Knowledge, Attitude and Practice of Malawian Farmers on Pre- and Post-Harvest Crop Management to Mitigate Aflatoxin Contamination in Groundnut, Maize and Sorghum—Implication for Behavioral Change
Abstract
:1. Introduction
2. Results
2.1. Demographics and Landholding
2.2. Knowledge, Attitude and Practice
2.3. Aflatoxin Contamination in Crop Samples
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Participants in the KAP Studies
5.2. Grain Sample Collection
5.3. Quantitative Detection of Aflatoxin B1 from Grain Samples
5.4. Training on Pre- and Post-Harvest Crop Management
5.5. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gama, A.P.; Adhikari, K.; Hoisington, D.A. Peanut consumption in Malawi: An opportunity for innovation. Foods 2018, 7, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 7 November 2019).
- Matumba, L.; Monjerezi, M.; Biswick, T.; Mwatseteza, J.; Makumba, W.; Kamangira, D.; Mtukuso, A. Survey of the incidence and level of aflatoxin contamination in a range of locally and imported processed foods on Malawian retail market. Food Control 2014, 39, 87–91. [Google Scholar] [CrossRef]
- Njoroge, S.M.C.; Matumba, L.; Kanenga, K.; Siambi, M.; Waliyar, F.; Maruwo, J.; Machinjiri, N.; Monyo, E.S. Aflatoxin B1 levels in groundnut products from local markets in Zambia. Mycotoxin Res. 2017, 33, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Waliyar, F.; Umeh, V.C.; Traorea, A.; Osiru, M.; Ntare, B.R.; Diarra, B.; Kodio, O.; Vijay Krishna Kumar, K.; Sudini, H. Prevalence and distribution of aflatoxin contamination in groundnut (Arachis hypogaea L.) in Mali, West Africa. Crop Prot. 2015, 70, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mahukua, G.; Nziokib, H.S.; Mutegic, C.; Kanampiuc, F.; Narrodd, C.; Makumbie, D. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. Food Control 2019, 96, 219–226. [Google Scholar] [CrossRef]
- Seetha, A.; Munthali, W.; Msere, H.; Elirehma, S.; Muzanila, Y.; Sichone, E.; Tsusaka, T.W.; Rathore, A.; Okori, P. Occurrence of aflatoxins and its management in diverse cropping system of central Tanzania. Mycotoxin Res. 2017, 33, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Monyo, E.S.; Njoroge, S.M.C.; Coe, R.; Osiru, M.; Madinda, F.; Waliyar, F.; Thakur, R.P.; Chilunjika, T.; Anitha, S. Occurrence and distribution of aflatoxin contamination in groundnuts and population density of aflatoxigenic Aspergilli in Malawi. Crop Prot. 2012, 42, 149–155. [Google Scholar] [CrossRef] [Green Version]
- FDA. Sec. 683.100 Action Levels for Aflatoxins in Animal Food Compliance Policy Guide-Guidance for FDA Staff. 2019. Available online: https://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/default.htm. (accessed on 7 November 2019).
- Njoroge, S.M.C.; Matumba, L.; Kanenga, K.; Siambi, M.; Waliyar, F.; Maruwo, J.; Monyo, E.S. A case for regular aflatoxin monitoring in peanut butters in sub-Saharan Africa—lessons from a 3-year survey in Zambia. J. Food Prot. 2016, 79, 795–800. [Google Scholar] [CrossRef]
- Njoroge, S.M.C. A critical review of aflatoxin contamination of peanuts in Malawi and Zambia: The past, present and future. Plant Dis. 2018, 102, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Schurz Rogers, H.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; et al. Case–Control Study of an Acute Aflatoxicosis Outbreak, Kenya, 2004. Env. Health Perspect. 2005, 113, 1779–1783. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Ortega-Beltran, A.; Akande, A.; Mutegi, C.; Atehnkeng, J.; Kaptoge, L.; Senghor, A.L.; Adhikar, B.N.; Coty, P.L. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. WMJ 2016, 9, 771–789. [Google Scholar] [CrossRef]
- Waliyar, F.; Osiru, M.; Ntare, B.R.; Vijay Krishna Kumar, K.; Sudini, H.; Traore, A.; Diarra, B. Post-harvest management of aflatoxin contamination in groundnut. WMJ 2014, 1–8. [Google Scholar] [CrossRef]
- Matumba, L.; Monjerezi, M.; Kankwamba, H.; Njoroge, S.M.C.; Ndilowe, P.; Kabuli, H.; Kambewa, D.; Njapau, H. Knowledge, attitude, and practices concerning presence of molds in foods among members of the general public in Malawi. Mycotoxin Res 2016, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Orr, A.; Tsusaka, T.W.; Homann-KeeTui, S.; Msere, H.W. What do we mean by ‘women’s crops’? Commercialization, gender, and the power to name. J. Int. Dev. 2016, 28, 919–937. [Google Scholar] [CrossRef]
- Park, D.L. Effect of processing on aflatoxin. Adv. Exp. Med. Biol. 2002, 504, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tsusaka, T.W.; Twanje, G.H.; Msere, H.W.; Muwakasungula, B.M.; Gondwe, L.; Madzonga, O.; Dambuleni, K.; Okori, P. Ex-Ante Assessment of Adoption of Small-Scale Post-Harvest Mechanization: The Case of Groundnut Farmers in Malawi, Socioeconomics; Socioeconomics Discussion Paper Series 44; International Crops Research Institute for the Semi-Arid Tropics: Hyderabad, India, 2017; p. 28. [Google Scholar]
- Shephard, G.S. Aflatoxins in peanut oil: Food safety concerns. WMJ 2018, 11, 149–158. [Google Scholar] [CrossRef]
- Florkowki, W.J.; Kolavalli, S. Aflatoxin control strategies in the groundnut value chain in Ghana. Ghana Strategy Support Program. 2013, pp. 1–14. Available online: https://pdfs.semanticscholar.org/935a/b6f586de2e32fffe691bd3976e6e57209223.pdf (accessed on 3 November 2019).
