Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Analysis of Plant Extracts
2.2. Investigation of In Vitro Anticancer Activity of Alkaloid Standards
2.3. Investigation of In Vitro Anticancer Activity of Plant Extracts
3. Experimental
3.1. Chemicals and Plant Material
3.2. Apparatus and HPLC Conditions
HPLC-DAD
HPLC-MS
3.3. Extraction Procedure
3.4. Investigation of Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wong, B.-S.; Hsiao, Y.-C.; Lin, T.-W.; Chen, K.-S.; Chen, P.-N.; Kuo, W.-H.; Chue, S.-C.; Hsieh, Y.-S. The in vitro and in vivo apoptotic effects of Mahonia oiwakensis on human lung cancer cell. Chem. Biol. Interact. 2009, 180, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Godevac, D.; Damjanovic, A.; Stanojkovic, T.P.; Andelkovic, B.; Zdunic, G. Identification of cytotoxic metabolites from Mahonia aquifolium using1H NMR-based metabolomics approach. J. Pharm. Biomed. Anal. 2018, 150, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-L.; Li, H.; He, X.; Zhang, R.-Q.; Sun, Y.-H.; Zhang, C.-F.; Wang, C.-Z.; Yuan, C.-S. Alkaloids from Mahonia bealei posses anti-H+/K+-ATPase andanti-gastrin effects on pyloric ligation-induced gastric ulcer in rats. Phytomedicine 2014, 21, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, W.; Zhang, Y.; Yang, B.; Fu, Z.; Li, X.; Tian, J. Proteomics analysis of Mahonia bealei leaves with induction of alkaloids via combinatorial peptide ligand libraries. J. Proteom. S 2014, 110, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Yu, L.; Wang, M.-H. Antioxidant and antiproliferative properties of water extract from Mahonia bealei (Fort.) Carr. Leaves. Food Chem. Toxicol. 2011, 49, 799–806. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Guo, X.; Zhao, M.; Tu, P.; Jiang, Y. A series of strategies for solving the shortage of reference standardsfor multi-components determination of traditional Chinese medicine, Mahoniae Caulis as a case. J. Chromatogr. A 2015, 1412, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Bribi, N.; Algieri, F.; Rodriguez-Nogales, A.; Vezza, T.; Garrido-Mesa, J.; Utrilla, M.P.; del Mar Contreras, M.; Maiza, F.; Segura-Carretero, A.; Rodriguez-Cabezas, M.E.; et al. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. Phytomedicine 2016, 23, 901–913. [Google Scholar] [CrossRef]
- Del Mar Contreras, M.; Bribi, N.; Gómez-Caravaca, A.M.; Gálvez, J.; Segura-Carretero, A. Alkaloids Profiling of Fumaria capreolata by Analytical Platforms Based on the Hyphenation of Gas Chromatography and Liquid Chromatography with Quadrupole-Time-of-Flight Mass Spectrometry. Int. J. Anal. Chem. 2017. [Google Scholar] [CrossRef]
- Tabrizi, F.H.A.; Irian, S.; Amanzadeh, A.; Heidarnejad, F.; Gudarzi, H.; Salimi, M. Anti-proliferative activity of Fumaria vaillantii extracts on different cancer cell lines. Res. Pharm. Sci. 2016, 11, 152–159. [Google Scholar]
- Hussain, T.; Siddiqui, H.H.; Fareed, S.; Vijayakumar, M.; Rao, C.V. Evaluation of chemopreventive effect of Fumaria indica against N-nitrosodiethylamine and CCl4-induced hepatocellular carcinoma in Wistar rats. Asian Pac. J. Trop. Med. 2012, 5, 623–629. [Google Scholar] [CrossRef]
