I4RkZoNDFkQT09 (accessed on 16 November 2016).
- Prime Minister’s Department, Economic Planning Unit. The Malaysian Economy in Figures; Economic Planning Unit: Putrajaya, Malaysia, 2016. Available online: http://www.epu.gov.my/sites/default/files/MEIF%202016.pdf (accessed on 2 December 2016).
- Institute for Public Health. National Health and Morbidity Survey 2014: Malaysian Adult Nutrition Survey (MANS). Volume II: Survey Findings; Institute for Public Health, Ministry of Health Malaysia: Putrajaya, Malaysia, 2014.
- Ministry of Human Resources Malaysia. Malaysian Standard Classification of Occupations 2013 (MASCO); Human Resource Policy Division, Ministry of Human Resources Malaysia: Putrajaya, Malaysia, 2013.
- Department of Statistics Malaysia. Types of Living Quarters; Department of Statistics: Putrajaya, Malaysia. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cone&menu_id=bGRZdEM3eW5GTWpOWDBEa2V1Ym5CQT09 (accessed on 5 September 2017).
- Norimah, A.K.; Safiah, M.Y.; Jamal, K.; Siti Haslinda, M.D.; Zuhaida, H.; Rohida, S.; Fatimah, S.; Siti Norazlin, M.N.; Poh, B.K.; Kandiah, M.; et al. Food consumption patterns: Findings from the Malaysian Adult Nutrition Survey. Mal. J. Nutr. 2008, 14, 25–39. [Google Scholar]
- Tee, E.S.; Ismail, M.N.; Azudin, M.N.; Khatijah, I. Malaysian Food Composition Database Program. In Malaysian Food Composition Database Program. Nutrient Composition of Malaysian Foods; Institute for Medical Research: Kuala Lumpur, Malaysia, 1997. [Google Scholar]
- Lee, T.T.; Norimah, A.K.; Safiah, M.Y. Development of Healthy Eating Index for Malaysian adults. In Proceedings of the 26th Scientific Conference and Annual General Meeting of the Nutrition Society of Malaysia, Nutrition Society of Malaysia, Kuala Lumpur, Malaysia, 24–25 March 2011; Available online: http://www.nutriweb.org.my/downloads/NSM%2026%20Conference%20Prog%20&%20Abstr%20Book.pdf (accessed on 4 July 2016).
- National Coordinating Committee on Food and Nutrition. Malaysian Dietary Guidelines; Ministry of Health Malaysia: Putrajaya, Malaysia, 2010.
- Monsivais, P.; Perrigue, M.M.; Adams, S.L.; Drewnowski, A. Measuring diet cost at the individual level: A comparison of three methods. Eur. J. Clin. Nutr. 2013, 67, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Timmins, K.A.; Morris, M.A.; Hulme, C.; Edwards, K.L.; Clarke, G.P.; Cade, J.E. Comparability of methods assigning monetary costs to diets: Derivation from household till receipts versus cost database estimation using 4-day food diaries. Eur. J. Clin. Nutr. 2013, 67, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Hakansson, A.; Andersson, H.S.; Granfeldt, Y. Diet inequality prevails among consumers interested and knowledgeable in nutrition. Food Nutr. Res. 2015, 59, 27601. [Google Scholar] [CrossRef] [PubMed]