- Udomkun, P.; Wossen, T.; Nabahungu, N.L.; Mutegi, C.; Vanlauwe, B.; Bandyopadhyay, R. Incidence and farmer’s knowledge of aflatoxin contamination and control in Eastern Democratic Republic of Congo. Food Sci. Nutr. 2018, 1–14. [Google Scholar] [CrossRef]
- Anitha, S.; Muzanila, Y.; Tsusaka, T.W.; Kachulu, L.; Kumwenda, N.; Musoke, M.; Elirehema, S.; Shija, J.; Siambi, M.; Monyo, E.S.; et al. Reducing child undernutrition through dietary diversification, decreased aflatoxin exposure, and improved hygiene practices: The immediate impacts in Central Tanzania. Ecol. Food Nutr. 2019, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y.; Tsusaka, T.W.; Aida, T.; Pede, V.O. Is Farmer-to-Farmer Extension Effective? The Impact of Training on Technology Adoption and Rice Farming Productivity in Tanzania. World Dev. 2018, 105, 336–351. [Google Scholar] [CrossRef] [Green Version]
- Mahuku, G.; Henry, S.N.; Waliyar, F.; Diarra, B.; Kodio, O. Aflatoxin prevalence and data collection. Sampling framework and methodology. Working paper 1. Aflacontrol 2010, 2010, 1–17. [Google Scholar]
- Waliyar, F.; Reddy, S.V.; Kumar, P.L. Review of immunological methods for the quantification of aflatoxins in peanut and other foods. Peanut Sci. 2009, 36, 54–59. [Google Scholar] [CrossRef]
- Park, D.L.; Trucksess, M.W.; Nesheim, S.; Stack, M.; Newell, R.F. Solvent-efficient thin-layer chromatographic method for the determination of aflatoxins B1, B2, G1, and G2 in corn and peanut products: Collaborative study. J. AOAC Int. 1994, 77, 637–646. [Google Scholar] [PubMed]
- StataCorp. Stata Statistical Software: Release 14; StataCorp: College Station, TX, USA, 2015. [Google Scholar]
Statement | % of Farmers in Agreement | |||
---|---|---|---|---|
Baseline (%) | End-Line (%) | Increase in % Point | χ2 (p) | |
Contamination begins in the field | 66.2 | 77.7 | 11.5 | 0.433 |
Contamination occurs during harvest | 73.0 | 87.6 | 14.7 | 0.503 |
Contamination increases due to improper drying | 75.7 | 90.1 | 14.4 | 0.817 |
Contamination occur during crop storage | 82.4 | 89.6 | 7.2 | 0.144 |
Contamination spreads if the crop produce is not graded | 60.1 | 93.1 | 29.9 | 0.851 |
Contamination occurs if the storage place is wet | 90.5 | 96.5 | 6.0 | 0.527 |
Contamination increases if water is sprinkled during shelling | 83.1 | 85.2 | 2.0 | 0.717 |
Contamination increases if water is sprinkled to increase weight | 77.7 | 83.2 | 5.5 | 0.674 |
The consumption of contaminated grains causes child stunting | 31.8 | 68.3 | 36.6 | 0.577 |
Aflatoxin-contaminated grains will be rejected in the market | 66.9 | 87.1 | 20.2 | 0.551 |
Aflatoxin contamination causes income loss | 71.6 | 90.6 | 19.0 * | 0.092 |
Contaminated grains should not be fed to livestock | 37.8 | 72.3 | 34.4 * | 0.075 |
Aflatoxin-contaminated grains reduce livestock productivity | 37.8 | 70.8 | 33.0 ** | 0.033 |
Statements/Questions Asked toward Farmers Attitude on Pre- and Post-Harvest Crop Practice | Farmer’s Answer |
---|---|
Why do you still consume grade out/why do you still feed grade out/why do you sell grade out in market? | “This is our 10 to 20 percentage of income, which can’t be thrown away.” |
“We don’t have enough food during these bad seasons; so we can’t throw them away.” | |