- Li, L.; Huang, M.; Shao, J.; Lin, B.; Shen, Q. Rapid determination of alkaloids in Macleaya cordata using ionic liquid extraction followed by multiple reaction monitoring UPLC–MS/MS analysis. J. Pharm. Biomed. Anal. 2017, 135, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhao, L.; Wang, K.; Han, L.; Shan, J.; Wu, L.; Xue, X. Rapid identification of “mad honey” from Tripterygium wilfordii Hook. f. and Macleaya cordata (Willd) R. Br using UHPLC/Q-TOF-MS. Food Chem. 2019, 294, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Qinga, Z.-X.; Cheng, P.; Liu, X.-B.; Liu, Y.-S.; Zeng, J.-G. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 2015, 103, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Chena, Y.-Z.; Liu, G.-Z.; Shen, Y.; Chen, B.; Zeng, J.-G. Analysis of alkaloids in Macleaya cordata (Willd.) R. Br. using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A 2009, 1216, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Kosina, P.; Gregorova, J.; Gruz, J.; Vacek, J.; Kolar, M.; Vogel, M.; Roos, W.; Naumann, K.; Simanek, V.; Ulrichova, J. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia 2010, 81, 1006–1012. [Google Scholar] [CrossRef]
- Liu, M.; Lin, Y.-l.; Chen, X.-R.; Liao, C.-C.; Poo, W.-K. In vitro assessment of Macleaya cordata crude extract bioactivity and anticancer properties in normal and cancerous human lung cells. Exp. Toxicol. Pathol. 2013, 65, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.-J.; Qin, H.-L. Cytotoxic disbenzophenanthridine alkaloids from the roots of Macleaya microcarpa. Phytochemistry 2010, 71, 816–822. [Google Scholar] [CrossRef]
- Jeong, E.-K.; Lee, S.Y.; Yu, S.M.; Park, N.H.; Lee, H.-S.; Yim, Y.-H.; Hwang, G.-S.; Cheong, C.; Jung, J.H.; Hong, J. Identification of structurally diverse alkaloids in Corydalis species by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1661–1674. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Meng, X.; Bao, Y.; Wang, S.; Chang, X.; Yang, G.; Bo, T. Metabolomics and genomics: revealing the mechanism of corydalis alkaloid on anti-inflammation in vivo and in vitro. Med. Chem. Res. 2018, 2, 669–678. [Google Scholar] [CrossRef]
- Baia, R.; Yina, X.; Fenga, X.; Caoa, Y.; Wu, Y.; Zhua, Z.; Lia, C.; Tua, P.; Chai, X. Corydalis hendersonii Hemsl. protects against myocardial injury by attenuating inflammation and fibrosis via NF-κB and JAK2-STAT3 signaling pathways. J. Ethnopharmacol. 2017, 207, 174–183. [Google Scholar]
- Mao, Z.; Wang, X.; Liu, Y.; Huang, Y.; Liu, Y.; Di, X. Simultaneous determination of seven alkaloids from Rhizoma Corydalis Decumbentis in rabbit aqueous humor by LC–MS/MS: Application to ocular pharmacokinetic studies. J. Chromatogr. B 2017, 1057, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, Y.; Dong, J.; Xiao, Y.; Feng, J.; Xue, X.; Zhang, X.; Liang, X. Systematic screening and characterization of tertiary and quaternary alkaloids from corydalis yanhusuo W.T. Wang using ultra-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. Talanta 2009, 78, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, S.; Fan, G.; Zou, H. Screening of antinociceptive components in Corydalis yanhusuo W.T. Wang by comprehensive two-dimensional liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zheng, W.; Zhou, J.; Gao, X.; Liu, Z.; Han, N.; Yin, J. Study on the discrimination between Corydalis Rhizoma and its adulterants based on HPLC-DAD-Q-TOF-MS associated with chemometric analysis. J. Chromatogr. B 2018, 1090, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shen, H.; Wang, L.; Meng, Q.; Liu, W. Analyses of Total Alkaloid Extract of Corydalis yanhusuo by Comprehensive RP × RP Liquid Chromatography with pH Difference. J. Anal. Methods Chem. 2016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, C.; Wang, F.