- Backholer, K.; Spencer, E.; Gearon, E.; Magliano, D.J.; McNaughton, S.A.; Shaw, J.E.; Peeters, A. The association between socio-economic position and diet quality in Australian adults. Public Health Nutr. 2016, 19, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Monsivais, P.; Cook, A.J.; Drewnowski, A. Does diet cost mediate the relation between socioeconomic position and diet quality? Eur. J. Clin. Nutr. 2011, 65, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Timmins, K.A.; Hulme, C.; Cade, J.E. The monetary value of diets consumed by British adults: An exploration into socio-demographic differences in individual-level diet costs. Public Health Nutr. 2015, 18, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Bloom, D.E.; Rosner, B.A.; Franz, M.; Willett, W.C. Relation of food cost to healthfulness of diet among US women. Am. J. Clin. Nutr. 2010, 92, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.R.V.; Conklin, A.I.; Suhrcke, M.; Monsivais, P. The growing price gap between more and less healthy foods: Analysis of a novel longitudinal UK dataset. PLoS ONE 2014, 9, e109343. [Google Scholar] [CrossRef] [PubMed]
- Monsivais, P.A.; Aggarwal, A.; Drewnowski, A. Are socio-economic disparities in diet quality explained by diet cost? J. Epidemiol. Community Health 2012, 66, 530–535. [Google Scholar] [CrossRef] [PubMed]
Socio-Economic Characteristics | n (%) | Mean M-HEI ± Standard Deviation | Crude Median DDC/ RM (IQR) | Adjusted DDC/ RM/2000 kcal (IQR) |
---|---|---|---|---|
Total Respondents | 450 (100.0) | 61.31 ± 10.88 | 16.87 (14.20) | 10.71 (4.49) |
Male | 161 (35.8) | 61.03 ± 10.51 | 16.50 (14.69) | 10.63 (4.46) |
Female | 289 (64.2) | 61.43 ± 11.10 | 17.27 (13.88) | 10.83 (4.57) |
Ethnicity | ||||
Malay | 369 (82.0) | 61.13 ± 11.10 | 16.87 (13.94) | 10.67 (4.28) |
Chinese | 24 (5.3) | 63.57 ± 9.75 | 15.98 (13.35) | 11.12 (6.50) |
Indian | 54 (12.0) | 61.46 ± 10.19 | 19.87 (16.74) | 11.88 (5.54) |
Others | 3 (0.7) | 58.52 ± 3.39 | 6.78 | 8.87 |
Age Classification * | ||||
18–19 years | 16 (3.6) | 58.26 ± 9.58 | 17.84 (10.12) ‡ | 10.71 (5.64) |
20–29 years | 95 (21.1) | 59.70 ± 9.90 † | 15.97 (11.23) | 10.46 (3.74) |
30–39 years | 155 (34.4) | 62.27 ± 11.02 | 18.68 (16.76) | 11.08 (5.43) |
40–49 years | 104 (23.1) | 61.12 ± 11.27 | 15.62 (14.16) | 10.63 (3.63) |
50–59 years | 70 (15.6) | 60.92 ± 10.88 | 16.35 (12.05) | 10.78 (4.74) |
≥60 years | 10 (2.2) | 70.22 ± 11.95 † | 25.05 (21.97) ‡ | 11.52 (6.01) |
Education Level | ||||
No formal education | 2 (0.4) | 56.67 ± 0.00 | 13.65 | 10.78 |
Primary school | 11 (2.4) | 59.72 ± 14.91 | 17.24 (26.93) | 9.51 (3.78) |