“What do I do with grade outs? because it is money or food, and can you teach some other methods to clean them from contamination?” | |
“We are eating them since childhood; we are still fine.” | |
Why do you not dry your grains on raised bed/tarpaulin/ground cover? | “We don’t have enough space.” |
“We can’t spread them in farm because we will lose them to thieves.” | |
“I don’t want to spend in buying tarpaulin.” | |
Why do you still sprinkle water to shell the groundnut? | “It makes it easy to shell.” |
“I don’t keep them for a long time. I sell them immediately, so this practice doesn’t affect me.” | |
Why do you continue mulching practice? | “It is simple.” |
“It holds moisture, so my crops doesn’t dry out during drought and I get good yield.” | |
“It helped for two to three weeks of no rain during this season.” |
Blantyre | Chikwawa | Nsanje | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crops | Baseline (%) | End-Line (%) | Change in % Point | χ2 (p) | Baseline (%) | End-Line (%) | Change in % Point | χ2 (p) | Baseline (%) | End-Line (%) | Change in % Point | χ2 (p) |
Maize | 92.0 | 90.4 | 1.6 | 0.651 | 71.2 | 85.2 | 14.0 | 0.890 | 54.8 | 70.5 | 15.7 | 0.355 |
Groundnut | 92.9 | 76.9 | −15.9 | 0.263 | 73.5 | 88.9 | 15.4 | 0.786 | 58.7 | 86.1 | 27.4** | 0.012 |
Sorghum | 57.7 | 71.4 | 13.7 | 0.273 | 46.7 | 62.5 | 15.8* | 0.097 | 47.1 | 37.5 | 9.6 | 0.996 |
Question/Statement on Farmers Practice | Practice on All Crops | |||
---|---|---|---|---|
Baseline (%) | End-Line (%) | Change in % Point | χ2 (p) | |
Dry produce on bare soil/roof | 50.7 | 39.5 | 11.1 | 0.182 |
Dry produce on tarpaulin sheet/mat | 70.9 | 95.8 | 24.8 | 0.166 |
Shell the groundnut pod/cob using machine | 0.7 | 1.3 | 0.7 | 0.870 |
Shell the groundnut pod/cob manually | 76.8 | 99.7 | 22.9 * | 0.068 |
Sprinkle water for shelling groundnut | 6.6 | 10.2 | 3.6 *** | 0.004 |
Grade grains | 62.4 | 92.5 | 30.1 | 0.873 |
Grade grains to improve quality | 60.8 | 89.9 | 29.1 | 0.653 |
Grade grains to separate them based on color and size | 31.1 | 35.3 | 04.2 | 0.891 |
Throw away grade outs | 44.4 | 60.1 | 15.7 * | 0.090 |
Feed grade outs to livestock | 10.5 | 7.5 | 2.9 | 0.774 |
Consume grade outs in different forms | 51.0 | 45.1 | 5.9 *** | 0.009 |
Sell grade outs in markets | 0.7 | 3.9 | 3.3 | 0.774 |
Store them in gunny bag/polythene bag | 26.1 | 26.5 | 0.3 * | 0.086 |
Use hermetic storage | 0.0 | 2.9 | 2.9 | NA |
Store bags on wooden palates | 60.8 | 78.8 | 18.0 * | 0.062 |
Store bags on floor | 12.4 | 24.1 | 12.8 | 0.630 |
Indicator | Groundnut | Maize | Sorghum | |||
---|---|---|---|---|---|---|
Baseline | End-line | Baseline | End-line | Baseline | End-line | |
Number of samples tested (n) | 589 | 386 | 114 | 268 | 79 | 42 |
% of samples that tested negative for AFB1 | 31.4 | 2.8 | 49.1 | 2.9 | 30.3 | 4.7 |
% of samples that tested positive and with < 20 ppb of AFB1 | 55.4 | 70.4 | 55.1 | 65.0 | 49.0 | 62.5 |
% of samples with > 20 ppb of AFB1 | 39.6 | 29.6 | 44.8 | 31.9 | 50.9 | 32.5 |
Median AFB1 (ppb) | 1.97 | 7.92 | 0.00 | 7.22 | 0.09 | 10.42 |
Mean AFB1 (ppb) | 146.6 | 56.6 | 25.8 | 43.8 | 119.5 | 103.7 |
Standard Deviation AFB1 (ppb) | 1929.9 | 173.3 | 142.0 | 144.3 | 245.4 | 296.3 |
Percentage point reduction in contamination level > 20 ppb | 10.0 | 12.9 | 18.4 | |||