-Q.; Li, C.-H.; Zhang, Q.-H.; Hu, Y.-J.; Xia, Z.-N.; Yang, F.-Q. Simultaneous screening and analysis of antiplatelet aggregation active alkaloids from Rhizoma Corydalis. Pharm. Biol. 2016, 54, 3113–3120. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Waldbauer, K.; Tang, L.; Xie, L.; McKinnon, R.; Zehl, M.; Yang, H.; Xu, H.; Kopp, B. Influence of Vinegar and Wine Processing on the Alkaloid Content and Composition of the Traditional Chinese Medicine Corydalis Rhizoma (Yanhusuo). Molecules 2014, 19, 11487–11504. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Liun, J.; Lin, C.; Miao, L.; Lin, L. Alkaloid profiling ofthetraditional Chinese medicine Rhizoma corydalis using high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Acta Pharm. Sin. B 2014, 4, 208–216. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Ma, Z.; Zhang, M.; Sun, F. Characterization of Aromatase Binding Agents from the Dichloromethane Extract of Corydalis yanhusuo Using Ultrafiltration and Liquid Chromatography Tandem Mass Spectrometry. Molecules 2010, 15, 3556–3566. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Lee, I.K.; Piao, C.J.; Choi, S.U.; Lee, J.H.; Kim, Y.S.; Lee, K.R. Benzylisoquinoline alkaloids from the tubers of Corydalis ternate and their cytotoxicity. Bioorg. Med. Chem. Lett. 2010, 20, 4487–4490. [Google Scholar] [CrossRef]
- Ma, W.g.; Fukushi, Y.; Tahara, S.; Osawa, T. Fungitoxic alkaloids from Hokkaido Papaveraceae. Fitoterapia 2000, 71, 527–534. [Google Scholar] [CrossRef]
- Kim, A.H.; Jang, J.H.; Woo, K.W.; Park, J.E.; Lee, K.H.; Jung, H.K.; An, B.; Jung, W.S.; Ham, S.H.; Cho, H.W. Chemical constituents of Dicentra spectabilis and their anti-inflammation effect. J. Appl. Biol. Chem. 2018, 61, 39–46. [Google Scholar] [CrossRef]
- Och, A.; Szewczyk, K.; Pecio, Ł.; Stochmal, A.; Załuski, D.; Bogucka-Kocka, A. UPLC-MS/MS Profile of Alkaloids with Cytotoxic Properties of Selected Medicinal Plants of the Berberidaceae and Papaveraceae Families. Oxid. Med. Cell. Longev. 2017. [Google Scholar] [CrossRef]
- Fan, J.; Wang, P.; Wang, X.; Tang, W.; Liu, C.; Wang, Y.; Yuan, W.; Kong, L.; Liu, Q. Induction of Mitochondrial Dependent Apoptosis in Human Leukemia K562 Cells by Meconopsis integrifolia: A Species from Traditional Tibetan Medicine. Molecules 2015, 20, 11981–11993. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, H.; Zheng, F.; Liu, W.; Feng, F.; Xie, N. Chemical constituents of Meconopsis horridula and their simultaneous quantification by high-performance liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci. 2014, 37, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Song, J.-Z.; Choi, F.F.-K.; Wu, H.-F.; Qiao, C.-F.; Ding, L.-S.; Gesang, S.-L.; Xu, H.-X. An experimental design approach using response surface techniques to obtain optimal liquid chromatography and mass spectrometry conditions to determine the alkaloids in Meconopsi species. J. Chromatogr. A 2009, 1216, 7013–7023. [Google Scholar] [CrossRef]
- Fana, J.; Wanga, Y.; Wanga, X.; Wanga, P.; Tanga, W.; Yuana, W.; Konga, L.; Liu, Q. The Antitumor Activity of Meconopsis Horridula Hook, a Traditional Tibetan Medical Plant, in Murine Leukemia L1210 Cells. Cell. Physiol. Biochem. 2015, 37, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Nema, R.; Vishwakarma, S.; Agarwal, R.; Panday, R.K.; Kumar, A. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco. Targets Ther. 2016, 9, 3269–3280. [Google Scholar]