Secondary school | 204 (45.3) | 61.12 ± 10.75 | 17.13 (14.53) | 10.75 (4.75) |
Diploma | 103 (22.9) | 61.06 ± 11.00 | 16.25 (13.80) | 10.62 (4.45) |
Bachelor’s degree | 107 (23.8) | 61.96 ± 10.71 | 17.27 (13.86) | 10.71 (4.40) |
Master’s degree | 17 (3.8) | 60.65 ± 10.91 | 15.09 (16.03) | 10.75 (3.45) |
PhD | 6 (1.3) | 65.56 ± 12.47 | 25.42 (28.75) | 13.74 (9.15) |
Housing | ||||
Owned | 279 (62.0) | 61.77 ± 11.41 | 16.86 (13.59) | 10.88 (4.29) |
Rented | 171 (38.0) | 60.46 ± 9.92 | 17.04 (14.88) | 10.53 (5.30) |
Housing type | ||||
Detached | 10 (2.2) | 56.56 ± 8.39 | 17.74 (15.18) | |
Semi-detached | 22 (4.9) | 65.86 ± 9.78 | 17.81 (8.84) | 11.13 (7.30) |
Terrace | 141 (31.3) | 61.31 ± 11.19 | 17.13 (14.07) | 11.36 (2.99) |
Low-cost | 268 (59.6) | 61.09 ± 10.73 | 16.90 (14.36) | 10.90 (4.72) |
Shop Lot | 9 (2.0) | 60.74 ± 14.16 | 10.90 (24.87) | 10.29 (4.30) |
Personal income * | ||||
<RM1500 | 54 (12.0) | 58.87 ± 11.93 | 16.02 (16.33) | 8.80 (3.67) |
RM 1500–3500 | 175 (38.9) | 60.66 ± 10.81 | 17.69 (15.15) | 10.00 (3.92) |
>RM3500 | 112 (24.9) | 62.34 ± 10.08 | 16.02 (13.12) | 10.84 (4.56) |
Household income * | 10.74 (4.53) | |||
≤RM2299 | 85 (18.9) | 60.71 ± 11.96 | 16.53 (14.14) | |
RM2300–5999 | 223 (49.6) | 60.56 ± 11.01 | 17.32 (14.45) | 9.73 (4.44) |
≥RM6000 | 131 (29.1) | 62.65 ± 10.46 | 16.94 (13.09) | 10.73 (4.45) |
Marital Status | 11.06 (4.43) | |||
Single | 109 (24.2) | 59.77 ± 10.25 | 16.46 (13.23) | |
Married | 325 (72.2) | 61.60 ± 11.08 | 17.17 (14.47) | 10.19 (4.45) |
Widow | 8 (1.8) | 63.33 ± 10.67 | 14.31 (11.65) | 10.75 (4.48) |
Divorced | 8 (1.8) | 67.08 ± 9.78 | 19.73 (17.69) | 9.33 (6.12) |
Occupation ** | 10.77 (7.97) | |||
Managers | 21 (4.7) | 63.54 ± 11.86 | 18.93 (12.83) | |
Professionals | 102 (22.7) | 62.45 ± 10.07 | 16.49 (15.77) | 10.92 (4.16) |
Technicians | 47 (10.5) | 58.75 ± 12.01 | 15.13 (14.92) | 10.63 (4.89) |
Clerical Support | 48 (10.7) | 61.90 ± 9.06 | 18.88 (16.35) | 9.82 (4.58) |
Service & Sales | 49 (10.9) | 59.25 ± 9.94 | 17.85 (14.49) | 11.04 (4.97) |
Craft and Trade | 11 (2.4) | 56.36 ± 8.38 | 16.50 (6.00) | 11.00 (4.11) |
Machine Operators | 11 (2.4) | 56.97 ± 13.88 | 12.14 (13.20) | 11.04 (5.86) |
Pensioner/ Unemployed Students | 145 (32.2) | 62.07 ± 11.11 | 17.76 (13.03) | 9.77 (3.35) |
Food Groups * | Mean % Contribution to Total DDC | Standard Deviation |
---|---|---|
Cereal and cereal products (17) | 19.7 | 11.20 |
Non-alcoholic beverages (10) | 18.1 | 10.29 |
Fruits and vegetables (30) | 15.1 | 10.00 |
Confectionaries (8) | 13.0 | 11.95 |
Meat and meat products (12) | 9.1 | 7.51 |
Fish and fish products (12) | 8.3 | 6.60 |
Milk and milk products (6) | 7.0 | 8.08 |