p-value for Chi square (χ2) test | 0.886 | 0.045 | 0.022 |
Indicator | Baseline | End-Line |
---|---|---|
Number of samples tested (n) | 416 | 548 |
% of samples that tested negative * for AFB1 | 37.6 | 18.4 |
% of samples that tested positive and with < 20 ppb of AFB1 | 54.9 | 66.8 |
% of samples with > 20 ppb of AFB1 | 45.1 | 33.2 |
Median AFB1 (ppb) | 1.0 | 9.1 |
Mean AFB1 (ppb) | 83.6 | 55.8 |
Standard Deviation AFB1 (ppb) | 297.2 | 179.0 |
Wilcoxon Signed Rank Test (p-value) | 0.001 | |
Reduction in incidence of contamination level > 20 ppb (% points) | 11.9 |
Method Adopted after the Training | AFB1 Level in Grain Samples (ppb) | Mann–Whitney U Test | ||
---|---|---|---|---|
Baseline | End-Line | U-Statistic | p-Value | |
Grading | ||||
Mean | 73.3 | 50.9 | 65.09 | 0.000 |
SD | 260.8 | 164.7 | ||
Drying their harvest on tarpaulin sheets/mats cover | ||||
Mean | 72.1 | 55.9 | 55.62 | 0.001 |
SD | 261.5 | 178.4 |
District | Number of Sampled HHs | Crop Samples | Number of Crop Samples Collected | ||
---|---|---|---|---|---|
Baseline | End-Line | Baseline | End-Line | ||
Blantyre | 305 | 196 | Groundnut | 224 | 149 |
Maize | 21 | 57 | |||
Sorghum | 5 | 0 | |||
Subtotal | 250 | 206 | |||
Chikwawa | 314 | 237 | Groundnut | 130 | 93 |
Maize | 56 | 118 | |||
Sorghum | 47 | 29 | |||
Subtotal | 233 | 240 | |||
Nsanje | 281 | 191 | Groundnut | 173 | 144 |
Maize | 40 | 93 | |||
Sorghum | 30 | 13 | |||
Subtotal | 243 | 250 | |||
Total | 900 | 624 | Grand total | 726 | 696 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anitha, S.; Tsusaka, T.W.; Njoroge, S.M.C.; Kumwenda, N.; Kachulu, L.; Maruwo, J.; Machinjiri, N.; Botha, R.; Msere, H.W.; Masumba, J.; et al. Knowledge, Attitude and Practice of Malawian Farmers on Pre- and Post-Harvest Crop Management to Mitigate Aflatoxin Contamination in Groundnut, Maize and Sorghum—Implication for Behavioral Change. Toxins 2019, 11, 716. https://doi.org/10.3390/toxins11120716
Anitha S, Tsusaka TW, Njoroge SMC, Kumwenda N, Kachulu L, Maruwo J, Machinjiri N, Botha R, Msere HW, Masumba J, et al. Knowledge, Attitude and Practice of Malawian Farmers on Pre- and Post-Harvest Crop Management to Mitigate Aflatoxin Contamination in Groundnut, Maize and Sorghum—Implication for Behavioral Change. Toxins. 2019; 11(12):716. https://doi.org/10.3390/toxins11120716
Chicago/Turabian StyleAnitha, Seetha, Takuji W. Tsusaka, Samuel M.C. Njoroge, Nelson Kumwenda, Lizzie Kachulu, Joseph Maruwo, Norah Machinjiri, Rosemary Botha, Harry W. Msere, Juma Masumba, and et al. 2019. "Knowledge, Attitude and Practice of Malawian Farmers on Pre- and Post-Harvest Crop Management to Mitigate Aflatoxin Contamination in Groundnut, Maize and Sorghum—Implication for Behavioral Change" Toxins 11, no. 12: 716. https://doi.org/10.3390/toxins11120716
APA StyleAnitha, S., Tsusaka, T. W., Njoroge, S. M. C., Kumwenda, N., Kachulu, L., Maruwo, J., Machinjiri, N., Botha, R., Msere, H. W., Masumba, J., Tavares, A., Heinrich, G. M., Siambi, M., & Okori, P. (2019). Knowledge, Attitude and Practice of Malawian Farmers on Pre- and Post-Harvest Crop Management to Mitigate Aflatoxin Contamination in Groundnut, Maize and Sorghum—Implication for Behavioral Change. Toxins, 11(12), 716. https://doi.org/10.3390/toxins11120716