- Leemans, C.R.; Braakhuis, B.J.; Brakenhoff, R.H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 9–22. [Google Scholar] [CrossRef]
- Nichols, A.C.; Yoo, J.; Palma, D.A.; Fung, K.; Franklin, J.H.; Koropatnick, J.; Mymryk, J.S.; Batada, N.N.; Barrett, J.W. Frequent mutations in TP53 and CDKN2A found by next-generation sequencing of head and neck cancer cell lines. Arch. Otolaryngol. Head Neck Surg. 2012, 138, 732–739. [Google Scholar] [CrossRef]
- Gu, J.; Xu, T.; Huang, Q.H.; Zhang, C.M.; Chen, H.Y. HMGB3 silence inhibits breast cancer cell proliferation and tumor growth by interacting with hypoxia-inducible factor 1α. Cancer Manag. Res. 2019, 11, 5075–5089. [Google Scholar] [CrossRef] [PubMed]
- Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Berkov, S.; Bastida, J.; Sidjimova, B.; Viladomata, F.; Codina, C. Phytochemical differentiation of Galanthus nivalisandGalanthus elwesii(Amaryllidaceae): A case study. Biochem. Syste. Ecol. 2008, 36, 638–645. [Google Scholar] [CrossRef]
- Petruczynik, A.; Misiurek, J.; Tuzimski, T.; Uszyński, R.; Szymczak, G.; Chernetskyy, M.; Waksmundzka-Hajnos, M. Comparison of different HPLC systems for analysis of galantamine and lycorine in various species of Amaryllidaceae family. J. Liq. Chromatogr. 2016, 39, 574–579. [Google Scholar] [CrossRef]
Name of Compound | Hydro RP (Octadecyl Stationary Phase) | Polar RP (Phenyl Stationary Phase) | |||||
---|---|---|---|---|---|---|---|
tR | As | N/m | tR | As | N/m | ||
Berberine | 23.57 | 0.72 | 33650 | 34.74 | 1.42 | 243280 | |
Chelerythrine | 32.29 | 0.82 | 190010 | 40.75 | 1.37 | 708700 | |
Magnoflorine | 3.12 | 0.84 | 8780 | 3.89 | 0.82 | 33190 | |
Palmatine | 19.70 | * | * | 29.78 | 1.18 | 126770 | |
Protopine | 9.04 | 0.68 | 30160 | 12.54 | 0.97 | 49630 | |
Sanquinarine | 19.07 | * | * | 34.87 | 1.01 | 413350 | |
Stylopine | 13.01 | 1.28 | 58300 | 19.36 | 0.98 | 355570 |
Alkaloid | Equation of Calibration Curve | r | LOD [mg/mL] | LOQ [mg/mL] |
Berberine | y = 72178227x − 370170 | 0.9973 | 0.0151 | 0.0457 |
Chelerythrine | y = 84228691x + 413980 | 0.9998 | 0.0040 | 0.0123 |
Magnoflorine | y = 23972503x + 263324 | 0.9992 | 0.0094 | 0.0287 |
Palmatine | y = 51166752x + 511129 | 0.9991 | 0.0108 | 0.0327 |
Protopine | y = 7344826x + 64160 | 0.9992 | 0.0095 | 0.0288 |
Sanguinarine | y = 80589787x + 606317 | 0.9997 | 0.0123 | 0.0371 |
Stylopine | y = 879342x − 13994 | 0.9996 | 0.0241 | 0.0729 |
Name of Compound | Content of Alkaloids (mg/g of Plant Material) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Corydalis lutea Root | Corydalis lutea Herb | Dicentra speclebilis | Fumaria officinalis | Macleya cordata Leaves | Macleya cordata Herb | Mahonia aquifalium Cortex | Mahonia aquifalium Leaves | Meconopsis cambrica Root | Meconopsis cambrica Herb | |
Berberine | ND | ND | ND | ND | ND | ND | 0.1332 | ND | ND | ND |
Chelerythrine | ND | ND | ND | 0.0598 | 5.6061 | 1.7654 | ND | ND | ND | ND |
Magnoflorine | ND | ND | ND | ND | ND | ND | 0.0863 | 0.3251 | ND | ND |
Palmatine | 0.1041 | 0.03168 | ND | ND | ND | ND | 0.0360 | ND | ND | ND |
Protopine | 5.4562 | 0.5526 | 5.3756 | 2.7873 | 1.7621 | 0.4731 | ND | ND | 0.0236 | 0.0787 |