Condiments (11) | 3.3 | 3.31 |
Eggs (4) | 2.6 | 2.89 |
Legumes and products (4) | 2.2 | 2.76 |
Spreads (6) | 1.6 | 2.32 |
M-HEI Components | Total Respondents (N = 450) | |||||
---|---|---|---|---|---|---|
Quintile 1 * (≤RM8.32) (n = 93) | Quintile 2 (RM8.33–9.77) (n = 84) | Quintile 3 (RM9.78–11.37) (n = 99) | Quintile 4 (RM11.38–13.92) (n = 95) | Quintile 5 (≥RM13.93) (n = 79) | p-Value | |
M-HEI Score | 57.14 ± 10.07 | 61.14 ± 9.60 | 61.86 ± 10.00 | 63.02 ± 12.09 | 63.26 ± 11.54 | 0.001 † |
Cereals | 9.95 ± 0.52 | 10.00 ± 0.00 | 10.00 ± 0.00 | 10.00 ± 0.00 | 10.00 ± 0.00 | 0.027 |
Poultry & Meat | 5.09 ± 3.74 | 5.58 ± 3.27 | 5.75 ± 3.48 | 7.27 ± 3.35 c | 8.11 ± 3.13 c | 0.268 |
Fish & Seafood | 5.44 ± 3.77 | 6.00 ± 3.45 | 7.14 ± 3.20 b | 8.05 ± 3.15 c | 9.62 ± 1.33 c | 0.331 |
Legumes | 2.28 ± 3.32 c | 4.60 ± 4.01 c | 6.47 ± 3.96 c | 7.05 ± 3.99 c | 8.44 ± 2.95 c | 0.297 |
Milk Products | 3.12 ± 2.92 | 3.55 ± 2.66 | 3.77 ± 2.86 | 5.35 ± 3.35 c | 6.96 ± 3.12 c | 0.668 |
Vegetables | 4.14 ± 2.24 | 4.42 ± 2.72 | 5.18 ± 2.79 | 6.93 ± 2.98 c | 8.52 ± 2.52 c | 0.017 |
Fruits | 3.87 ± 2.73 a | 5.04 ± 2.88 c | 5.79 ± 2.94 c | 7.72 ± 2.94 c | 9.38 ± 1.76 c | <0.001 |
Fat ** | 6.24 ± 4.15 | 6.85 ± 4.09 | 7.47 ± 3.38 | 6.16 ± 4.22 | 7.41 ± 3.57 | 0.971 |
Sodium ** | 1.99 ± 3.91 | 3.69 ± 4.67 | 3.33 ± 4.57 | 2.16 ± 4.04 | 1.52 ± 3.52 | 0.130 |
Variables | Unstandardized B | 95% Confidence Interval for B | β Coefficients | p-Value | |
---|---|---|---|---|---|
Adjusted protein (% kcal) | 0.056 | −0.026 | 0.136 | 0.084 | 0.106 |
Adjusted CHO (% kcal) | 0.082 | 0.049 | 0.115 | 0.290 | <0.001 |
Adjusted fat (% kcal) | −0.086 | −0.135 | −0.034 | −0.242 | <0.001 |
Adjusted DDC (RM/2000 kcal) | 0.226 | 0.108 | 0.338 | 0.196 | <0.001 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pondor, I.; Gan, W.Y.; Appannah, G. Higher Dietary Cost Is Associated with Higher Diet Quality: A Cross-Sectional Study among Selected Malaysian Adults. Nutrients 2017, 9, 1028. https://doi.org/10.3390/nu9091028
Pondor I, Gan WY, Appannah G. Higher Dietary Cost Is Associated with Higher Diet Quality: A Cross-Sectional Study among Selected Malaysian Adults. Nutrients. 2017; 9(9):1028. https://doi.org/10.3390/nu9091028
Chicago/Turabian StylePondor, Ibnteesam, Wan Ying Gan, and Geeta Appannah. 2017. "Higher Dietary Cost Is Associated with Higher Diet Quality: A Cross-Sectional Study among Selected Malaysian Adults" Nutrients 9, no. 9: 1028. https://doi.org/10.3390/nu9091028
APA StylePondor, I., Gan, W. Y., & Appannah, G. (2017). Higher Dietary Cost Is Associated with Higher Diet Quality: A Cross-Sectional Study among Selected Malaysian Adults. Nutrients, 9(9), 1028. https://doi.org/10.3390/nu9091028