Sanquinarine | ND | ND | 0.0940 | 0.0097 | 3.1253 | 0.7699 | ND | ND | 0.0504 | 0.0542 |
Stylopine | 4.0774 | 2.0725 | ND | 2.8251 | ND | ND | ND | ND | ND | ND |
IC50 [µM] ± SD | ||||
---|---|---|---|---|
FaDu | SCC 25 | MCF-7 | MDA-MB-231 | |
Berberine | 27.51± 6.72 | 84.24 ± 7.75 | 113.42 ± 14.69 | 51.05 ± 9.07 |
Chelerythrine | 6.11 ± 0.32 | 7.49 ± 0.77 | 9.10 ± 0.55 | 7.11 ± 0.26 |
Magnoflorine | >500 | >500 | >500 | >500 |
Palmatine | 94.27 ± 9.39 | 320.23 ± 46.34 | 454.77 ± 24.52 | 423.38 ± 34.22 |
Protopine | 234.95 ± 37.55 | 298.73 ± 33.42 | 429.54 ± 34.92 | 370.13 ± 22.18 |
Sanguinarine | 0.84 ± 0.03 | 1.41 ± 0.12 | 0.84 ± 0.06 | 1.26 ± 0.03 |
Stylopine | 193.26 ± 3.80 | 340.40 ± 31.21 | 207.18 ± 16.95 | 489.51 ± 40.86 |
Etoposide | 38.73 ± 1.56 | 223.94 ± 24.81 | 136.48 ± 8.95 | 219.31 ± 24.47 |
IC50 [µg/mL] ± SD | ||||
---|---|---|---|---|
Plant Sample | FaDu | SCC-25 | MCF-7 | MDA-MB-231 |
Fumaria officinalis | 102.76 ± 13.03 | 101.46 ± 5.96 | >200 | 85.60 ± 13.25 |
Macleaya cordata leaves | 1.94 ± 0.27 | 2.19 ± 0.09 | 1.86 ± 0.08 | 2.09 ±0.10 |
Macleaya cordata herb | 2.57 ± 0.24 | 2.50 ± 0.26 | 2.14 ± 0.18 | 2.42 ± 0.21 |
Mahonia aquifalium leaves | 46.77 ± 7.84 | 97.25 ± 8.07 | 89.14 ± 2.73 | 90.71 ± 7.29 |
Mahonia aquifalium cortex | 7.67 ± 0.82 | 31.37 ± 2.29 | 15.71 ± 1.92 | 31.87 ± 4.35 |
Dicentra speclebilis | 19.88 ± 2.26 | 29.55 ± 4.09 | 11.66 ± 1.36 | 9.66 ± 0.42 |
Meconopsis caubrica root | 43.66 ± 4.78 | 27.96 ± 1.03 | 23.26 ± 3.69 | 9.98 ± 1.34 |
Meconopsis caubrica herb | 13.70 ± 1.24 | 48.02 ± 4.89 | 31.60 ± 2.42 | 21.10 ± 1.96 |
Corydalis lutea root | 38.08 ± 3.50 | 142.14 ± 10.58 | 29.37 ± 4.01 | 57.98 ± 10.67 |
Corydalis lutea herb | 47.47 ± 4.50 | 48.06 ± 0.86 | 49.34 ± 5.05 | 31.39 ± 1.82 |
Etoposide | 22.80 ± 0.92 | 131.80 ± 14.6 | 80.33 ± 5.27 | 129.08 ± 14.4 |
m/z (~) | Q1 (~) | Q3 (~) | Iso. Width | Collison Energy | |
---|---|---|---|---|---|
Berberine | 336 | 320 | 292 | Medium(~4m/z) | 35 |
Chelerythrine | 348 | 332 | 304 | Medium(~4m/z) | 35 |
Magnoflorine | 342 | 296 | 236 | Medium(~4m/z) | 30 |
Palmatine | 352 | 336 | 308 | Medium(~4m/z) | 25 |
Protopine | 354 | 189 | 149 | Medium(~4m/z) | 35 |
Sanguinarine | 332 | 273 | 316 | Medium(~4m/z) | 25 |
Stylopine | 324 | 176 | 149 | Medium(~4m/z) | 35 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petruczynik, A.; Plech, T.; Tuzimski, T.; Misiurek, J.; Kaproń, B.; Misiurek, D.; Szultka-Młyńska, M.; Buszewski, B.; Waksmundzka-Hajnos, M. Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins 2019, 11, 575. https://doi.org/10.3390/toxins11100575
Petruczynik A, Plech T, Tuzimski T, Misiurek J, Kaproń B, Misiurek D, Szultka-Młyńska M, Buszewski B, Waksmundzka-Hajnos M. Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins. 2019; 11(10):575. https://doi.org/10.3390/toxins11100575
Chicago/Turabian StylePetruczynik, Anna, Tomasz Plech, Tomasz Tuzimski, Justyna Misiurek, Barbara Kaproń, Dorota Misiurek, Małgorzata Szultka-Młyńska, Bogusław Buszewski, and Monika Waksmundzka-Hajnos. 2019. "Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity" Toxins 11, no. 10: 575. https://doi.org/10.3390/toxins11100575
APA StylePetruczynik, A., Plech, T., Tuzimski, T., Misiurek, J., Kaproń, B., Misiurek, D., Szultka-Młyńska, M., Buszewski, B., & Waksmundzka-Hajnos, M. (2019). Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins, 11(10), 575. https://doi.org/10.3390/toxins11100575